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Abstract: The steady enhancement of driver assistance systems and the automation of driving
functions are in need of advanced driver monitoring functionalities. To evaluate the driver state,
several parameters must be acquired. A basic parameter is the position of the driver, which can be
useful for comfort automation or medical applications. Acquiring the position through cameras can
be used to provide multiple information at once. When using infrared cameras, not only the position
information but also the thermal information is available. Head tracking in the infrared domain is still
a challenging task. The low resolution of affordable sensors makes it especially difficult to achieve
high robustness due the lack of detailed images. In this paper, we present a novel approach for robust
head tracking based on template matching and optical flow. The method has been tested on various
sets of subjects containing different head shapes. The evaluation does not only include the original
sensor size, but also downscaled images to simulate low resolution sensors. A comparison with
the ground truth is performed for X- and Y-coordinate separately for each downscaled resolution.

Keywords: thermal camera; tracking; automotive; driver monitoring

1. Introduction

Long wave infrared (LWIR) cameras are becoming more popular in the consumer sec-
tion and, therefore, more suitable for monitoring applications. Especially in the automotive
environment, Advanced Driver Assist Systems (ADAS) can make use of cheaper thermal
sensors for the detection of objects outside the car and for driver monitoring inside the car.
While object tracking or especially head tracking is a common task in image processing,
the majority of the research is focused on the visible spectrum. Starting in the 1990s, several
authors including [1–6] demonstrated various head tracking methods in the visible spec-
trum. Basu et al., La Cascia et al. and Ohayon et al. relied on 3D descriptions of the face
allowing to retrieve additional orientation parameters [1,3,6]. Birchfield focused on out-of-
plane rotation where the frontal face is not visible using color and gradient information [2].
Kim et al. and Sebastian et al. demonstrated head tracking using cross correlation, which is
based on a template matching [4,5]. Focusing on driver monitoring, Smith et al. described
a head tracking system using optical flow and color predicates for driver alertness detec-
tion [7]. Baker et al. and Nuevo et al. showed early success with their implementations
of Active Appearance Models (AAM) inside the car [8,9] and Zhu et al. demonstrated a face
tracking method applying Gaussian Mixture Model (GMM) [10]. Separating the face pixel
into foreground and background pixel, they built a two component GMM and performed
image back projection to gather the face region. However, outside the visual domain, object
tracking is still a challenge. Being invariant against lighting conditions, LWIR cameras

Vehicles 2022, 4, 219–233. https://doi.org/10.3390/vehicles4010014 https://www.mdpi.com/journal/vehicles

https://doi.org/10.3390/vehicles4010014
https://doi.org/10.3390/vehicles4010014
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/vehicles
https://www.mdpi.com
https://orcid.org/0000-0002-1998-4834
https://orcid.org/0000-0003-4137-5370
https://orcid.org/0000-0002-6898-6887
https://doi.org/10.3390/vehicles4010014
https://www.mdpi.com/journal/vehicles
https://www.mdpi.com/article/10.3390/vehicles4010014?type=check_update&version=1


Vehicles 2022, 4 220

allow to record day and night, delivering unvaried video signal quality. Especially for
automotive applications the light invariance is of particular interest. In the visual domain
the lighting conditions vary not only between day and night. Even during daytime lighting
variations are quite complex inside a car. They depend on the position of sun and arising
shadows for instance while driving through an avenue. LWIR cameras on the other hand,
in contrast to the visible domain, enables new opportunities in gathering information
from the video signal. Using the knowledge of the common temperature range of a spe-
cific object, the regions containing temperature values in that particular interval can be
extracted. The patterns in the infrared image are based on temperature variations and
differences of thermal emission. With the information about usual skin surface temperature,
for example, in the car, detection and tracking of skin regions can be applied more reliable.
Skin region including facial regions can provide data about blood circulation, respiration
or measuring stress levels of a person through the combination of the data mentioned
before. Extracting these information outside the laboratory conditions is a demanding task
which requires additional information about the movement of measuring region. While
traditional tracking algorithms are built on data from the visible domain, these algorithms
might not work in the far infrared (IR) domain, because the IR image usually provides
a low resolution image due to the small sensor size and less detail in texture information
because of small temperature variations of a surface. Looking at the typical algorithms
that work in the visual domain, Tan et al. displayed the challenge of the commonly used
scale invariant feature transform (SIFT) feature descriptor on LWIR images [11]. They
point out the upcoming errors applying SIFT on LWIR videos showing the need of adap-
tion of standard procedures. Zhang et al. carried out a cross-modality evaluation with
edgelet and Histogram of oriented gradients (HOG) features on videos of pedestrians,
outlining that IR domain and visible domain might share features of this type [12]. Berg
et al. evaluated seven different types of trackers in terms of accuracy and robustness. On
an IR dataset, three trackers could achieve a high accuracy: normalized cross-correlation
(NCC), discriminative correlation filter-based and discriminative classifier combined with
a generative model tracker [13].

