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Abstract: Many trucks are used for a class of activities involving a sequence of basic load-haul-
dump operations. The repetitiveness of this operation has been an enabler for autonomous vehicle
technology in efforts to increase safety and efficiency. In this paper, we present a framework for
the automation of the load-haul-dump operation in a mine setting using an articulated dump truck.
A simulation environment for the testing of autonomous driving algorithms is developed and a
custom mining environment is generated to adapt to our simulation settings. We also present an
operational decomposition of the sequence of tasks and develop a finite state machine for high-
level decision making based on this decomposition. A path tracking module that considers both
bodies of the articulated truck is also developed. The resulting architecture was implemented to
achieve autonomy for a load-haul-dump operation in the simulated environment within a fixed
path. Experiments show that the proposed FSM-path tracking system can automate the load-haul-
dump operation; and that the simulation environment can support the testing and development of
autonomous driving algorithms for configurations such as an articulated truck.

Keywords: automated driving system; articulated truck; finite state machine; path tracking; rigid-
body modeling; simulation

1. Introduction

The mining industry has been under increasing pressure to innovate as mining com-
panies look for different ways to decrease cost in the face of a downward trend in profits.
This has led the industry to adopt autonomous driving solutions for mining operations
due to the repetitiveness of several mining tasks. Autonomous driving technology can
lead to the improvement of the overall safety of the mine, an increase in productivity and
efficiency, and a decrease in operating costs [1]. The use of autonomous machinery has also
been promoted in countries with declining birth rates and aging populations as a solution
to maintain productivity in these areas [2].

Load-haul-dump (LHD) operations are one of many types of operations that are
common to trucks-including mining trucks. They usually involve loading of materials to
be hauled and then unloading, or dumping, at the destination point. This process is then
repeated from the destination point to the next point. Truck autonomy plays a promising
role in increasing the safety and efficiency of these operations due to the repetitiveness of
such an operation [3].

Automation of underground mining LHD vehicles has gathered increased interest due to
the hazardous nature of such an environment. In [4], the authors propose using laser scanners
and reference strips to guide an underground LHD vehicle through the operation. Wall-
following in [5] was proposed as an alternative technique for underground navigation that
did not require special infrastructure. Building on this technique, the work in [6] proposed a
reactive wall-following navigation system complemented with weak localization that achieved
near-human performance at full-speed on a LHD operation in a real underground test mine.
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Other works have focused on the modeling and control of mining vehicles using mathematical
modeling and simulation [7–11] and small-scale environments [12].

However, in order to facilitate the testing of autonomous solutions, a simulation
environment is necessary to decrease the cost of development and deployment-especially
as these machinery can be costly. Such a simulation environment needs to be able to
accurately model vehicle dynamics, to capture interactions with obstacles, and to provide
sensing capabilities such as LiDAR, camera, and GPS. The latter provides freedom in
testing different sensing configurations. Such a requirement extends beyond conventional
methods of mathematical simulation and lab-scale environments.

In this paper, we will use the example of a surface mine and an articulated dump
truck to provide a framework for the automation of a generic load-haul-dump process.
Unlike previous works, we will propose a realistic model of our vehicle using rigid-body
dynamics in a 3D physics-based simulation environment to study the performance of the
proposed approach. Such a simulation setup would allow for more accurate interaction
with the physical system. While the operation and simulation environment can be adapted
to different environments, we will focus solely on a surface mine as a generic example in
the work presented.

2. Methods
2.1. Scenario Description

We consider the load-haul-dump operation of a six-wheeled articulated dump truck
(ADT) in a surface mine environment as shown in Figure 1. The environment consists
of three areas: A1 as the loading area, A3 as the unloading area, and A2 as the roadway
connecting A1 and A3. In this analysis, we assume that there exists one ADT and no
other traffic present. The goal of the ADT is to perform a series of operations to move
autonomously between the load and unload areas along A2.

