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Abstract: The quickly rising development of autonomous vehicle technology and increase of (semi-)
autonomous vehicles on the road leads to an increased demand for more sophisticated human–
machine-cooperation approaches to improve trust and acceptance of these new systems. In this work,
we investigate the feeling of discomfort of human passengers while driving autonomously and the
automatic detection of this discomfort with several model approaches, using the combination of
different data sources. Based on a driving simulator study, we analyzed the discomfort reports of
50 participants for autonomous inner city driving. We found that perceived discomfort depends on
the driving scenario (with discomfort generally peaking in complex situations) and on the passenger
(resulting in interindividual differences in reported discomfort extend and duration). Further, we
describe three different model approaches on how to predict the passenger discomfort using data
from the vehicle’s sensors as well as physiological and behavioral data from the passenger. The
model’s precision varies greatly across the approaches, the best approach having a precision of up to
80%. All of our presented model approaches use combinations of linear models and are thus fast,
transparent, and safe. Lastly, we analyzed these models using the SHAP method, which enables
explaining the models’ discomfort predictions. These explanations are used to infer the importance
of our collected features and to create a scenario-based discomfort analysis. Our work demonstrates
a novel approach on passenger state modelling with simple, safe, and transparent models and with
explainable model predictions, which can be used to adapt the vehicles’ actions to the needs of
the passenger.

Keywords: human computer interaction; human modelling; human-centered computing; HCI models

1. Introduction

Autonomous vehicles (AVs) will have a big impact on our future mobility and society.
Users of these vehicles will more often just be passengers instead of drivers, providing
them with the freedom to devote their time to other activities, such as reading or relaxing.
Despite these advantages, a major point of concern is the perceived loss of control over the
vehicle while driving autonomously, which without trust in the vehicle technology, will
result in increased levels of discomfort.

Therefore, many researchers are developing methods to prevent this feeling of losing
control and thus to increase trust in the technology, through reducing discomfort and
improving the individual acceptance of AVs [1]. Most of these methods use the follow-
ing approaches: (1) Measuring the passenger discomfort and (2) adapting the in-vehicle
information presentation and/or driving style of the vehicle to the user’s preferences for
discomfort reduction.
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A recent work [2] compared seven different studies that investigated comfortable
automated driving styles and thereby gave an overview of discomfort-inducing factors in
automated driving. The authors stated that the driving dynamics and thus the automated
driving style influence perceived driving comfort and discomfort, respectively. To reduce
discomfort in automated driving, they concluded that automated driving styles should be
designed with a focus on defensive behavior (at least during the system introduction phase)
and leave an optional degree of control to the user (e.g., by choosing between different
driving styles).

Beggiato, Hartwich, and Krems [3] investigated physiological parameters and their
potential to indicate discomfort during automated driving. In a driving simulator, the
participants encountered discomfort-inducing approach situations, while physiological
parameters such as heart rate and pupil diameter were recorded. The researchers con-
cluded that the investigated physiological parameters could be used to design a real-time
discomfort prediction system. A comparable driving simulator study was performed
by [4], who recorded heart rate variability and electrodermal activity during driving. Be-
sides manual driving, the participants experienced simulated automated driving with
four different automated driving styles. Although, no difference regarding discomfort
could be found between the different driving styles, the researchers concluded that electro-
dermal activity is a promising method to measure discomfort during automated driving.
Azevedo-Sa et al. [5] proposed an approach to estimate the trust level in automated driving
systems based on state estimation methods. The researchers used a combination of users’
eye tracking signals, usage time of the system, and performance on a non-driving-related
task to estimate their trust level. During the study, the participants drove in a driving
simulator equipped with a lane keeping assistant, cruise control, and collision avoidance
features. The participants could switch between automated and manual driving mode
and were allowed to execute a non-driving-related task. Based on questionnaires, the
subjective trust, risk, and workload perception for each participant were estimated. In a
driving simulator study with 20 participants, Dommel, Pichler, and Beggiato [6] evaluated
two mathematical models to predict discomfort perceived during automated approach
situations. Using a handset control, participants were able to indicate perceived discomfort
in real-time while their heart rate, blink rate, and pupil dilation were recorded. The authors
used z-scores of these physiological features to predict the participants’ discomfort. One
model was fitted for each of the 20 participants. The researchers found that the tested
models performed similarly in terms of mean prediction accuracy, which was around 72%.
It was hypothesized that the models’ performances could be further increased by including
more discomfort-related input features such as facial expressions or body movements.
Trende et al. [7] demonstrated how the discomfort prediction for overtaking maneuvers
can be improved by combining contextual, physiological, and user-specific data. Based
on data recorded in a driving simulator study [8], the researchers worked on predicting
users’ discomfort indicated via handset control during automated driving. Deep neural
networks were trained on different sets of input features. The simplest model just used
contextual and behavioral information of the automated vehicle such as velocity, lateral ac-
celeration, or time-headway. Heart rate and related features were added for the evaluation
of a second model. Although this work showed moderately good model performances,
the models were only trained on discomfort inducing parts of the data (where overtaking
was performed) and the explainability and reliability of the used deep neural networks
is limited.