In the medical field, respiratory rate can be calculated from IR videos by measuring
the temperature differences at the nostrils while breathing. For automatic extraction
of the correct region, head trackers are an essential part and the first step before extracting
the facial features or facial subregions. Al-Khalidi et al. applied edge filtering to find
the head and search for hotspot/coldspots to extract the relevant region [14]. Based
on segmentation and template matching, Alkali et al. tracked head and nose region
to extract the physiological signal [15]. Kopaczka et al. successfully trained an Active
Appearance Model for the tracking of the head and multiple facial features in the infrared
domain using a high resolution sensor (1024 × 768 pixel) [16].

In terms of ADAS Kolli et al. found the head by segmentation, region growing or mor-
phological operations as a prior step to extract drivers emotions from the face [17]. A vision
based airbag deployment system was realized by Trivedi et al. and Krotosky et al. [18,19].
Here, the IR camera is not in front of the face or the dashboard but mounted on the side
of the driver. After preprocessing steps, like background removal, the head tracking was
done by ellipse contour template matching. This system (combined with a stereo setup
in the visible domain) has been running on a Xeon-PC from 2004 at 15 frames per second.
While not having a training database like in [16], the other approaches [14,15,17–19] just
relied on image processing methods based on observation. Only the works of [18,19] were
even tested in an automotive environment.

Picking up the previous work from [18,19], we decided to use a simplified shape based
descriptor in the proposed algorithm as main component.

Instead of using Sobel operator and extract ellipse contours to describe the head
as an ellipse, we will also use a simplified shape, but based on multiple recordings. The
scene specialized shape covering the neck region as well will be used with NCC as shown
in the benchmark of [13]. Before the NCC is applied, the image is histogram equalized. In
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addition to the NCC an optical flow movement estimation is added to cover tracking at
the border regions of the image. While the two approaches [18,19] use a camera mounted
on the side of the driver, we will use cameras mounted in the dashboard and describe
a different tracking scenario from the front.

Please note that in an automotive context, the usage of mid-resolution thermal cameras,
are currently still unlikely since the prices are not suitable for mass market. Therefore, not
only the original image size is evaluated, but also all images are scaled down by bilinear
interpolation to simulate a possibly cheaper low-resolution sensors like thermopile arrays.

2. Materials and Methods

The proposed approach is the development of an algorithm for fast reliable head
tracking using a thermal camera inside a car for estimating the driver’s posture. De-
spite using two individual IR cameras, we will evaluate the tracking results of the 2D
information from each single camera. Training sequences were recorded to develop the al-
gorithm. Testing of the algorithm was done on a different set of videos containing special
head movements.

2.1. Mockup

The recording of thermal video data was performed in a specially designed mockup
for semi-autonomous driving, with two thermal cameras, located in the dashboard and
facing the driver. Having no doors or windows on the sides, the mockup was not enclosed
by surroundings, so that the recording also included unwanted background information.
The interior included a rotatable driver-seat (Figure 1) used for easy (de-)boarding and
the possibility of facing multimedia screens on the co-driver’s dashboard while driving
in autonomous mode.