Figure 1. Road topology and operation of the load-haul-unload operation (top) and unload-haul-
load operation (bottom). A1 represents the loading area, A3 represents the unloading area, and A2
represents the roadway connecting the loading/unloading areas. Waypoints are shown in red and
checkpoints are shown in orange.
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To do so, a road topology needs to be defined so that the truck can perform the
appropriate decisions based on its current situation. The road topology refers to the
different layouts in the network of the road. For example, an intersection or a two-way
road. These are mapped as waypoints that are used to indicate to the vehicle its current
state along the operation. In general, we have followed the terminology and conventions
used in the DARPA Urban Challenge for the road specification [13]. This road definition
and the operation can be then defined as follows,

• Separate waypoints are defined for the load, haul, and unload areas in each direction.
• Waypoint files start and end at a checkpoint.
• T-junctions are given in terms of checkpoints, waypoints, and intersection geometry.
• The speed is adjusted along roadway to speed up, cruise, and decelerate so as to stop

at a checkpoint at the end of the roadway or a T-junction in either direction.

It is important to note that the roadway is not defined in terms of the road edges as it is
assumed that it cannot be sensed. It is also assumed that the waypoint files are established
by driving along each lane and listing the measured GPS positions at regular intervals. This
allows for virtual lane edges to be drawn on the map based on the assumed width of each
lane or roadway. In this work, traffic is assumed to drive on the left side.

2.2. Scenario Analysis and Design

The scenario described presents a fixed operation. That is: the goals are the same, the
operations are repeated, and the sequence of operations is known a-priori.

2.2.1. End-to-End Operational Decomposition

An end-to-end operational decomposition allows the system to be represented as a
Discrete Event System (DES). A Finite State Machine (FSM) can then be created to represent
the DES and form the high-level decision-making module of the autonomous vehicle [14,15].
The 13-stage decomposition for the full operational cycle (load-haul-unload-haul-load) is
given as follows:

1. A1: Load.
2. A1: Move to intersection, evading obstacles.
3. T-junction: Turn onto road (left turn).
4. A2: Travel along road.
5. T-junction: Turn off road at entrance of A3 (left turn).
6. A3: Move to unloading position.
7. A3: Unload.
8. A3: Move to intersection.
9. T-junction: Turn onto road (right turn).
10. A2: Travel along road.
11. T-junction: Turn off road at A1 (right turn).
12. A1: Move to loading position, evading obstacles.
13. A1: Stop/Wait.

2.2.2. Finite State Machine

Each stage of the operation represents a meta-state in the FSM and the checkpoints
in the road topology defined determine the state transitions. The operational meta-states
listed can be further grouped into three larger meta-states each pertaining to A1, A2, and A3
operation as outlined in Figure 2. Hence, each area has a group of operational meta-states
that defines the truck’s maneuver and these areas are transitioned through the T-junction
states. The loading state of the truck determines whether the truck is moving towards A1
(unload-haul-load operation) or A3 (load-haul-unload operation). Waypoints and the GPS
position indicate to the vehicle what meta-state in the FSM to use. The state transition
events are defined in Table 1.
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Figure 2. Finite state machine logic for the operational decomposition of a load-haul-dump operation.
E1 to E18 define the state transition events.

Table 1. State transition events for the finite state machine logic developed for the operational
decomposition.

Event Condition
E1 Truck position is in Area 2 (from Area 1)
E2 Truck position is in Area 1
E3 Truck position is in Area 3
E4 Truck is in Area 2 (from Area 3)
E5 Truck has been loaded
E6 Truck is unloaded AND truck reached loading waypoint
E7 Truck is loaded AND truck reached Area1-Area2 T-junction entry waypoint
E8 Truck is unloaded AND truck reached Area2-Area1 T-junction exit waypoint
E9 Truck is loaded AND truck reached Area1-Area2 T-junction exit waypoint

E10
Truck is loaded AND truck is at Area1-Area2 T-junction
OR
Truck is unloaded AND truck is at Area2-Area3 T-junction

E11
Truck is loaded AND truck reached Area2-Area3 T-junction entry waypoint
OR
Truck is unloaded AND truck reached Area2-Area1 T-junction entry waypoint

E12
Truck reached Area2-Area3 T-junction exit waypoint
OR
Truck reached Area2-Area1 T-junction exit waypoint

E13 Truck is loaded
E14 Truck is unloaded and truck reached Area3-Area2 T-junction entry waypoint
E15 Truck is loaded and truck reached backup waypoint location
E16 Truck is loaded and truck reached the unload waypoint location
E17 Truck has been unloaded
E18 Truck is unloaded and truck reached Area3-Area2 T-junction exit waypoint
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2.3. Simulation Environment

To facilitate the testing of autonomous vehicle algorithms, we develop a 3D physics-
based simulation environment coined as the Oztech Modular Design Environment (MODE),
to represent a realistic model of the vehicle and its dynamics, the physical environment,
and the sensor suite. This simulation environment was built on top of the Gazebo simulator,
which is a popular 3D robotics simulator, and the ROS framework. The environment also
provides an appropriate control interface with the simulated vehicle and external scripts
so as to alter the simulation. The architecture of the simulation environment is shown in
Figure 3. We leverage the existing Gazebo physics engine, 3D visualization capabilities,
and base sensor suite while building the rest of the modules shown in the architecture.