In this work, we build upon the results of Trende et al. [7] and expand it with two
novel approaches. We investigate different methods to use simple and easily explainable
models, which are robust and safe, and we use the SHAP (SHapley Additive exPlanations)
method [9] to explain how these models operate. Using such a transparent and explainable
setting allows us to infer the importance of specific features, including sensory measures,
for instance heart rate and eye gaze, and enables the usage of this information for later
adaptions of the in-vehicle information presentation and automated driving style.



Vehicles 2021, 3 766

This work is divided as follows: In Section 2, the conducted study is explained,
together with the data pre-processing, how we split data into contexts, and a summary
on how the SHAP method works. In Section 3, the results are discussed, followed by the
conclusions of this work in Section 5.

2. Materials and Methods
2.1. Data Acquisition

For data acquisition, we conducted a driving simulator study with 50 participants
(28 female, 22 male). The sample had a mean (M) age of 25.9 years (standard deviation
(SD) = 4.7) and consisted of car drivers with a valid driver’s license, but without prior
experience with autonomous driving. After an extensive explanation of the experimental
procedure, all participants gave written informed consent prior to study conduct. Upon
study completion, they received a monetary compensation.

All participants experienced two simulated autonomous rides: a short familiarization
ride and a diversified test ride along a 7 km long, mainly urban, test track. The test track
included sections with low traffic density, which only required driving straight ahead,
as well as complex scenarios with high traffic density, which required additional driving
maneuvers. These complex scenarios included two lane changes to the oncoming lane
to bypass obstacles on the own lane as well as two approaches to traffic-light controlled
intersections based on a Green Light Optimized Speed Advisory (GLOSA) system, which
could result in seemingly unintuitive (yet safe) maneuvers (e.g., approaching a red traffic
light without braking, since it would turn green at the time of arrival). The data presented
in this paper originate from the test ride. Both rides took place in a fixed-base driving
simulator (see Figure 1), which consisted of a fully equipped vehicle interior, a projector-
based 180◦ horizontal field of view extended by a rear-view mirror and two side mirrors,
and the SILAB 5.1 simulation environment. Participants experienced both rides from the
passenger seat of the driving simulator in order to gain a more realistic impression of
autonomous driving.
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Tracking Glasses 2 (left), and handset control [8] (left and right).

For the real-time assessment of discomfort during driving, we applied a manual input
device for continuous self-report, which served as ground truth for data modelling, as
well as a sensor set-up, which gathered potential discomfort features (see Figure 1). The
manual input device was a professional handset control (ACD pro 10) with a corresponding
continuous response scale ranging from 0 (comfortable) to 100 (uncomfortable) (see [10]
for details on this method). During driving, participants pressed the lever of the handset
control depending on the extent of their currently perceived discomfort. Stronger pressing
of the lever, which lead to higher values on the response scale, indicated higher discomfort.
Participants practiced using the handset control during the familiarization drive. The
sensor set-up included the driving simulator for parameters of the driving environment
and the autonomous driving behavior, a Microsoft Band 2 for physiological parameters
(Blood volume pulse, BVP) and the SMI Eye Tracking Glasses 2 for gaze parameters and
pupil dilation data.
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Driving simulator data including handset control data was recorded with a frequency
of 60 Hz. Using independent data loggers each, MS Band 2 data was recorded with a
frequency of 10 Hz and eye tracking data was recorded with a frequency of 60 Hz. All data
loggers were continuously synchronized during a study conduct based on the network
time protocol. After recording, we synchronized all sensor data in a PostgreSQL data
storage and analysis framework (see [11] for details) by adding the data of all sensors to
the corresponding timestamps of the driving simulator data.

After data processing, the data set consists of 745,931 samples, each with 26 con-
textual features (CF) and 8 passenger state features (PF). The CF contain vehicle sensor
measurements, for example the velocity and lane position of the ego vehicle (the vehicle
the participant sits in) and the distances and velocities of other vehicles in the vicinity of
the ego vehicle. The PF contain the before-mentioned eye gaze and heart rate data and the
respective processed data, which will be covered in the following chapter.