Figure 1. Interior of the mockup. The driver’s chair currently is in boarding position and at its front
the drive sticks are visible. On the co-driver’s side the multimedia display is mounted. The front
pillar is T-shaped and on its outer sides the IR cameras (s. C1 and C2) are attached behind a polymer
film (IR window). (Permission by BCS Automotive Interface Solutions)
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The demonstrated maneuvering equipment consists of joystick-like drive sticks di-
rectly attached to the seat, instead of a common steering wheel. Therefore, usually no hand-
or body-movements can occur due to steering. Being a special build for Consumer Electron-
ics Show (CES) in Las Vegas, the futuristic looking mockup is virtually drivable through
a driving simulation displayed on panels in the front. The mockup was able to work in two
different modes. While in driving mode, the driver’s seat and so the driver was facing
the road. In autonomous mode, the drive sticks were inoperative and the seat was rotated
towards the co-driver’s dashboard. The rear-view mirror was virtualized too and hence
integrated into the simulation. While the front panels showed a simulation in a static view,
the field of view inside the mirror was dynamically adjustable and provides an extended
field of view without blind spots for advanced safety purposes. This movement of the vir-
tual rear-view mirror needed to be controlled by an input fed into the simulation. The most
realistic input would be the coordinates of the center of the driver’s eyes. Here we used
the developed head-tracking to determine the position of the head’s center and adjusted
the mirror with these values.

2.2. Camera Setup

Located at the mockup’s dashboard in front of the driver, two thermal cameras were used
as recording devices. According to the data sheets, the cameras (Optris PI 400 Optris GmbH,
Berlin, Germany) have a resolution of 382× 288 pixel (px) with a sensitivity of 0.08 K. Acquiring
at 27 frames per second (fps), the devices were running in software-trigger mode. Using a lens
with 53◦ × 38◦ angle allowed a wide field of view, but resulted in less detailed images. Having
a wide field of view allowed us to cover all common movements of the head in the driver seat.
In the dashboard the cameras were integrated in front of the driver with a distance of about
0.6 m to each other (Figures 2 and 3) each facing the driver.

600.00 mm
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Figure 2. Simplified top view of the camera setup. Two infrared cameras are oriented in the direction
of the head.
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Figure 3. Schematic 3D view of the interior. The driver is facing the dashboard, including the two IR
cameras. The overlapping viewing cones of both cameras are shown in orange and red. (Permission
by Institute for Automotive Engineering).

The spacing between cameras and head was about 0.9 m resulting in a facial resolution
(instantaneous field of view, IFOV) of 1.98 mm per pixel in the center of the image, when
the head was leaned back in the driver seat. The cameras were calibrated to temperatures
from −20 °C to 100 °C, while the non-uniformity correction (NUC) was only allowed
between the recordings, leading to drifting of absolute temperature values. Additionally,
the cameras were placed behind an IR window, in this case a polymer film. Note that
the Optris PI 400 is sensitive in the spectral range from 8 µm to 14 µm. The transmissivity
of the IR window is not constant varying from 40% to 60% in that spectral range, leading
to various attenuation effects. Due to the drifting temperature effect, absolute temperature
values measured by the camera were not assumed to be reliable.

2.3. Training and Algorithm

Building a fast robust generic head tracker for the interior of the mockup required
a set of images for training. Due to the lack of suitable public training databases, in this
case a small amount of pictures was used for creating a generic mask or template. Five
different persons (four male and one female) were recorded for this purpose. In those
sequences, head and shoulders were manually cut out of images from both cameras when
the person was looking just straight ahead into one of them. Displaying the temperatures
−20 °C to 100 °C from black to white and using histogram equalization from [20] leads to:

equhist(i) = round
(

cd f (i)− cd fmin
M · N − cd fmin

· (L− 1)
)

, (1)

with cumulative distribution function (cd f ) being the cumulative histogram, L the number
of gray levels and M · N the number of pixel. The warm head region is highlighted due
to the contrast gain as long as there is not a hotter background. Merging these pictures
through 50% blending,

Pblend(X, Y) = 0.5 · P1(X, Y) + 0.5 · P2(X, Y), (2)
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leads to a blurry mask. This step was performed using manual adjustment in an image
manipulation program. A simplification of the mask could be achieved by thresholding
it to a binary mask. Through mirroring the left side the shape of the mask was further
adjusted to a symmetrical shape (Figure 4).

