
Citation: El Krine, A.; Redondin, M.;

Girard, J.; Heinkele, C.; Stresser, A.;

Muzet, V. Does the Condition of the

Road Markings Have a Direct Impact

on the Performance of Machine

Vision during the Day on Dry

Roads? Vehicles 2023, 5, 286–305.

https://doi.org/10.3390/

vehicles5010016

Academic Editors: Hocine Imine,

Claudio Lantieri and Mehdi Azimi

Received: 13 January 2023

Revised: 10 February 2023

Accepted: 20 February 2023

Published: 24 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Does the Condition of the Road Markings Have a Direct Impact
on the Performance of Machine Vision during the Day on
Dry Roads?
Abdessamad El Krine 1,* , Maxime Redondin 2 , Joffrey Girard 3, Christophe Heinkele 1, Aude Stresser 1

and Valérie Muzet 1,*

1 Cerema ENDSUM Research Team (Evaluation Non Destructive des StrUctures et des Matériaux) ,
11 Rue Jean Mentelin, 67035 Strasbourg, France

2 Institut VEDECOM, 23 bis Allées des Marronniers, 78000 Versailles, France
3 Cerema EL Research Team (Eclairage et Lumière), 23 Avenue Amiral Chauvin, 49130 Les Ponts-de-Cé, France
* Correspondence: abdessamad.el-krine@cerema.fr (A.E.K.); valerie.muzet@cerema.fr (V.M.);

Tel.: +33-3887-74656 (A.E.K.)

Abstract: The forthcoming arrival of automated vehicles (AV) on the roads requires the re-evaluation
or even adaptation of existing infrastructures as they are currently designed on the basis of human
perception. Indeed, advanced driver-assistance systems (ADAS) do not necessarily have the same
needs as drivers to detect road markings. One of the main challenges related to AV is the optimisation
of the vehicle–infrastructure pair in order to guarantee the safety of all users. In this context,
we compared the performance of a vehicle equipped with an ADAS machine-vision system with
a dynamic retroreflectometer during the daytime on a road section. Our results questioned the
reliability of the literature thresholds of the luminance contrast ratio on a dry road under sunny
conditions. Despite the presence of old and worn road markings, the ADAS camera was able to
detect the edge lines in more than 90% of the cases. The non-detections were not related to the poor
condition of the markings but to the environmental conditions or the complexity of the infrastructure.

Keywords: automated vehicles; ADAS; machine-vision system; road marking; luminance contrast

1. Introduction
1.1. Context

Road safety is a key issue for all countries in terms of social and financial cost. Road
markings are not expensive, easy to install and offer added value to users. In particular,
they increase both visibility and the legibility of the road. Road markings are composed of a
main layer usually made of paint or thermo or cold plastic tape. To allow the road markings
to be visible at night on unlit roads, the main layer is usually covered with glass beads,
which reflect the light from the car’s headlights onto the marking and then towards the
driver. The characterization of road markings (visibility, colour, etc.) is currently defined
according to the perception of human drivers. With the technological developments of
automated vehicle (AV) sensors, are these characteristics still valid?

In order to deal with this issue, the French project SAM (Safety and Acceptability of
Automated Mobility) is in progress. This project consists of developing knowledge to build
a technical and regulatory framework to facilitate the circulation of automated vehicles
on the French road network. One of the tasks of this project is to evaluate the detection
of road markings by camera-based driving assistance systems through varying different
parameters—both on the state of wear of the markings and also on the state of the road.

This paper presents a detailed analysis of the performance of markings, performed in
conjunction with automated driver-assistance systems (ADAS) sensors on an experiment
conducted during the day on a dry circulated road.
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1.2. Road-Marking Visibility According to Standards

To be efficient, road markings must be visible by day and night and in various sunlight
and weather conditions. The performance of road markings is controlled with some require-
ments given by the standards EN1436 [1] and ASTM2005 [2]. In particular, the visibility
of the road markings is defined for human perception: it is based on the photopic visual
sensibility curve.

By day, the visibility of road markings is mostly characterized by the luminance
coefficient under diffused daylight Qd (expressed in mcd·m−2·lx−1 ). This corresponds to
the ratio of the luminance of the diffused natural light reflected from the road marking at
an angle of 2.29◦ over the horizontal illuminance due to the overcast sky. This geometry
represents a driver whose eyes are conventionally 1.2 m from the ground and who is
looking 30 m away.

At night, the visibility of the road markings is no longer ensured by natural light but
by the reflection of the car headlights on the surface of the marking. Night visibility is
characterized by the retroreflection coefficient RL, which is defined as the reflection of the
headlights on a marking located 30 m from the driver. It is the quotient of the luminance
L of the field of the road marking in the direction of observation by the illuminance E⊥
at the field perpendicular to the direction of the incident light [1]. In standard measuring
conditions, the observation angle is 2.29◦, and the illumination angle is 1.24◦.

In the standards, all these marking visibility indicators are expressed independently
of the surrounding pavement characteristics.

Although it concerns only night-time visibility, the most widely used indicator of
road-marking performance is the retroreflection RL. Several studies [3–5] have shown that
the number of accidents at night decreases when the RL is higher. Moreover, since the
1990s, the literature introduced maintenance models mostly based on retroreflectivity as
a variable but also considering the age of the marking, initial RL, traffic volume, material
type, position of the marking etc. [6,7].

