
����������
�������

Citation: Shen, S.; Wang, S.; Wang, L.;

Wei, H. A Refined-Line-Based Method

to Estimate Vanishing Points for

Vision-Based Autonomous Vehicles.

Vehicles 2022, 4, 314–325. https://

doi.org/10.3390/vehicles4020019

Academic Editors: Yahui Liu, Chen

Lv, Liting Sun, Jian Wu and J.-M.

Wang

Received: 25 February 2022

Accepted: 18 March 2022

Published: 22 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

A Refined-Line-Based Method to Estimate Vanishing Points for
Vision-Based Autonomous Vehicles
Shengyao Shen 1,†, Shanshan Wang 1,2,† , Luping Wang 1,3,*,† and Hui Wei 3,†

1 Laboratory of 3D Scene Understanding and Visual Navigation, School of Mechanical Engineering,
University of Shanghai for Science and Technology, Shanghai 200093, China; 13386128996@163.com (S.S.);
shanshan_537@163.com (S.W.)

2 Intel Asia-Pacific Research & Development Ltd., Shanghai 201100, China
3 Laboratory of Cognitive Model and Algorithm, Department of Computer Science, Fudan University,

Shanghai 201203, China; weihui@fudan.edu.cn
* Correspondence: 15110240007@fudan.edu.cn
† These authors contributed equally to this work.

Abstract: Helping vehicles estimate vanishing points (VPs) in traffic environments has considerable
value in the field of autonomous driving. It has multiple unaddressed issues such as refining extracted
lines and removing spurious VP candidates, which suffers from low accuracy and high computational
cost in a complex traffic environment. To address these two issues, we present in this study a new
model to estimate VPs from a monocular camera. Lines that belong to structured configuration
and orientation are refined. At that point, it is possible to estimate VPs through extracting their
corresponding vanishing candidates through optimal estimation. The algorithm requires no prior
training and it has better robustness to color and illumination on the base of geometric inferences.
Through comparing estimated VPs to the ground truth, the percentage of pixel errors were evaluated.
The results proved that the methodology is successful in estimating VPs, meeting the requirements
for vision-based autonomous vehicles.

Keywords: refining line; vanishing point; traffic environment

1. Introduction

Robust VP estimation has considerable value in vision-based navigation for au-
tonomous vehicles. Due to the diversity of traffic environments, there are a multitude
of disturbances caused by clutter and occlusion, resulting in multiple challenges in line
segments refinement and spurious vanishing candidate removal. Therefore, estimating
VPs, especially in complex surroundings, remains a challenge for vision-based autonomous
vehicles.

For a monocular camera, how can a vision-based autonomous vehicle extract valuable
textures and describe their features that can be interpreted in upper inferences such as
environmental perception? The perception of depth in the human visual system requires
no additional knowledge [1]. The geometric jointed points are more like to be used in
approximating relative depth of different features [2]. Accordingly, it can be assumed
that some structured rules can be used to approximate those geometric VPs [3], and the
accurate estimation of VPs is the cornerstone in understanding a scene [4,5]. However,
complex surroundings make existing methods suffer greatly from low accuracy and high
computational cost because of disturbance from a great deal of extracted line segments.
Therefore, to efficiently estimate VPs is increasingly playing a vital role in visual navigation
of autonomous vehicles.

In this study, we present an approach to estimate VPs from a monocular camera with
no prior training and no internal calibration of the camera. The main contributions of this
paper are as follows:
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• a method designed to effectively refine lines that satisfy structured shape and orientation;
• an algorithm developed to remove spurious VP candidates and obtain the VP by

optimal estimation;
• an approach presented to estimate the VPs through refined-line strategy, which is

robust to varying illumination and color.