Figure 4. A generic binary shape containing head and neck region. This is the input template
for the normalized cross-correlation.

Using the recordings with the LWIR camera, the shape could have been derived by
pictures from the visible domain as well. Here we used the samples, to obtain correct
dimensions of the shape.

Using OpenCV, the following image processing steps were developed in C++. Created
during the training, the mask is the basic element of the proposed algorithm. To cover
different head sizes, additionally two scaled versions (95% and 105%) were created. Before
using the mask, a scene specialized segmentation was applied to the image. The cam-
era was calibrated from −20 °C to 100 °C and we assumed the scene to majorly contain
temperatures between 15 °C to 40 °C. Knowing this, one could just segment by absolute
temperature. As pointed out in Section 2.2, we can not rely on the absolute values given by
the camera. Therefore, we used a binned histogram (four values of an 8-bit input image are
binned: 64 bins ≡ 1.875 °C/Bin) to find the region with the majority of the pixel. By using
the median of the binned histogram and thresholding around it, the relevant pixel was
defined. With the standard deviation SD of the pixel of the input image and the median
MED of the binned histogram, we defined the region around the median by:

[MED− 3
16
· SD, MED +

3
16
· SD]. (3)

Even when the temperatures are drifting, the region will cover all relevant pixel, since
they will be shifted with the median. The resulting image is histogram-equalized to achieve
a boost in contrast and create a better match to the created shape. Finally, we introduced
the mask by using template matching. The mask was slid over the input image while using
the normalized cross-correlation (NCC) function [21]:

R(x, y) =
∑x′ ,y′(T′(x′, y′) · I′(x + x′, y + y′))√

∑x′ ,y′ T′(x′, y′)2 ·∑x′ ,y′ I′(x + x′, y + y′)2
,

with T template image and I input image.

(4)

The global maximum of this function gives us the position of the best match between
mask and input image. Having different scales of the mask, this process is done several
times for every scale and in the end, the best match (highest correlation) is taken as position
information. Relying only on this output might lead to discontinuities of the detection
because the maximum could vary frame by frame. Berg et al. already showed that the ro-
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bustness for the NCC is low, probably because of the discontinuity issue [13]. Therefore,
in this work we combined an optical flow method for estimating movement direction
with template matching. If the detected position between two frames changes more than
a certain threshold, there is a high possibility of a false detection, since the inter-frame time
is 37 ms and movement speed in the driver seat is limited. While assuming a maximum
velocity of 0.65 m s−1, the maximum allowed change of the position is 12 pixel. In this case,
we rely on the flow estimation. At the borders of the input image (10% on each side) the op-
tical flow estimation is used as well to cover re-entry scenarios, if the head was outside
the picture. If the correlation value is too low, we currently hold the position, but it is
marked as invalid position, since there is probably no face visible.

2.4. Validation Scenario

In total, 53 subjects were recorded (40 male, 13 female). Sitting in the previously
mentioned rotatable drivers seat, the subjects were asked to perform certain movements
with their head, upper body and hands in a specific order. The recording starts while
the subject is about to enter the mockup. In the boarding phase, the seat was rotated
towards the a-pillar for simplified access. The subject was asked to enter the mockup
and sit down. The chair was then rotated to the normal straight front driving position,
while the subject was resting for several seconds with hands at the drivesticks and head at
the headrest. The first pose was stretching the upper body and head as much as possible
to the left and right. With this movement an extended view into the rear-side mirror is
simulated. Back in the normal position, the subject rotated the head to the right and left
side and then leaned forward, so that rotation and scaling were covered in the recordings.
Leaning back again, the hands should be moved in front of the body. While both arms
were stretched forward, one arm after another was moved upwards in front of body
and head. This moveset was concluded by waving the hands in front of the camera and
was used for occlusion scenarios, for example, pointing figures. Switching the mockup
to autonomous driving (Section 2.1), the seat was now turned into the direction of the co-
driver’s side where the multimedia display was located and the free roaming phase began.
Here the subject could look around freely for one minute. The rotation of the seat and
deboarding the mockup led to the end of the recording. During the whole recordings,
several people were walking beside or behind the mockup to simulate exhibition-viewers
or interference sources in general, creating distractions for the tracking algorithm.