2.2. Passenger Data Processing

Processing of BVP data: The MSBand 2 automatically provides the interval between
two successive pulses at every pulse (interbeat interval, IBI), which we used for calculating
features regarding heart rate and heart rate variability. In order to reduce the number of
artefacts in the data, all IBI values below 400 or above 1500 ms were removed from the data.
In addition, IBI values were removed if the jump of the heart rate calculated from the IBI
between two successive beats is greater than corresponding to 30 beats per minute [12,13].
From the cleaned IBI time series, we then calculated the heart rate mean, SD, and slope in
rolling windows of 10 s. In addition, as indicator for the heart rate variability (HRV), the
root mean square of successive differences (RMSSD) between the IBIs (e.g., see [14]) was
calculated for windows of 10 s length.

Processing of eye tracking data: The eye tracker provides raw pupil diameter values
for the left and right eye. As recommended in the literature, pupil data were preprocessed
including removal of implausible values (below 1.5 mm and above 9 mm), elimination of
dilation speed artefacts, and trendline deviation outliers [15]. The data for both eyes was
averaged to obtain one data stream for pupil dilation. Mean and standard deviation of
pupil diameter data were calculated for windows of 10 s length. In addition, SD of gaze
vector in x, y, and z components were calculated for the same window length.

2.3. Contextual Data Clustering

A vehicle always drives within a certain traffic context, i.e., a collection of environmen-
tal features that are measured and processed by the vehicle. In this work, we will further
refer to this traffic context simply as context. The context is important for discomfort
prediction, since there are certain contexts that will more likely result in high discomfort,
e.g., overtaking. When driving autonomously, we assume the vehicle knows the context
it is into a certain degree. For example, the context “overtaking” should be known to the
vehicle, since it is the actor that initiated the maneuver. Other works (e.g., [16,17]) also
discussed clustering approaches that could be used to derive meaningful contexts with
regards to discomfort. Therefore, we assume that such time series data collected by the
autonomous vehicle can be split into contexts.

Every context has some unique properties within its sensory time series data, which
separate this context from others. For example, all overtaking maneuvers consist of a
lane change, high relative speeds, and some obstacle that is overtaken. These factors
are recorded by sensors and give a certain “fingerprint” to a context. Training a regres-
sion model for each clustered context to classify the discomfort of the passenger has the
following advantages: each model has to explain fewer complex relationships between
context and discomfort, which increases performance and also makes model explanation
methods more precise and applicable. This clustering of data into contexts allows to create
a so-called ‘mixture of experts’ (MoE), popularized by Jacobs et al. [18]. The idea is to
create multiple simple models that only operate within a certain contextual scope.
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In this work, we considered two of those scopes, the overtaking maneuver and the
GLOSA scenario. For one of our model approaches (all approaches are covered in Section 3.2),
we split the data into three parts. The first part only contained observations from when
an overtaking maneuver occurs, the second part contained observations from GLOSA sce-
narios and the third part the rest of the data. This way and using the ‘mixture of experts’
approach from Jacobs at al., we trained situation-specific models on the overtaking and
GLOSA data. Additionally, we used the SHAP method on these models to analyze the specific
model explanations.

2.4. Data Modelling and SHAP Method

Every time-step of the recorded data serves as a single observation, which is the input
for our prediction model. The handset control value is the prediction target yi for each
observation i. The recorded data was split into test and train sets by randomly splitting
observations with 70% being in the train set and 30% in the test set.

For prediction, we used linear models with L2 regularization (Ridge regression),
because they are fast and easy to interpret. We believe that simple models like linear models
are capable of the prediction task, because humans will likely not classify a situation as
uncomfortable after calculating complex, non-linear feature relations, but by applying
simple heuristics and relations considering their environment. The model output is the
predicted discomfort y′i for each observation i.

To determine our model performance, we used the coefficient of determination R2. It
is defined as

R2 = 1− u/q,

with u being the residual sum of squares

u = ∑
i

(
yi − y′i

)2

and q being the total sum of squares with ŷ being the mean of y

q = ∑
i
(yi − ŷ)2.

R2 will be 0 for a baseline model that only predicts the mean of the observed data,
negative if a model is worse than the baseline model, and 1 if the model perfectly predicts
the target data.