Unlike existing approaches, using basic line segments directly, the proposed method
adopts a strategy based on refined lines that belong to structured configuration and orien-
tation, which has a better robustness in the estimation process. Compared to data-driven
methods, the proposed method requires no prior training. Simple geometric inferences
endow the proposed algorithm with the ability to adapt to the image with changes in
illumination and color, making it practical and efficient for scene understanding in au-
tonomous vehicles.

Through evaluating the percentage of pixel errors from the ground truth, experimental
results demonstrated that the proposed algorithm can successfully estimate VPs in a
complex environment with low consumption and high efficiency, which has extremely
broad application prospects for scene understanding and visual navigation in the future.

The structure of the paper is elucidated as following. Section 2 shows the relation
work including estimation of vanishing point and its application in scene understanding.
Section 3 indicates the model of refining lines and obtaining optimal vanishing point.
Section 4 shows the results and comparison for the proposed method. In Section 5, we
present a conclusion of the work.

2. Related Work

As to human visual system, a capture essentially is an optical signal from the environ-
ment. It was indicated that the optical signal is possible to be transformed into a neural
signal in a retina [6]. For the sampling process in a retina, the photoreceptor, which is to
alter an optical signal to a neural signal, appears with a nonuniform distribution [7]. An
algorithm was introduced to simulate the sampling strategy by a iterative process and a
distribution with different densities [8]. Edges of a capture are only a set of disorganized
unorganized pixels, and visual cues can be represented, organized, and propagated by
geometric constraints [9,10]. Compared to process original stimulus, a signal of stimuli is
possible to be coded and transmitted in a refined strategy.

Classic algorithms of VPs estimation were introduced. An approach was presented
to investigate VPs of stair region verification based on the three basic criteria [11]. To
solve the tilting orientation angles, an online calibration algorithm was introduced to
estimate camera orientation through motion vectors and three-dimensional geometry [12].
A method was proposed to improve the efficiency of the metaheuristic search for VPs
through a population-based algorithm [13]. A VP detection method was presented to select
robust candidates and clustering candidates by optimized minimum spanning tree and
lines within a unit sphere domain [14]. A generic method based on VP was proposed to
reconstruct the 3D shape of document pages without segmenting the text included in the
documents [15]. A methodology was presented to improve VP detection in landscape im-
ages based on improved edge extraction process using combining different representations
of an image [16]. An approach was proposed to estimate VPs using a harmony search (HS)
algorithm [17]. A method was proposed to estimate VPs and camera orientation based on
sequential Bayesian filtering [18]. These approaches have weak ability to obtain VPs in a
traffic scene filled with clutter and occlusion.

Recently, many works have studied VPs in scene understanding and visual navigation.
An algorithm was proposed to detect unstructured road VP by combining the convolutional
neural network (CNN) and heatmap regression [19]. 3D interaction between objects and
the spatial layout were built through prediction of VPs [20–22]. Another approach was
proposed to infer wheelchair ramp scenes based on multiple spatial rectangles through
domain VPs, but it requires a clean environment [23]. A regression approach was presented
to detect the position of VPs with a residual neural network [24]. A method using geo-
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metric features to extract VPs was adopted to focus obstacle avoidance for a robot in an
indoor environment [25,26]. A framework was presented for detecting stair region from
a stair image utilizing some natural and unique property of a stair [27]. However, these
algorithms have difficulty estimating VPs for road environments with complicated clutters
and obstacles.

Impressive models were proposed in traffic environments. A method was proposed
to detect VPs of unstructured road scenes in which there are no clear road markings in
complex background interference [28]. A method was proposed to estimate VPs based on
road boundaries region estimation by the line-soft-voting based on maximum weight [29].
A detection technique was proposed to detect VPs in complex environments such as
railway and underground stations with variable external conditions for surveillance appli-
cations [30]. For street scenes, those curved buildings and handrails also can be understood
in 3D reconstruction on the base of estimated VPs [31]. In order to settle the issue of
lane keeping, a strategy was proposed to obtain instant control inputs through camera
perception [32]. However, these methods are prone to failure in robust VP estimation due
to varying disturbance in complex traffic environments.