3. Results and Discussion

This section describes the accuracy of the headtracking for single frames out of the test-
ing videos. The algorithm evaluated the whole video and not just the reference frame.
Otherwise, only the template matching would be evaluated and the flow estimation
(based on previous frames) could not occur.

The reference is a manual annotation of 1293 pictures displaying various head poses
out of all recorded videos. Since the shape to detect (Figure 4) includes head and the upper
part of the shoulders, the expected center position is lower than the midpoint of the head.
The generation of the annotation, meaning manual clicking the position for each picture, is
considering this.

As already explained, the tracking was tested on downscaled versions of the videos
to simulate lower resolution sensors. The following resolutions were tested: 382 × 288
(original size), 95 × 72 (1/16th of original size), 76 × 57 (1/25th), 47 × 36 (1/64th) and
31 × 24 (1/144th) pixel for comparison with thermopile arrays. While the reference is
based on the original image size, the detected position on the downscaled image was
upscaled to match the reference by multiplying the coordinates with the inverse downscale
factor. Figures 5 and 6 display the correlation and Bland–Altman plots for the detected
and reference points, while X- and Y-coordinates (X: blue, Y: red) are displayed inside
the same plot. Due to the image ratio and restricted movement of the body on the driver
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seat the Y-coordinates are limited to a smaller range, than the X-coordinates. In Figure 5 we
can see the results of tracking using the original image size of 382 × 288 pixel.
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Figure 5. Correlation and Bland-Altman plot between reference and detection for X- and Y-
coordinates (X: blue and Y: red) is shown for the original video with the image size 382 × 288
pixel. In the Bland-Altman plot the lines of agreement are between +24 and −26 pixel (dashed lines)
and the mean is located at 0.91 (solid line).



Vehicles 2022, 4 227

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350
n = 2586

Detected

R
ef

er
en

ce

Correlation Plot

X-coordinate

Y-coordinate

0 50 100 150 200 250 300 350

−150

−100

−50

0

50

100

150

31 (+1.96SD)

-4.5 [p=0.00]

-40 (-1.96SD)

RPC: 36 (25%)
SD: 18

Mean Detected & Reference

R
ef

er
en

ce
-D

et
ec

te
d

Bland Altman Plot

X-coordinate

Y-coordinate

Figure 6. Correlation and Bland–Altman plot between reference and detection is shown for the down-
scaled video with the image size 31 × 24 pixel (1/144th of the original size). Due to the upscaling
to match the reference, quantization artifacts are visible.

In general, there is a good correlation visible for both coordinates. The huge outliers
for the X-coordinate seem not to be in the center, but in the border regions. For both
border regions in X-axis the detected points tend to be located closer to the center. For the Y-
coordinate it is different, because outliers are most prominent in the center and the detection
point is below the face in the neck region. The interval of agreement is between +24 and
−26 pixel, saying 95% of the detected points are within these limits. For the image size
of 382 × 288 pixel the displacement of reference to detection is illustrated in a vector plot
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in Figure 7. The vector length is scaled down by 2.5 to increase visibility of the vector field.
The outliers described before are visible in two clusters of extended vectors on the left and
the right side.
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Figure 7. The vector plot illustrates the displacement of reference to detection points. Every vector
starts at a reference and points towards the detected location. The length is scaled down by 2.5
to add the visibility of the vector field. The highest displacement is located at the left and right of the
image border.

The pictures in Figure 8 show examples of the reference and detected points, while
orange points present detected positions. In the first picture, we can see an example
of a large displacement, caused by a heated headrest.