A strategy of preventive renewal with respect to age and considering budgetary
constraints has been proposed by Redondin et al. [8] and Najeh et al. [9], using the Weibull
model based on retroreflection measurements. Moreover, in the Eurorap 2011 report [10],
a renewal of the markings was recommended when the retroreflection is lower than
150 mcd·m−2·lx−1. A review on the impact of road markings on driver behaviour and road
safety was recently performed by Babic [11] and also confirmed the importance of higher
retroreflection and marking maintenance for road safety.

The daytime visibility indicators (e.g., Qd) could also be used to define maintenance
policy [12] but are not used in practice because, contrary to the RL factor, this cannot be
measured dynamically.

Although not standardised and dependent on ambient light conditions, the luminance
is sometimes measured dynamically with a viewing angle of 2.29◦. This indicator is notably
used to calculate a luminance contrast between the road marking and the pavement as seen
in [13,14].

1.3. Road-Marking Visibility According to Machine-Vision Systems

Driving assistance technologies or ADAS are becoming common in new vehicles with
the increasing automatization of driving and the future arrival of AVs. These vehicles are
equipped with machine-vision (MV) systems composed of artificial-vision systems, which
act as a type of “automated eye” associated with algorithms and software. To understand
the needs of these systems, research must be conducted to find a relationship between the
standardized factors (particularly RL and Qd) and the MV’s algorithm response. In this
paper, road-marking recognition by cameras is considered.

The recognition of road markings from images recorded by on-board cameras can use
different procedures of image processing: classical segmentation techniques, machine or
deep learning and the use of proprietary algorithms.
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Bar et al. [15] proposed a state-of-the-art use of classic image processing for the
detection of road marking. The road markings are first extracted from the pavement
surface by applying a binarisation method based on a threshold on a grey-scale image,
such as the Otsu [16] method. Then, a road marking line is fitted from the different
segmented objects [17]. Hough’s transform is also often used [18]. The major drawback
of these approaches is that a relevant threshold value is needed to correctly segment the
marking elements.

Since the reference paper of Bar et al. [15], many alternatives for road-marking detec-
tion based on convolutional neural networks (CNN) have been developed. The training
phase of the CNN requires a huge number of images. To constitute a reliable ground truth,
an operator carefully indicates where the road marking elements are located. The image
annotation phase is greatly time consuming. Once the training phase is operational, the
algorithm is able to automatically detect the road markings and then to model the marking
line [19,20]. To our knowledge, there is no paper that presents a correlation between the
algorithms’ answers and the standardized indicators characterizing the road-marking per-
formance.

The last type of procedure uses proprietary algorithms. The characteristics of the
used camera and of the implemented algorithm are often unknown. In addition, there is
no access to the raw data. Most of the time, these systems provide a score indicating the
quality of the road marking line detection and sometimes a view range [14,21–23].

For example, Babic et al. [23] investigated the differences in the detection quality and
view range of a “Mobileye system” in dry daytime and night-time conditions. With this
device, the detection of the road markings was slightly better in the night conditions. Pap-
palardo et al. [24] proposed a generalized estimating equation model to estimate the fault
probability among various effects of road features, such as the retroreflection of markings.
The authors set a maximum fault probability of 10% as suggested by Reddy et al. [25]. Dif-
ferent classes of retroreflection were explored to define situations respecting this threshold.
Using their study case, they found that the recommendations of the European Commis-
sion [10] (a minimum of 150 mcd·m−2·lx−1 in dry weather and 35 mcd·m−2·lx−1 in rainy
weather) are adequate to fulfill the 10% fault probability.

Some studies [21,26–30] have attempted to find a relationship between ADAS per-
formance and the characteristics of road markings. By testing different experimental
conditions, they recommended threshold values of the standardized indicators to obtain
good detection of the road marking lines by ADAS or a machine-vision system. Table 1
gives a summary of the threshold values given in the literature.

Table 1. Pavement marking standard requirements for MV according to the literature on a dry road.

Nighttime Visibility Daytime Visibility

Standard Indicators RL (mcd·m−2·lx−1) Qd (mcd·m−2·lx−1)

(Lundkvist and Fors 2010) [26] RL ≥ 70 Qd ≥ 85
(Pike et al. 2018) [21] RL ≥ 34 -

(Somers 2019) [28] RL ≥ 100 -
(Stacy 2019) [22] RL ≥ 200 No correlation

(Pappalardo et al. 2021) [29] - Qd ≥ 153
(Babić et al. 2022) [30] RL ≥ 55 -

For a given standardized indicator “X” (X = RL, Qd or L), a contrast of “X” (la-
belled CX) between the road marking element and its surrounding pavement is sometimes
considered and calculated:

CX =
X̄(marking)

X̄(pavement)
, (1)

where X̄(marking) is traditionally the mean value of X on the considered scale of the
marking element and X̄(pavement) is the mean value of X of the pavement surface sur-
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rounding the marking element. The pavement surface area considered for the calculation is
rarely indicated in the literature. The threshold values of the contrast of several indicators
recommended by the literature are given in Table 2.

Table 2. Contrast requirements for MV according to the literature on a dry road.

Nighttime Visibility Daytime Visibility

Contrast Ratio CRL CL CQd

(Lundkvist and Fors 2010) [26] - - marking 5 mcd·m−2·lx−1 higher than the road surface
(Carlson and Poorsartep 2017) [27] - - CQd ≥ 2

(Pike et al. 2018) [21] CRL ≥ 2.5 - -
(Marr et al. 2020) [31] 5 ≤ CRL ≤ 10 - CQd ≥ 3

(Burghadt et al. 2021) [13] - CL ≥ 3 -

In [32], Davies introduced the luminance contrast as an alternative to the Qd contrast.
In [31], Marr et al. found that a minimal value of 3 for the Qd contrast provided a reasonable
confidence that MV would detect the line. It is noticeable that, despite the difference
between the Qd and the luminance, similar contrast threshold values (between 2 and 3) of
these two factors are recommended in the literature.