Figure 3. Architecture of the Oztech MODE simulator. The environment consists of four main
components: the simulated vehicle and world built on top of Gazebo, the 3D models, the control and
communication interface through ROS, and the external scripts.

2.3.1. Environment Model

An environment model shown in Figure 4 was developed in Blender to represent the
given operation description (Figure 1). The environment consists of two areas, loading
and unloading, and an asphalt road connecting the two areas. A T-junction exists at the
entrance/exit of each area to the roadway.

2.3.2. Truck Model

A realistic model of the ADT was constructed based on the physical, inertial, and
geometrical properties of a commercial articulated truck [16]. The ADT was modeled using
rigid-body dynamics and constructed as a multibody system: two rigid bodies connected
through a hinge joint at the articulation point. The truck model and the construction
of the different body links and joint connections are shown in Figure 5. A plugin was
also developed to simulate the actuation dynamics of the truck. Namely, the suspension,
the steering, the throttle, and the brake actuation. The steering is controlled using a PID
controller to produce the required torque at the hinge joint based on the steering error. The
throttle and brake actuation is modeled using simple linear models as a function of the
pedal or brake percentage and total torque. These result in approximations of the engine
dynamics of the vehicle as the full powertrain and tire dynamics are not considered. The
suspension is modeled as a spring-mass-damper system. The plugin also provides the
control interface with the actuators over ROS.
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Figure 4. Environment model of the operation description. Top-left area is the loading area while the
middle-right area is the unloading area.

Figure 5. Construction of the articulated truck model. (a) shows the rigid-body construction of the
articulated dump truck. Suspension joints at the wheels were modeled as prismatic joints. (b) shows
the articulated dump truck model in simulation.

2.3.3. Sensing

Simulation provides the capability of testing different sensor configurations at no
additional cost. Therefore, a strong sensor suite is important in the development of a
simulator for autonomous vehicle testing. The developed simulation environment leverages
the sensor suite found in the Gazebo simulator: stereo cameras, depth cameras, LiDAR,
and RADAR; and extends the sensing capabilities to include an articulation angle sensor
for steering control, and a GPS module for localization. The sensors output their data over
the ROS framework as ROS topics that allow external scripts to access the data. The sensor
output can also be visualized in rviz in real-time. An example of the sensor view is shown
in Figure 6.

2.3.4. MATLAB Integration

The simulation environment provides an integration interface with MATLAB and
Simulink through the ROS framework as shown in Figure 7. This allows for the opera-
tion control architecture to be developed externally but simulated on our vehicle model
and environment.
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Figure 6. Sensor view in rviz. The output of two LiDARs (red and blue) and the truck model
is visualized.

Figure 7. Integration with MATLAB and Simulink.
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2.4. Path Tracking

The path tracking criterion and state vector construction is based on the work of [17].
It is assumed that a path is already planned and that the operation of the ADT follows the
given operational decomposition. Hence the high-level control is decided by the Finite
State Machine defined and the path tracking controller implements the low-level control.
This subsection focuses solely on the path tracking problem.

2.4.1. Kinematic Model

A multi-body point mass kinematic model is considered for both the front and rear
chassis. The four rear wheels are combined to form a single axle at their midpoint. The
coordinate frame of the truck model is given in Figure 8 where i ∈ {0, 1} identifies the body,
Pi is the midpoint of the axle given in Cartesian coordinates (xi, yi), θi is the orientation
angle of the midpoint of the axle, βi is the articulation angle, vi is the velocity vector, and Li
is the distance between the axle midpoint and the articulation point.

Figure 8. Articulated truck model for kinematic modeling. Coordinate frames for the multibody
decomposition of the articulated truck is shown.