The Bland–Altman and correlation plots for the first three downscaled resolutions
(95 × 72, 76 × 57 & 47 × 36 pixel) are omitted here, since they differ only minimally
from the plots in Figure 5. The limits of agreement are around ±25 pixel. With an IFOV
of about 2 mm per pixel, the approximated difference in an image plane is about 5 cm only
considering the error in one coordinate direction, leading to an displacement of around 30%
of a common head size, using a standard average head width of 153 mm [22]. The similarity
is also visible in Figure 9. For that, we will focus on the upper and lower adjacents. The
difference between these values is around 40 pixel for the first four boxplots and for the last
it changes significantly to 59.
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Figure 8. Four colormapped LWIR pictures with reference (magenta) and detection (orange) points
using the original image size of 382 × 288 pixel. Warm regions are displayed in yellow colour and
colder regions are colored blue. In the first picture on the top left the headrest is heated up and
the detected point is between the actual head and the heated area. The top left and bottom right
picture show examples of people standing in the background.
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Figure 9. Boxplots showing the difference of reference and detection for X- and Y-coordinate for all
tested resolutions. Only in the smallest resolution does the error increase significantly compared
to the original resolution.
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In Figure 6 (image size: 31 × 24 pixel), the lines of agreement are moved to +31/−40
pixel clearly visible due to the wider spread deviation. With an displacement of 8 cm
in the virtual image plane, the displacement is already up to 50% of the head size consider-
ing still only one axes. Being up to 50% off the reference means for a standard head size,
that the detection might still hit the face region, but can be on the edge of the face. The
previous plots already show the error in terms of figures.

Looking at Table 1 we can see the specific numbers for all resolutions in terms of root
mean square error (RMSE) and mean absolute error (MAE). As mentioned before, the origi-
nal and first three downscaled resolutions show a similar error. Assuming an IFOV of 2 mm
per pixel in the image plane, the RMSE is about 2.6 cm and the MAE 1.5 cm for all reso-
lutions except the lowest resolution. When using only 31 × 24 pixel, the error increases.
Obviously an increase of error using less information is expected. Interestingly, for this
scenario the algorithm performs very similar using less pixel, even only 1.5% of the pixel
from original image (at 47 × 36 px). Having only 0.67% of the pixel, meaning a resolution
of 31 × 24 pixel, seems to be too little information to work with this algorithm. In this
case the common head width in the picture is only about 6 pixels and the shape is not
as well-defined as in the pictures of higher resolution, leading to higher displacement
to the reference. As shown by the Bland–Altman plots, in all cases the false detection
in the X-coordinates are accumulated towards the image border regions. While trying
to stretch to the side, most of the subjects tend towards leaning the head to the side as well,
leading to a rotated head. The template matcher is not rotation-invariant, which was taken
into account while choosing it, since these rotated position are uncommon in our scenario,
but tested anyway. Having these occurrences in the video data, the algorithm will most
likely hold the position at some point due to a very low correlation value, leading to a
large displacement. Setting the least acceptable correlation value to 0.7, the tracker will
hold the position if this value is lower than this threshold. Obviously lowering the value is
an option to consider, but lowering results in higher false positives rates, because hands or
similar shapes might be accepted by the algorithm. The effect of the correlation value can
be seen in Figure 10 for the original resolution of 382 × 288 pixel.

Table 1. Root mean square error (RMSE) and mean absolute error (MAE) for all resolutions.