As shown in Tables 1 and 2, there is a large variability in the threshold values from one
study to another. This may be due to the fact that the MV systems (and the algorithms used)
as well as the experimental conditions are not necessarily the same. Indeed, it is difficult
to make a comparison because, most of the time, there is no information about these MV
systems. Burghardt et al. [13] emphasized that there is no real collaboration between MV
developers and the researchers working on horizontal signalisation. Moreover, the areas
considered (both for the marking element and its surrounding pavement) for the calculation
are rarely provided, which can lead to discrepancies according to the state of the road.

1.4. Objectives of the Work

The objective of this work is to propose a more appropriate characterisation of the
marking–pavement pair in relation to what is perceived by the MV systems on a dry road by
day and, therefore, to propose a characterisation that would be more relevant for AV. We at-
tempted to find a relationship between the performance of the tested machine-vision system
and the luminance contrast between the road markings and the surrounding pavement.

To do that, we used a dynamic retroreflectometer and a vehicle equipped with a com-
mercialised “real world” camera associated with its proprietary software. We conducted an
experiment by day on a section of a circulated road around the city of Rouen to answer the
following questions:

• Do the conditions of the road markings have a direct impact on the performance of a
machine-vision system on dry roads?

• Is the luminance contrast a reliable indicator of machine-vision performance by day?
• What is the reliability of a machine-vision system by day? Furthermore, in what cases

is it less reliable?

After a description of the experiment and used vehicles, we present our statistical
analysis and results separately for each device. We then compare the performances of both
devices. A discussion of these results is finally conducted allowing a comparison with
those of the literature and suggesting some perspectives.

2. Materials and Methods
2.1. Itinerary

The experiment was conducted by day on a circulated road about 14 km long near
the city of Rouen. This itinerary was composed of different types of road (departmental
road 13 “DR13”, national road 138 “NR138” and junction road), and therefore the speed of
traffic could vary up to 90 km·h−1 (see Figure 1). A first analysis of this experiment was
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conducted for the axial line, considering only one run [14]. In the current study, the edge
marking line of the slow lane was analysed for three runs.

According to the French regulations [33], all the road marking lines were white, and
the edge marking line was composed of a T2 dashed line (a 3 m long skip followed by a
3.5 m long void), a T4 dashed line (a 39 m long skip followed by a 13 m long void) or a
continuous line. Visually, the markings showed highly variable degrees of wear and tear.
The road surface was a bituminous pavement of different brightness characteristics along
the itinerary.

Figure 1. Framework of the road sections considered for the analysis.

All measurements were performed by day in September 2020, on a dry road pavement,
and the weather conditions were sunny with the potential presence of clouds. The three
runs were conducted by two instrumented vehicles (see Figure 2): a mobile reflectometer
(labelled ECODYN3) and a vehicle equipped with a machine-vision system (labelled
MOOVE). They followed each other in order to have exactly the same environmental
conditions. The first run began at 12:40, the second at 13:40 and the last one at 14:50. The
three passages were conducted in strict compliance with French traffic regulations.

Figure 2. Presentation of the two vehicles: ECODYN3 on the left and MOOVE on the right.



Vehicles 2023, 5 291

2.2. Mobile Measurement of Marking Performance
2.2.1. Presentation of the ECODYN3 Device

The Cerema vehicle equipped with the mobile retroreflectometer ECODYN3 (see
Figure 2) measured both the retroreflected luminance coefficient RL and the luminance L of
a road marking according to the standard geometry [1]. Since the head unit of ECODYN3
was placed on the vehicle structure, the measurement was conducted at 6 m instead of 30 m
(see Figure 3). The vehicle was also equipped with an environmental camera, an odometer,
a GPS sensor and an illumination cell.

The dimensions of the measurement area of the ECODYN3 are 0.5 m long and 1 m
wide (see Figure 4). This area is composed of 32 measurement channels of approximately
0.03 × 0.5 m. In this area, a measurement channel might be located partly on the road
marking and partly on the roadway as illustrated in Figure 4. The channels that overlap
between the road and the markings are not used in statistical studies. An image of the
ECODYN3 environmental camera is saved every 10 m and can help to understand the
detection context.

Figure 3. Schematic drawing of the ECODYN3 measurement geometry.

Figure 4. Graphical representation of an ECODYN3 acquisition and of the corresponding retroreflec-
tion (left). Generation of images corresponding to the ECODYN3 measurements: one for retroreflec-
tion and the other for luminance (right).

2.2.2. Nature of the Data

With the ECODYN3, since we have access to the raw data, the outputs are not averaged
values on 50 or 100 m as with the other retroreflectometers. The data are treated in the
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form of digital images by considering each measurement channel as a pixel according to
the patent from [34]. It is then possible to generate two images, one for the retroreflection
signal and the other for the luminance signal with each acquisition forming one line of
the generated image (see Figure 4). Each line of the image is composed of 32 columns
(matching the 32 measurement channels), and the distance between two lines corresponds
to a longitudinal distance of 0.4 m.

From the recorded data, an extraction of markings was performed using a segmenta-
tion method. All statistical analyses were then conducted on the basis of the segmented
images. It was then possible to characterize the markings at different scales, either at the
longitudinal resolution of the ECODYN3 device or over a defined length (for instance, the
length of a marking strip).