Therefore, it becomes an urgent need to look for a kind of refined-line-based algorithm
to estimate the VPs for vision-based autonomous vehicles from a monocular camera without
prior training. Furthermore, a refined-line-based strategy for VP estimation with lower
cost and higher efficiency was more practicable and feasible for scene understanding and
visual navigation.

3. Vanishing Point Estimation

In a complex traffic environment, there are many diverse spatial corners whose spatial
lines tend to be projected and detected. Some of them satisfy special geometric constraints.
These spatial lines are projected into 2D angle projections that have diverse configurations.
These special lines are of great importance in estimating their orientation and corresponding
VPs in a such environment.

3.1. Preprocessing

Lines are extracted [33–35] as follows:

L = {linei} = [xi
1, yi

1, xi
2, yi

2], i ∈ N (1)

where N is the number of lines. L is a set of lines.

3.2. Refining Lines

Due to complexity of environment, there are multiple textures of diverse clutter and
occlusion that project into a large number of lines, causing unavoidable disturbance and
extremely high computational cost. To refine lines is the key to greatly enhance the effi-
ciency of estimating VPs. Humans are always sensitive to those structured configurations.
Compared to isolated lines, those lines that lie in structured configurations seem to be more
valuable. Since accurate depth can not be determined from a single capture, the camera
is arbitrarily positioned at the origin of the world coordinate system and pointing down
the z-axis.

For s, n ∈ N, then corresponding geometric constraints for these two lines can be
defined as follows:

σs = ‖pc − ps
m‖2 − ls/2; (2)

σn = ‖pc − pn
m‖2 − ln/2; (3)

ςs = θs − π/2 (4)

Here, pc is the intersection of two lines lines and linen in an angle projection. ps
m and ls

are the midpoint and length related to lines. pn
m and ln are the midpoint and length related
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to linen. σs represents geometric integrity for lines, and σn represents geometric integrity
for linen. ςs means the geometric orientation constraints for lines.

For all above obtained values, then the following can be found:’

Λs,n = ‖σs‖2 + ‖σn‖2 + ‖ςs‖2 (5)

Here, Λs,n that are normalized represent the geometric constraints including both
integrity and orientation for lines and linen. The smaller value of Λs,n means that this
composition of two lines lines and linen are more likely to be noticed.

In this way, the composition of two lines (lines and linen) are both extracted. Accord-
ingly, the cluster of refined lines are determined as follows:

V = {linen} (6)

ST. Λs,n → 0 (7)

Here, V is a set of refined lines. For all lines in L, a matrix can be composed and
defined as the matrix ∆L. Through ranking the matrix ∆L, it is possible to refine those lines
in structures with smaller values of Λs,n. More details can be described in Algorithm 1.
Through the geometric inferences on structured configuration and orientation, it is possible
to refine the lines. As shown in Figure 1, red lines are the refined lines.

Algorithm 1 Extraction of V
Require:

L, a set of refined lines.
N, the number of extracted lines in L.

Ensure: V.
1: for each s ∈ N do
2: do ςs;
3: for each n ∈ N do
4: do σs;
5: do σn;
6: do Λs,n;
7: ∆L ← [∆L; Λs,n];
8: end for
9: end for

10: RANK ∆L;
11: do V from ∆L;
12: return V;

Figure 1. Cont.
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Figure 1. Refining lines. Top left: input capture. Top right: original lines. Bottom left: extracted
compositions of lines based on geometric constraints. Bottom right: refined lines. Through geometric
constraints of structured configuration and orientation, it is possible to refine lines, which is more
efficient for estimating VPs.