382 × 288 px 95 × 72 px 76 × 57 px 47 × 36 px 31 × 24 px

RMSE (px) 12.869 13.078 12.827 12.969 18.725
MAE (px) 7.466 7.773 7.677 7.569 11.968

It is visible in the first boxplot—displaying the correlations for the divergence of the X-
coordinate greater than 12 pixel (about 15% head size)—that the 75th percentile of the cor-
relation for larger X-coordinate displacements is below the least acceptable value. So a
minimum of 75% of those cases suffer from the position holding. The second boxplot
displays the same for the Y-coordinate. Since the majority of the values lie above the thresh-
old, here most of the errors are occurring due to false detections. These false detections
in the Y-coordinate include the presence of full beard or the case of looking upwards. In
those cases, the front neck region can be seen as a huge warm area adjoining the shoulders.
This will lead to false positive detection of a head shape below the actual head position.
Altogether, the limitation in the system is present if lateral bending of the neck appears,
leading to a rotation of the head. Providing additional rotated templates might lead to a
better detection performance. Additionally warm areas close to the head temperature and
emissivity are leading to misinterpretation of the head shape. Since the pixel information is
based on the temperature, this is a common issue in thermal imaging.

For comparison, a Haar–Cascade classifier (HCC) [23,24] is applied instead of the NCC
method. The Cascade classifier was trained on 6930 images of heads in infrared and
6394 background images not containing any image from the testing frames. In order
to detect faces in lower resolutions, the HCC training was performed on multiple image
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sizes. The resulting displacement error is shown at Table 2 in comparison to the proposed
method. By providing a large set of images, the HCC is able to detect the head but often
includes shoulder parts, leading to a higher displacement. Overall the proposed method
outperforms the trained HCC.
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Figure 10. Distribution of correlation values for displacements greater 12 pixel for the original
resolution (382 × 288 pixel).

Table 2. Root mean square error (RMSE) and mean absolute error (MAE) for the proposed and
Haar–Cascade based method.

382 × 288 px 95 × 72 px 76 × 57 px 47 × 36 px 31 × 24 px

Proposed RMSE (px) 12.869 13.078 12.827 12.969 18.725
Proposed MAE (px) 7.466 7.773 7.677 7.569 11.968

HCC RMSE (px) 21.989 24.728 22.45 18.902 24.477
HCC MAE (px) 12.252 14.506 14.276 26.212 34.616

After analyzing the algorithm, we want to look at the computational efficiency. The
algorithm is able to run at 9 fps when the original resolution of 382 × 288 pixel is used.
For the lower resolutions the fps are boosted significantly. With the downscaling 87 fps for
1/16th, 112 fps for 1/25th, 357 fps 1/64th and 553 fps for 1/144th of the original resolution
are possible running on an Intel i7 7700K processor.

4. Conclusions

We demonstrated an algorithm to track a face in an infrared image stream for an au-
tomotive environment. The evaluation of the detected positions on the downsampled
videos show the potential for the use of low resolution sensors in this scenario. The pro-
posed algorithm is able to detect the head in the downscaled video down to the resolution
of 47 × 36 pixel with a RMSE of 13 pixel and a MAE of 7.5 pixel in a virtual image plane
at the headrest. For the lower resolution of 31 × 24 pixel, these values increase significantly,
showing the limits of the algorithm. Additional limitation is due to the lack of rotation
invariance. When the head is rotated, the shape does not fit in the scenario any more. Here
an extension with rotated shapes could be part of future work to reduce the error for these
special occurrences. The detection in low resolution scenarios is essential for the use
in automotive environments. For driver monitoring, for example, head position detection



Vehicles 2022, 4 232

or extracting a mean head temperature for climatic adjustments, a low resolution sensor
could provide the necessary information. Obviously the noise behavior of the used sensor
in the Optris PI 400 camera is not comparable with a smaller sensor. Using the wide angle
optics we showed a possibility of the application of small LWIR sensors such as thermopile
arrays. Down to a certain resolution of 47 × 36 pixel, the results do not change significantly.
Using other optics, which will result in a smaller field of view, will reveal more detail.
This might open up the option for even smaller sensor sizes due to the changed IFOV.
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Abbreviations
The following abbreviations are used in this manuscript:

LWIR Long wave infrared
ADAS Advanced Driver Assist Systems
AAM Active appearance model
GMM Gaussian mixture model
IR Infrared
SIFT Scale invariant feature transform
HOG Histogram of oriented gradients
NCC Normalized cross-correlation
IFOV Instantaneous field of view
NUC Non uniformity correction
RMSE Root mean square error
MAE Mean absolute error
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