In this paper, the edge line is first analysed with a 0.4 m scale of analysis, corresponding
to the distance of two consecutive acquisitions. The two indicators measured are the
retroreflection level RL and the luminance contrast CL. According to Davies [32], by day,
the luminance contrast is the most important factor for machine-vision performance. In this
paper, the luminance contrast ratio is calculated with the measurement of the luminance
of the marking and its surrounding road, considering both the right and left side. This is
defined by:

CL =
Lmedian(marking)

Lmedian(pavement)
, (2)

where Lmedian(marking) is the median luminance value of the measurement channels
over the marking element and Lmedian(pavement) is the median luminance value of the
measurement channels over the pavement surrounding the marking element on both the
left and the right of the marking element. We considered the median luminance value
rather than the mean value (as in Equation (2)) because it is more robust than the average
value [14].

2.3. Mobile Measurement with a Machine-Vision System
2.3.1. Presentation of the MOOVE Device

The MOOVE project is the result of a collaboration between the VEDECOM institute
and French car manufacturers. Its main objective is to drive on European roads and acquire
a large amount of data to create a database of the parameters defining real-life driving
situations. A MOOVE vehicle is instrumented for 360◦ of vehicle perception (see Figure 2
on the right). The main standard sensors are two on-board cameras, two LiDARs, one
long-range front radar, four short-range radar corners and a Global Navigation Satellite
System (GNSS). In this study, we only focused on the data collected by the proprietary
“Real World” camera (associated with the GNSS), which is the only sensor of this vehicle
dedicated to road marking detection.

2.3.2. Nature of the Data

The Real World camera used is a proprietary commercial system whose specifications
and algorithms are not available. Only exploited results related to the detection of marking
lines are available and could be used in this study. When it circulates, the MOOVE device
can simultaneously analyse four road marking lines in its traffic lane. The Real World
camera records images and provides a result file with a set of data at 25 Hz composed of:

• A quality level of the marking line detection. This is a rating with four different
graduations: Very Low, Low, High or Very High.

• A confidence level in the detection quality, between 0% (no line detection) and 100%
(certain to detect the line).

• A polynomial model describing the curve of the marking line on a range distance. This
range distance corresponds to the area where the interpolation of the road marking line
is considered valid and is updated at each acquisition with the polynomial coefficients.

• Other characteristics of the marking, such as the type, colour and width of the line.
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For each dataset, the processing results are geolocated and saved for each marking
line. The images analysed by this system are, unfortunately, not accessible.

2.4. Statistical Analysis

This subchapter describes the different statistical analyses conducted on the measure-
ments collected in the Rouen circuit by the ECODYN3 and MOOVE vehicles. The results
are first presented separately for the two vehicles and then compared.

2.4.1. Analysis of the Retroreflectometer Data for the Three Runs

A boxplot representation was chosen to represent the distribution of the RL values and
luminance contrast over the three runs. To determine whether they could be considered
identical between the successive runs, several analyses of variance (ANOVA) were per-
formed. Since we have three runs, the one-way analysis of variance was used after checking
its validity hypothesis: Levene’s test was used to check the homogeneity of variance and
the Shapiro–Wilk test was applied to ensure the normality of the ANOVA residuals. If one
assumption was not respected, a non parametric alternative of the ANOVA was used with
the Kruskal–Wallis test by ranks.

2.4.2. Analysis of the Machine-Vision-System Data for the Three Runs

As presented in the Section 2.3.2, the detection of the road marking line is described
by a quality level of detection (Very Low, Low, High or Very High) associated with a
confidence rate of detection. The Very High rate (i.e., the frequency of data with a Very
High quality level of detection over all the data) was first calculated all along the edge
marking line of each run. In a second step, a classification of the circuit was established
from the Very High rate changes between the different runs.

2.4.3. Comparison between the Mobile Retroreflectometer and Machine-Vision System

In the literature, authors have attempted to find a relationship between the standard-
ized indicators and MV performance. Since this study was conducted by day, the indicator
used for the comparison is the luminance contrast ratio. The retroreflection levels, which
represent visibility during night-time, are given to assess the state of the marking lines.

A correlation analysis and comparison between the data collected by the ECODYN3
and the MOOVE vehicles was conducted for all the data as well as for a selection of road
sections according to the MV classification. The idea is to segment the data according
to the Very High rate observed during the three runs. A focus was also conducted on
representative sections of the different classes.

3. Results

This chapter presents the results of the different statistical analyses conducted on the
measurements collected in the Rouen circuit by the ECODYN3 and MOOVE vehicles.

3.1. Results for the Retroreflectometer

This paragraph presents the results of the pavement and marking characterisation
performed by the mobile ECODYN3 device. For each run, the retroreflection values of
the edge line are shown in Figure 5 on the left with a boxplot corresponding to each
run. The three boxplots show a similar distribution of the retroreflection level over each
passage. The first quartile values of the retroreflection for the three runs were very low
at about 25 mcd·m−2·lx−1. The median values were between 40 and 56 mcd·m−2·lx−1.
The third quartiles were between 105 and 125 mcd·m−2·lx−1. Concerning the road surface
surrounding the marking, the median retroreflection was 12 mcd·m−2·lx−1. Globally, it
appears that the RL values are low, suggesting that most of the markings of the itinerary
are worn out and should be renewed.

The boxplot of the luminance contrast is presented in Figure 5 on the right. The first
quartile values of the luminance contrast of the three runs were around 1.30. The median
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values were between 1.49 and 1.75, and the third quartiles were between 2.41 and 3.75. The
third run had the highest values and less outliers compared with the other two. This is
likely due to different environmental conditions for this passage (more shadows, etc.). It
suggests a non-similarly distribution of the luminance contrast over each run.