The kinematic model of the rear chassis is then given by

ẋ1 = v1cosθ1 (1)

ẏ1 = v1sinθ1 (2)

θ̇1 =
v1sinβ− L0 β̇

L0 + L1cosβ
(3)

and the front chassis, derived from the geometry of the truck, is given by
θ0 = θ1 − β (4)

x0 = x1 + L1cosθ1 + L0cosθ0 (5)

y0 = y1 + L1sinθ1 + L0sinθ0 (6)

2.4.2. Path Tracking Criterion

The path tracking criterion was developed based on the path tracking criterion pre-
sented in [17]. The midpoints of the front and rear vehicle bodies, P0 and P1, are projected
onto the path. These projections construct a Frenet frame. This provides a local represen-
tation of the vehicle bodies on the path. The underlying assumption is that the path is
sufficiently smooth. The Frenet frame contains both a normal vector, which is the orthogo-
nal distance of Pi from the path, and a tangent vector, which is the orientation of the path.
This is shown in Figure 9 where θγ is the orientation of the Frenet frame with respect to
the inertial frame, vi and τi are the unit vectors of the normal and tangent to the curve
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respectively defining the Frenet frame, and zi is the distance of point Pi from its orthogonal
projection on the path.

Figure 9. Projection of the axle midpoints onto the path. The Frenet frames coordinate axes (vi, τi)
are also shown.

It is important to consider the tracking of both the front and rear chassis to avoid
collisions of the vehicle with its surroundings. Path tracking criterions based on a single
guide point may not guarantee the orientation of both the front and rear chassis when
following the path. Therefore, a path tracking criterion based on the offset of both chassis
is considered and given below,

z0 + z1 → 0 (7)

2.4.3. Circular Lookahead

The circular lookahead presented in [14] allows the construction of a simple curve
lookahead from three waypoints along the path. This type of lookahead accounts for the
curve constraint of the path tracking criterion by guaranteeing a smooth curve between the
fitted points. The circular lookahead proposed finds the closest waypoint on the path to the
truck and moves along the path a minimum distance Lwp to obtain three waypoints for the
curve construction as shown in Figure 10.

The minimum distance between the path waypoints considered for fitting, Lwp, is
dependent on the sampling rate of the controller, Ts and the velocity of the truck, v,

Lwp = vTs

Using this curve construction on both the front and rear bodies of the truck results
in two circles that locally represent the path. The front and rear bodies can then be
orthogonally projected onto these circles and the distance from the projection, zi, and the
orientation of the truck on the path, τi, can be found.
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Figure 10. Construction of the circular lookahead through three waypoints a minimum distance Lwp

apart. The transparent waypoints represent the path and the highlighted waypoints represent the
selected waypoints. The blue curve is the circle fitted through these waypoints.

2.4.4. Feedback Design

The state vector can be obtained from the dynamics of the points Pi in the Frenet frame
as shown in [17]. The state vector is given by,

p =
[
z0 z1 θ̃0 θ̃1 β

]> (8)

and its dynamics,

ṗ =


ż0
ż1
˙̃θ0
˙̃θ1
β̇

 =



L1+L0cosβ
L0+L1cosβ sinθ̃0

sinθ̃0
sinβ

L0+L1cosβ −
(L1+L0cosβ)κycosθ̃0
(L0+L1cosβ)(1−κyz0)

sinβ
L0+L1cosβ −

κycosθ̃1
1−κyz1

0


v1

+



− L0L1sinβsinθ̃0
L0+L1cosβ

0
L1cosβ

L0+L1cosβ +
L0L1sinβκycosθ̃0

(L0+L1cosβ)(1−κyz0)

− L0cosβ
L0+L1cosβ

1


ω

(9)

where θ̃i = θi − θγi is the relative orientation angle between the truck orientation and the
path orientation, κy is the curvature of the path, and β̇ = ω is the steering speed.

The dynamics of the state equation can be locally asymptotically stabilized to a path
of constant curvature by linearization around the equilibrium and a linear state feedback
as shown in [17]. Since the path representation is already local, i.e. the circle fitting, then
the constraint on asymptotic stability is met. For a path of constant curvature, κy, the
equilibrium point becomes,

peq =


z0eq

z1eq

θ̃0eq

θ̃1eq

βeq

 =



κy(L2
0−L2

1)
4

− κy(L2
0−L2

1)
4

0
0

arctan( L0κy
1−κyz0

) + arctan( L1κy
1−κyz1

)

 (10)
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that is obtained from the geometry of the path tracking problem in Figure 9 and by imposing
the path tracking criterion, z0 + z1 → 0 and setting the relative orientation angles, θ̃i to 0 at
equilibrium. This is because the vehicle should move along a circumference concentric with
the path at equilibrium. Note that the values of z0 and z1 result in a unique value for β.