3.3. Optimal Estimation

For a set of refined lines, it is possible to assign them to different clusters in which
most lines in one cluster are converging to a point that can be regarded as a VP. In other
words, the aim is to determine a vanishing point to which a number of lines in the cluster
are converging. In this way, the process can be considered an optimal estimation. Since the
number of clusters to assign can not be determined before, the objective function can be
founded as following:

MIN F(xi1, xi2) =
K
∑
k=1

Θ(linenk , [[xi1, xi2], pk]), i ∈ H, k ∈ K (8)

The process of optimal estimation can be seen as an optimization problem, and many
optimal algorithms can be used to solve the objective function. Here, the particle swarm
optimization (PSO) algorithm was adopted to address the optimal solution. PSO is a
population-based stochastic optimization technique developed by Kennedy and Eber-
hart [36]. Here, H = 20 and D = 2 are the swarm size and dimension of particle. T = 300
is the max generations, and t represents the current iteration. xid and vid are the corre-
sponding position and velocity for particle i in dimension d. Here, [xi1, xi2] means the
solution to be determined. F(xi1, xi2) represents the fitness function that represents sum
error for point candidate [xi1, xi2]. K is the number of refined lines. linenk is a refined
line. pk is the midpoint of linenk . Here Θ is a function that computes the angle between
two lines. In this way, the aim is to determine an optimal solution [xi1, xi2] that has the
minimum value of fitness function F(xi1, xi2). This optimal solution can be considered
the VP. pt

id,pbest is the best individual value for particle i in dimension d when iteration is
t. pt

d,gbest is the best globe value for particle i in dimension d when iteration achieve t. xt
id

and vt
id are the position and velocity of particle i in dimension d in iteration t, respectively.

W = 1, c1 = 1, c2 = 1 are preset parameters in the algorithm. r1 and r2 are two random
values in the range [0, 1]. Finally, the optimal solution so can be obtained by the particle
having the best fitness value. More details are described in Algorithm 2. The corresponding
convergence curve is shown in Figure 2.

Figure 2. Estimation based on clusters of refined lines. Left column: refined lines. Middle: con-
vergence curve in optimal estimation. Right: the pink point is the estimated VP. Based on optimal
estimation, the optimal solution can be considered the VP.



Vehicles 2022, 4 319

Algorithm 2 Optimization

Require:
H, swarm size
D, dimension
T, the max generations

Ensure: so, optimal solution
1: for each particle i ∈ H do
2: for each dimension d ∈ D do
3: Initializing position xid
4: Initializing velocity vid
5: end for
6: end for
7: Initializing iteration t = 1
8: DO
9: for each particle i ∈ H do

10: Evaluating the fitness value though the function Equation (8)
11: if the fitness value is better than pt

id,pbest in history then
12: set current fitness value as pt

id,pbest
13: end if
14: end for
15: Choose the particle having the best fitness value as the pt

d,gbest
16: for each particle i do
17: for each dimension d do
18: Calculating velocity equation vt+1

id = W ∗ vt
id + c1 ∗ r1 ∗ (pt

id,pbest − xt
id) + c2 ∗ r2 ∗

(pt
d,gbest − xt

id);

19: Updating particle position xt+1
id = xt

id + vt+1
id

20: end for
21: end for
22: t=t+1
23: WHILE maximum iterations or minimum error criteria are not attained
24: return so the particle having the best fitness value

4. Experimental Results
4.1. Evaluation

In this paper, we use a geometric algorithm to estimate VPs based on refined lines with-
out prior training or any precise depth data. Compared to deep-learning-based algorithms,
our approach requires no additional high-performance GPU. Lines is the cornerstone of
VPs estimation. An experiment was performed on FDWW dataset [3]. The pixel errors
were evaluated by comparing the estimated VPs to the ground truth, as shown in Table 1.
It is proved that the VP estimated by refined lines can be used to efficiently estimate the VP.

Table 1. Evaluation of estimating VPs on FDWW dataset [3].