Figure 5. Boxplots of the retroreflection (left) and luminance contrast (right) values for the
three runs.

To test the reproducibility of the measurements, several ANOVA were performed after
a validation of their assumptions. Table 3 presents the results of the tests conducted for
the retroreflection (RL) between the three runs. All p-values are above the 0.05 significance
levels. According to the Levene test, the variances are statistically identical. According to
the Shapiro–Wilk test, the hypothesis of normality of the data is confirmed. Therefore, it is
possible to conduct an ANOVA analysis. Since the p-value is higher than the 0.05 level of
significance, the hypothesis H0 is fulfilled: the retroreflection (RL) average values of the
different passages are identical.

Table 3. Levene, Shapiro–Wilk and ANOVA tests of the retroreflection values for the three runs.

Test
Levene Test Shapiro–Wilk Test Anova Test

F(2, 43531) p-Value W(2, 43531) p-Value F(2, 43531) p-Value

RL 6.49 0.32 2.37 0.15 5.92 0.62

For the luminance contrast values and according to Table 4, the Levene test p-value
is below the 0.05 significance levels; thus, the variance between the runs is different.
Regarding the Shapiro–Wilk normality test, the results show that the residuals do not follow
a normal distribution. Therefore, an ANOVA test cannot be applied, and consequently the
non-parametric Kruskal–Wallis test by ranks was applied instead. As the corresponding
p-value is below the significance level of 0.05, we conclude that there are significant
differences between the average luminance contrast values of each passage.

These tests confirm the results presented in Figure 5. The retroreflection values are
identical on all three runs, which is consistent with the fact that RL does not depend
on sunlight. In contrast, the luminance contrast values are not similarly distributed,
and this is likely due to different environmental conditions for each run (changes in the
ambient luminosity and different inclinations of the sun leading to different shadows on
the pavement). This sensitivity to ambient brightness explains why the luminance ratio is
not used to characterise road markings for maintenance policies. Knowing these results,
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we have to consider each run independently for the comparison with the data collected by
MOOVE.

This was possible in our study because the two vehicles followed each other and
had exactly the same experimental conditions. In the following, and since the study was
conducted during the day, we compare only the performance of the machine-vision camera
with the luminance contrast.

Table 4. Levene, Shapiro–Wilk and Kruskal–Wallis tests of the luminance contrast values between
the three runs.

Test
Levene Test Shapiro–Wilk Test Kruskal–Wallis Test

F(2, 43531) p-Value W(2, 43531) p-Value χ2(2, 43531) p-Value

Luminance contrast 395.12 <0.05 112.57 <0.05 238.60 <0.05

3.2. Results for the Machine-Vision System

The marking detection performance of the machine-vision system of MOOVE is
presented for the edge line in Figures 6 and 7 for the three runs:

• The left of Figure 6 presents the percentage of Very High rates observed at each run.
This rate is between 90% and 92%.

• The boxplots in Figure 6 on the right show the range distance where we applied the
polynomial model describing the curve of the edge marking line. The first quartile is
between 29 and 33 m, and the third quartile is between 59 and 63 m.

• Figure 7 presents the histogram of the confidence rates at each run. The median
confidence level for the three runs is 100%. In 80% of the cases, the confidence level
in the marking detection is 100% for the three runs, and in 89% of the cases, this
confidence level is greater than or equal to 80%.

Figure 6. Very High quality rate (left) and boxplot of the range distance (right) during the three runs.

The edge line was almost always detected with a Very High confidence level all along
the itinerary. Figure 8 (on the left) presents a map projection of each detection quality
measurement observed during the first run. Very Low areas (9.5% of the data collected) are
mainly located on sections where there is a particular feature of the infrastructure, such as
roundabouts, insertion lanes or a working area.

Using a comparative analysis of the Very High rates of the three runs, a classification
of the itinerary was defined according to the following criteria:

• “Perfect Very High”: identical behaviour for the three runs with 100% Very High rates
(colour code green).

• “Imperfect Very High”: Very High rates higher than 90% for the three runs (colour
code blue).
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• “Variable Quality Level”: Very High rates between 30% and 90% and differences
between the three runs (colour code yellow).

• “Worst Very High”: less than 50% Very High rates for each run (colour code red).

Figure 8 (on the right) and Table 5 show, respectively, the position of 17 sections
identified on the Rouen circuit and the Very High rates observed for each run:

• There are six sections of Perfect Very High. They constitute 29% of the Rouen circuit.
• There are three sections of Imperfect Very High that constitute 58% of the circuit.
• There are four sections of Variable Quality Level that constitute 7% of the circuit and

are mainly represented in section n°3.
• There are four sections of Worst Very High that constitute 6% of the circuit and are

mainly represented by sections where it is more difficult to circulate because of the
infrastructure complexity (roundabout or working area).

Figure 7. Histogram of the confidence rate observed during the three runs.

Figure 8. Map projection of the results obtained with the MOOVE vehicle. On the left, edge lane
analysis during the first run. On the right, classification according to the quality level observed over
the three runs. The sections names of the number 1–17 are given in the Table 5.
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Table 5. Classification of the different sections according to the quality levels observed over the three runs.
The green color correspond to a “Very High sections”, the blue to “Imperfect Very High sections”, the
yellow for “Variable Quality Level sections” and the red for “Worst Very High sections”.