Writing the system dynamics as ṗ = A(p) + B(p)ω and taking the Jacobian of A,
denoted as

J = ∂A
∂p

∣∣∣
p=peq

(11)

about the equilibrium point yields a Hurwitz matrix. Taking a linear state feedback for the
control, the closed loop state matrix becomes,

ṗ = (J − v1KB)p (12)

where K is selected as a feedback gain row vector to stabilize the closed loop system and
B = B(peq). This path tracking controller is capable of tracking in both the forward and
reverse directions. The equations in this subsection along with the proofs are presented
in [17].

3. Results and Discussion

The FSM developed for the series of operations defined was used as the decision-
making logic for the load-haul-dump operation. The Finite State Machine was constructed
in Simulink and integrated with the path tracking module. The integration of the Finite
State Machine with the path tracking controller in the simulation environment is outlined
in Figure 11. The finite state machine outputs setpoints or enable flags to the controllers
based on the received information from simulation. The state transition events execute at
each time step to determine the current state of the FSM.

Figure 11. Integration of the FSM and path tracking module in the simulator. The modules sub-
scribe to the topics published by the simulated ADT and publish control commands to the control
interface provided.

An example simulated scenario was constructed where the truck operation starts in A1
and ends in A3 and then reverses into the unload position. This represents stages 1 to 7 in
the operational decomposition defined. A set of waypoints were collected and provided at
the start of the simulation that define a path from A1 to A3. A simple PID speed controller
was implemented to control the speed of the truck in the different areas. The scenario setup
is shown in Figure 12.
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Figure 12. Simulated scenario in Oztech MODE representing stages 1 to 7 of the operational decom-
position. The reference path is constructed and shown on the top right.

Figures 13–15 show the performance of the implemented module in the Oztech MODE
simulator. The module was successful in tracking the provided path and performing a
series of operations to move from A1 to A3—hence, complete a load-haul-dump operation.
The last section in A3 represents a docking maneuver. The truck has to get into position
and back into the unload position.

Figure 13. Path tracking performance of the FSM and Path Tracking module in operating from
A1 (load) to A3 (dock and unload).
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Figure 14. Forward path tracking in A1. Blue line represents the path constructed from the waypoints.
The red markers represent the GPS position of the front chassis read from the simulator.

Vehicles 2021, 1 13

Figure 14. Forward path tracking in A1. Blue line represents the path constructed from the waypoints.
The red markers represent the GPS position of the front chassis read from the simulator.

Figure 15. Docking maneuver in A3. This maneuver includes both forward and reverse path tracking,
the order of operations is decided by the FSM. Blue line represents the path constructed from the
waypoints. The red markers represent the GPS position of the front chassis read from the simulator.
Similarly, the green markers represent the rear chassis.

4. Conclusions

In this paper, a system architecture for the automation of the load-haul-dump op-
eration of an articulated dump truck was proposed and tested in a physics-based 3D
simulation environment. The proposed architecture was successful in performing the
series of operations autonomously and demonstrating the effectiveness of this approach.
While this paper provided an example of a surface mine and an articulated truck; this
work can be easily extended to different vehicles, operations and layouts through proper

Figure 15. Docking maneuver in A3. This maneuver includes both forward and reverse path tracking,
the order of operations is decided by the FSM. Blue line represents the path constructed from the
waypoints. The red markers represent the GPS position of the front chassis read from the simulator.
Similarly, the green markers represent the rear chassis.

4. Conclusions

In this paper, a system architecture for the automation of the load-haul-dump op-
eration of an articulated dump truck was proposed and tested in a physics-based 3D
simulation environment. The proposed architecture was successful in performing the
series of operations autonomously and demonstrating the effectiveness of this approach.
While this paper provided an example of a surface mine and an articulated truck; this
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work can be easily extended to different vehicles, operations and layouts through proper
operational decomposition. Moreover, this presents the core logic that can be extended to
more complex tasks such as sensing, reactive obstacle avoidance, and other aspects that
were not considered in this work but can be simulated using the presented physics-based
simulation environment.
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