Method Error

H.W. [3] 8.65%
Our method 3.23%

In addition, lines are the base of proposed algorithm. Therefore, experiments were
performed on input captures from lines extracted by different edge lines detection. As
shown in Figure 3, for an input capture (top row), edge lines in second row were extracted
through growing detector parameters. The parameter λl controls number of lines that are to
be detected. Its initial range λl ∈ [0, 1]. λl = 0 represents that no detected lines and λl = 1
means full lines are to be extracted. It shows that the method can cope with an unstable



Vehicles 2022, 4 320

edge detector. With the increasing numbers of lines that were extracted, it is obvious that
our approach is robust to estimate VP by refining lines for different detected lines.

Figure 3. Experimental results for different numbers of detected lines. First row: input. Second row:
growing numbers of detected lines. Third row: extracted compositions of lines. Fourth row: refined
lines. Fifth row: convergence in optimal estimation. Bottom row: VPs estimated by our method.
With the growing number of detected lines, it is clear that our approach has robustness in estimating
VP by refining lines for different detected lines.
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4.2. Comparison

Here, the experimental comparison were performed between H.W.’s method [3] and
our method. H.W.’s approach estimates VPs through projections of spatial rectangles in
which four line segments are combined. Because H.W.’s approach just uses original lines,
and it is short of the process of refining lines, it has difficulty in describing robust VPs
when there are a amount of disturbance of varying illumination and color. By contrast,
our methods is capable of estimating robust VPs in such scenarios, which is helpful in
improving environment perception performance of vision-based vehicles, as shown in
Figure 4.

Figure 4. Experimental comparison. First row: input capture [3]. Second row: refined lines. Third
row: convergence. Fourth row: optimal estimation. Bottom row: the blue point is the point estimated
by H.W.’s method [3], and the pink point is the VP estimated by our method. It is obvious that our
algorithm has better performance in estimating VP by refined lines.
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More experimental comparison were performed between Hyeong’s method [14] and
our algorithm. As shown in Figure 5, compared to the green point estimated by Hyeong’s
method [14], our approach has a better estimation through refined lines.

Figure 5. Experimental comparison. First row: input capture [14]. Second row: original lines. Third
row: refined lines. Fourth row: convergence. Fifth row: optimal estimation. Bottom row: the green
point is estimated by Hyeong’s method [14], and the pink point is the estimated VP by our method.
Our algorithm has better estimation based on refined lines.
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The speed and consumption of VP estimation is a vital factor for automatic driving.
The experiments were run on a computer with Intel Core i7-6500 2.50 GHZ CPU. The run-
time for efficiency analysis of different methods, as shown in Table 2. Since Wei’s method
estimates VPs by rectangles, it is time-consuming. Our approach contends geometrical
inferences with refined lines that has lower numbers of lines, leading to less run time.
The algorithm with low consumption and high efficiency looks promising, which is more
practical for implementation in a autonomous vehicles.

Table 2. Average Time on FDWW dataset [3].

Method Time (s)

Wei [3] 3.3
Our method 1.6

5. Conclusions

The current work presents an geometric algorithm for autonomous vehicles to estimate
VPs without any prior training from monocular vision. The edge lines were refined by
structured configurations based on geometric constraints. Then, VPs can be obtained by
optimal estimation from different clusters in refined lines. Unlike data-driven methods, the
proposed approach requires no prior training. Compared to methods using only edge lines,
the presented approach has better efficiency by adopting refined lines. Because geometric
inferences was adopted, the proposed algorithm has ability to cope with varying illumina-
tion and color, which is more practical and efficient for scene understanding in autonomous
driving. The percentage of pixel error by relative estimation were measured by comparing
the estimated VPs to the ground truth. The results proved that the presented approach
can estimate robust VPs, meeting the requirements of visual navigation in autonomous
vehicles. Furthermore, the proposed refined-line strategy is based on original line detection,
and an algorithm to extract lines from an image involving great disturbance of color and
noise is to be developed in the future work.
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