Section Length (m)
Very High Rate

Comment
Run 1 Run 2 Run 3

1 2 × 1 to 2 × 2 lane 69 100% 47% 71%
2 DR13—Dir. 1—Part 1 884 100% 100% 100%
3 The long curve 614 88% 79% 74%
4 DR13—Dir. 1—Part 2 797 100% 100% 99%
5 The First Roundabout 102 6% 25% 6% No marking
6 Between Two Roundabout 144 100% 100% 100%
7 The Second Roundabout 136 22% 12% 23% Few markings
8 DR13 to NR138—Part 1 135 100% 100% 100%
9 Gaz Station Entrance 21 100% 29% 100%

10 DR13 to NR138—Part 2 101 100% 100% 100%
11 Gaz Station Exit 37 33% 31% 15%
12 DR13 to NR138—Part 3 1098 100% 100% 100%
13 NR138 Entrance 125 78% 84% 59%
14 NR138—Direction 1 1217 100% 100% 100%
15 Working Area 467 24% 50% 48% Disrupted traffic
16 Direction 1 to 2 627 89% 90% 99%
17 Direction 2 5759 99% 98% 100%

A Very High rate of 90–92% with a median confidence rate of 100% was observed on
the whole Rouen circuit (see Figure 6 left).

In the next parts, comparisons between the marking luminance contrast observed
with the retroreflectometer and the marking detection revealed by the machine vision are
conducted. To this purpose, each run of the Rouen circuit was arbitrary segmented into
30 m segments. This distance corresponds to the first quartile of the range observed by the
MOOVE vehicle (see Figure 6 right) during the three runs.

A total of 1212 road segments of 30 m long were available. For each 30 m segment, a
median luminance contrast was calculated as well as the Very High rate of the Real World
camera.

3.3. Analysis of Correlation

To study the relationship between two variables, the correlation coefficient is a specific
measure that quantifies the strength of the linear relationship between two variables. The
correlation coefficient between the marking luminance contrast and marking detection by
machine vision was r = 0.01, thus, suggesting no correlation of the data along the itinerary
for the three runs.

The Very High rate function of the luminance contrast is presented on a scatterplot
(see Figure 9). It shows that most of the markings were detected with a rate of 100%
regardless of the luminance contrast (in more than 92% of the data). This confirms the
weak relationship between the two variables, accentuated by the existence of outliers with
a luminance contrast higher than 4 and a detection rate lower than 50%.

In order to refine our analysis, we decided to use the classification established from the
data of the MOOVE vehicle (see Figure 8 on the right), and we calculated the correlation
coefficient for each section of Table 5. The results are provided in Figure 10. This figure
shows huge variability of the correlation coefficient: the coefficient can be positive or
negative independently of the class section. Moreover, most of the coefficients were very
low—below 0.5. Thus, it is difficult to extract any correlation between the luminance
contrast and the Very High rate of detection.

Figure 10 shows that the most significant correlation coefficients found were obtained
for the sections n°7, n°13 and n°15. These sections are coloured in red or orange, with bad
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MV performance. Some sections with a Perfect Very High performance of the MV have
extremely low correlation—for example, section n°2.

Figure 9. Very High rate of detection according to the luminance contrast ratio.

Figure 10. Representation of the correlation coefficient between the luminance contrast ratio and the
Very High rate for the 17 sections.

3.4. Focus on Certain Road Sections According to the MV Quality Level

Seventeen road sections had been previously identified on the whole circuit with the
classification established from the measurement of the MOOVE vehicle (see Table 5). In
this part, we focus on several specific sections that provide some explanation of the results:

• A Perfect Very High section with markings in bad condition: the section n°2 called
DR13—Dir. 1—Part 1.



Vehicles 2023, 5 299

• A Variable Quality Level section with different performance of the Real World camera
between the runs: the section n°3 called Long Curve.

• Examples of Worst Very High sections corresponding to bad performance.

3.4.1. Perfect Very High Road Section n°2

Images of the Perfect Very High road section n°2 (called DR13—Dir.1—Part 1) are given
in Figure 11 at the same location for the three runs. In this section, the marking is worn, and
the median retroreflectivity is very low—below 30 mcd·m−2·lx−1, which corresponds to a
road marking without retroreflectivity. Table 6 presents a cross analysis between the median
luminance contrast measured by ECODYN3 and the Very High rate given by MOOVE.

The median luminance contrasts on this section are between 1.27 and 1.35 for the three
runs, which are below the thresholds of the literature (cf. Table 2). This road section has
a perfect reproducibility with 100% Very High rates on the three runs with an average
confidence rate equal to 97%. Despite the worn nature of the road marking line (according to
the RL values), the edge line of the section n°2 was perfectly detected by the machine-vision
system.

From Table 6, it seems that a luminance contrast around 1.31± 0.04 on a dry road is
able to give a Very High rate of 100%.

Figure 11. Representative visual scenes taken with the ECODYN3 environment camera of the road
section n°2—DR13-Dir.1-Part1 at the same location for each run.

Table 6. ECODYN3 and MOOVE results on the road section n°2—DR13-Dir.1-Part1.

Median Luminance Contrast Ratio Very High Rate Confidence Rate

Run 1 1.31 100% 98%
Run 2 1.27 100% 97%
Run 3 1.35 100% 96%

3.4.2. Variable Quality Level Road Section n°3 Called the Long Curve Section

The section n°3 with the Variable Quality Level class has the greatest variation of the
Very High rate between the runs, despite having close detection quality levels between the
three runs (Very High rates of 90–92% with a median confidence rate of 100% on the whole
Rouen circuit; see Figures 6 and 7). Figure 12 presents three maps of the quality detection
levels of the road markings located in section n°3 (one map per run).

On the first run, one Very Low subsection was observed at the beginning of the curve.
On the second run, several other Very Low subsections were observed in the curvature.
On the third run, several Very Low subsections were observed at other locations on the
curve. To better understand these differences of reproducibility, the Long Curve section
was divided into five subsections. Each one is defined by one non-occurrence of the Very
High quality level on at least one run.

• Subsection 1 has a Very High rate of 100% for runs 2 and 3 and 61% for run 1.
• Subsection 2 has a Very High rate of 100% in the first run, while it is only 9% and 48%

respectively in runs 2 and 3. This subsection has the lowest Very High Rate.
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• Subsection 3 has a Very High rate of 100% for runs 1 and 2 and 80% for run 3.
• Subsection 4 has a Very High rate of 100% for the first run and no line detection at all

during the second run.
• Subsection 5 has a Very High rate of 100% for runs 1 and 2 and 44% for run 3.

Figure 12. Comparison of the Very High rate on road section n°3—Long Curve between the three runs.

Visual scenes of road subsections 3, 4 and 5 are given in Figure 13 at the same location
for the three runs and shows that the shaded areas are not the same for the different runs.

An analysis of the subsections was conducted to investigate the differences between
the runs:

• The median luminance contrast was always above 1, meaning that the road marking
was always brighter than its surrounding pavement.

• The subsection 3 had the highest variation of the median luminance contrast (between
1.18 and 1.47). The Very High rate was at 100% for runs 1 and 2 and decreased to
80% for the third passage. This is likely due to the appearance of the shadow created
by the trees on the edge marking line during the third run (see Figure 13 top). This
misdetection caused by shadows was also observed by Kim [35].

• Despite having the same median luminance contrast between runs 1 and 2 in subsec-
tion 4, the Very High rate was 100% for the first run and 0% for the second one;

• During the third run, subsection 4 and 5 showed similar median luminance contrasts
(1.39 and 1.40); however, the Very High rates were, respectively, 100% and 44%.

The Long Curve section illustrates both the variability of the luminance contrast values
and strong variations in Very High rates between runs. From Table 7, it is difficult to find a
relationship between the luminance contrast and the Very High rate. On run 2, for example,
a luminance contrast of 1.21 (for subsection 5) or 1.33 (for subsection 1) could allow for a
100% Very High rate. Considering such a threshold would mean that higher luminance
contrast values would provide a similar Very High rate. Here, it is shown that a luminance
contrast of 1.42 (for subsection 2) leads to a Very High rate equal to 9%. Thus, a minimal
luminance contrast does not seem to be a good indicator to ensure a 100% Very High rate.
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Figure 13. Representative visual scenes taken with the ECODYN3 environment camera for subsec-
tions 3 (top), 4 (middle) and 5 (bottom) of the road section n°3—Long Curve at the same location for
each run.

Table 7. ECODYN3 and MOOVE results on road section n°3—Long Curve for each subsection.

Passage Sub-Sections Median Luminance Contrast Ratio Very High Rate Confidence Rate

Run 1

1 1.36 61% 92%
2 1.52 100% 100%
3 1.36 100% 99%
4 1.32 100% 95%
5 1.22 100% 95%

Run 2

1 1.33 100% 79%
2 1.42 9% 63%
3 1.47 100% 96%
4 1.32 0% 10%
5 1.21 100% 100%

Run 3

1 1.15 100% 87%
2 1.06 48% 60%
3 1.18 80% 63%
4 1.39 100% 82%
5 1.40 44% 50%

The presence of shadows seems to have an impact on the road-marking detection by
the MV system. This impact seems more important when the shadow partially covers the
road marking and its surrounding pavement (as on the subsection 3 of the third run with a
Very High rate equal to 80%) than when it covers the whole measured surface (as in the
subsection 4 of the third run with a Very High rate equal to 100%). However, the shadows
cannot explain all the variability of the performances obtained over the long curve with
the tested MV system. As shown in Figure 13, the road markings for the edge lines were
not shaded during the first and second runs, and at the same time, the Very High rate
fluctuated from 0 to 100%, while the the wear and tear of the markings was similar on the
curve. We were not able to explain this result for from our study.
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Since the experiment was conducted in optimal conditions for the visibility of the road
marking (by day on a dry road without too much glare), it questions the reliability of the
system when the marking is worn and has a low luminance contrast (less than 2).

3.4.3. Worst Very High Road Sections

This section illustrates three Worst Very High sections obtained from the classification.
They correspond to the road sections where the MV system was not able to detect the
edge marking line. The correlation coefficient was sometimes better in this class than on
the others but remained rather weak. These sections with poor marking-line-detection
performance all had a specific infrastructure.

Figure 14 presents three Worst Very High road sections:

• Section n°5 (see Figure 14 on the left) features a roundabout with a large radius of
curvature where it was impossible for the reflectometer ECODYN3 to measure the
performance of the road marking under good conditions. Moreover, the MOOVE
vehicle did not detect any edge line on this section, while road markings were present.

• Section n°11 (see Figure 14 on the middle) presents a small entry section to the national
road. The width of the road was substantial, and the marking line in the curve was
beginning to fade.

• Section n°15 (see Figure 14 on the right) presents a road section with a working area
marked by cones. Despite the good performance of the road marking lines (the median
RL value was around 105 mcd·m−2·lx−1, and the median luminance contrast was
around 2.74), the MV system of the MOOVE vehicle did not detect the marking line.
The worksite cones may have disturbed the system.

Figure 14. Representative visual scenes taken with the ECODYN3 environment camera of the Worst
Very High road sections: n°5 (left), n°11 (middle) and n°15 (right).

The non-detection of road markings identified in this experiment mainly correspond to
the absence of markings or a work area. Work areas are identified as tricky for autonomous
vehicles and usually the control is given back to the driver. Consequently, the infrastructure
and the geometry of the road appear to have major impacts on the performance of the
MV system.

4. Discussion

Our objective was to check whether the luminance contrast between the road markings
and the surrounding pavement was relevant to explain the response of an MV system
by day. To do this, an experiment was conducted during the day on a small high-traffic
road section, using a mobile retroreflectometer and a vehicle equipped with an AV camera.
The two vehicles followed each other and made three successive runs in the middle of the
day. The road-marking performance was evaluated according to the standard specifica-
tions [1] using retroreflection and a luminance contrast ratio considering the marking and its
surrounding road.

According to the EN 1436 standard [1], the visibility of the road marking is usually as-
sessed by the indicator Qd. However, as mentioned in Section 1.2, the Qd is not dynamically
measurable. Therefore, we measured the luminance at 2.29° instead. The characterization
of the markings was conducted with medians, which are a more robust indicator than the
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average (less sensitive to extreme values) and, thus, more suitable for the characterisation
of heterogeneous markings [14].

4.1. Findings

In this paper, the edge line results are presented for all the three runs. According to the
retroreflection factor, the overall condition of this line was very worn. More than 40% of the
road markings (over the whole itinerary) had a median RL value below 60 mcd·m−2·lx−1,
and only 7% percent of the circuit had a retroreflectivity better than 150 mcd·m−2·lx−1,
which is a threshold commonly considered to define good marking performance [10].

Concerning the luminance contrast ratio, 42% was below 1.75, while a luminance
Weber contrast of 2 was recommended in [13] for good machine-vision performance (it
corresponds to a luminance ratio of 3). In other studies where they considered the Qd
contrast, they recommended a minimum ratio of 2 [27] or 3 [31]. Similarly to Stacy [22],
who studied the relationship between the Qd contrast and the detection of the markings
by an AV camera, we did not find a correlation between MV performance and daylight
luminance contrast.

Our study also questioned the reliability of the literature thresholds for the luminance
contrast ratio on a dry road under sunny conditions. A threshold that seems relevant in
one case may be questioned in other experimental or environmental conditions. These
observations suggest that there is no relationship between the luminance contrast and
road-marking detection performance in dry daytime conditions.

Despite the presence of an old and worn marking in the circuit, the used machine-
vision system was able to detect the edge road marking line on the majority of the circuit
(Very High rates of 90–92% with a median confidence rate of 100% on the whole circuit).
Even with a luminance contrast ratio below 1.3, a Very High rate of 95% was observed on
average. In this situation, the current literature predicts a low probability of observing a
Very High level of detection. We found that the Very Low detections of the road marking by
the MV system generally occurred in specific cases, such as roundabouts or in the presence
of shadows. Measuring the influence of shadows or working site cones on road-marking
detection would be interesting but requires a separate experimental protocol.

4.2. Limitations and Perspectives

Since our results are based on a single experiment, conducted by day, we shall expand
them with more data based on several experimental conditions. We found that the indicator
of the luminance contrast was not correlated with the daytime performance of the machine-
vision system; thus, it is necessary to look for new relevant indicators by day. Such
indicators are not easy to find, because we do not have any access to the measurement
process of the MV system, and consequently it is difficult to understand what does really
matter for the algorithms of the camera.

The luminance measurements were conducted with a symbolic observation angle of
2.29°; however, the correlation between the luminance contrast and the detection quality
may change if the angle is different. It could be necessary to conduct such experiments
under night-time conditions because it is during this specific period that the RL factor is
relevant. Under these conditions, the influence of glare due to low traffic lights on the
marking detection could also be studied. A second interesting situation to experiment in
would be wet road conditions.

However, in view of what is happening with the luminance contrast, one can wonder
if there is really a relevant RL threshold value allowing a perfect detection of the marking
line by the camera. A minimal value is likely necessary; however, this is not the only factor
to be considered.

Finally, we conducted this experiment with only one type of MV system. Thus, it
would be interesting to test other vehicles equipped with MV systems and other methods
of characterizing the marking/roadway pair.
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In the SAM project, we will create a marking pattern on a test track with different
types of pavements. It will thus be possible to have several different controlled conditions,
such as day, night and wet conditions. It will be easier to measure both the RL and Qd
with a static retroreflectometer. We will also use other vehicles able to provide different
characterizations of road-marking performance.

5. Conclusions

In dry daylight conditions, it seems that a classic retroreflectometer, which measures
both the retroreflection and the luminance of the marking and its surrounding pavement,
does not alone explain the operation of the tested machine-vision system. The detection of
the marking line by the camera is impacted by qualitative factors, such as the sunlight and
the infrastructure (shadow, lane changes and intersections), as already revealed by [20,31].

During driving, there is a continuity of the preview, which helps MV in determining
trajectory. This could be an explanation for some of the noted inconsistencies. One of
the problems is the absence of information on the machine-vision systems, which are
proprietary devices. In particular, the area considered by the MV device for road-marking
detection is unknown. This is why we made an assumption on the range distance to
establish our classification.

However, the methods and algorithms used by automated vehicles are becoming very
efficient, particularly during the day on dry roads, which is rather reassuring for the safety
of road users. It seems that it is mainly the complexity of the infrastructure that best explains
the poor performance, which was also identified by Zhang in their meta-analysis [20].
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