One of the previously mentioned explanation methods is the SHAP (SHapley Addi-
tive exPlanations) method by Scott Lundberg [9]. This method calculates an importance
measure for each input feature and prediction made by the prediction model. These mea-
sures originate from the game theoretic approach of credit assignment and thus can be
interpreted as an explanation of the prediction. In the SHAP approach, each model always
has an expected output over the data set. For each observation, every feature fn has a
certain impact on the model output that moves the output away from the expected value.
An illustration is shown in Figure 2 (top). These impacts are called SHAP values and
every feature has a SHAP value for every prediction made by the model and is therefore
called local. The impact of features over multiple predictions is often displayed as a SHAP
summary plot (Figure 2, bottom), where one point represents the local SHAP value for
a single prediction (x-axis) and the color gives additional information over the feature
value, allowing to interpret correlations between feature distribution and feature impact.
Averaging the absolute SHAP values of one feature over all predictions gives a global
feature importance, where the feature with the highest value is the most impactful in the
model. This rating is also used as the ranking in the SHAP summary plot, with the topmost
feature being the most important overall.
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Figure 2. Example SHAP value representation for one prediction (top) and SHAP summary plot
for multiple predictions (bottom) with features f1, . . . , fn. The summary plot only shows the top
4 features.

The calculation of the SHAP values is very complex and would exceed the scope
of this paper. Simplified, the SHAP method compares the output of a given model and
input vector with feature fn present and with fn missing. The change of the output with fn
missing is a measure about the importance and the direction of influence of the feature to
the model. This is applied for all features in different combinations to remove inter-feature
correlations. SHAP values also contain important game theoretic ground truths, defined
by Lloyd S. Shapley, that guarantee an exact calculation of these feature importances. For a
deeper explanation we recommend to read the work from S. Lundberg [9].

The locality of the SHAP model has the important advantage that specific situations
can be explained, e.g., SHAP values of a single overtaking maneuver can be used to explain
why a passenger felt uncomfortable in exactly this maneuver. We will use this method to
analyze the features’ impacts on the passenger’s discomfort for different model approaches.

3. Results
3.1. Handset Control Data

For an overview of the discomfort experienced by passengers during the autonomous
test ride, Figure 3 displays handset control data of all 50 participants along the course of
the test track.
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The pattern of this data illustrates two characteristics of passengers’ discomfort expe-
rience in autonomous driving. First, perceived discomfort depends on the driving scenario.
Thus, handset control data of most participants clearly peak at the same points along the
test track. All of these shared peaks occur during complex scenarios, such as obstacles
on the road or intersections. These scenarios are characterized by high traffic density
and the necessity for driving maneuvers in close proximity to other road users, such as
changing lanes or braking in convoy in front of a red traffic light. In contrast, only very
low discomfort values indicated by only few participants are observable for less complex
scenarios with low traffic density and no necessity of driving maneuvers other than driving
straight ahead. Therefore, complex driving scenarios contain a comparably high likelihood
of passenger discomfort in autonomous driving (cf. [19,20]). Second, perceived discomfort
differs between individuals. Thus, the handset control values of the individual partici-
pants scatter visibly around the shared basic pattern. These interindividual differences
relate to the driving scenario (i.e., which situations are perceived as uncomfortable?), the
beginning and end of the discomfort experience (i.e., how long before approaching/after
leaving such a situation does discomfort emerge/remain?), and the extent of discomfort
(i.e.,: How uncomfortable was the situation?). It is likely that these individual differences
in experiencing discomfort during autonomous driving can be attributed to passenger
characteristics such as system experience, driving experience, or personality factors (cf. [2]).
In summary, these results strongly suggest that modelling approaches need to include data
of the driving context as well as passenger-related data that allow to distinguish between
different passengers (e.g., physiological and behavioral parameters) for a reliable real-time
detection of individual passengers’ discomfort during autonomous driving.

As exemplary driving scenarios with a high potential for passenger discomfort, mod-
elling was focused on the overtaking scenarios (see Figure 3: around 0.8 and km 3.2)
and the GLOSA scenarios (see Figure 3: around km 2.0 and km 2.5) (see Section 2.1 for
scenario descriptions). Figure 4 provides an overview of the averaged discomfort values
indicated during these scenarios per participant. In comparison, the bypassing scenarios
were perceived as even more uncomfortable than the GLOSA scenarios.
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Figure 4. Histograms of the mean reported discomfort from all participants over the overtaking (left)
and GLOSA (right) scenario.

3.2. User State Modelling Approaches

As shown in the previous section, the discomfort responses of the participants varied
greatly across all scenarios. In this section, we investigate how different approaches for
model training affect the overall performance of predicting passenger discomfort. Our
three approaches are: (1) general model: training one model for the whole data set (all
participants and all situations), (2) passenger models: training a separate model for each
participant (one participant each, all situations) and (3) situational passenger models:
training a separate model for each participant and each situation, which was carried out on
the examples of the overtaking and GLOSA scenarios. To determine the importance of the
passenger features and the accompanying sensory requirements, all of these approaches
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were done respectively using only PF, only CF and both feature sets. For modelling, we
scaled the reported discomfort values from range (0, 100) to range (0, 1).

The resulting R2 scores of the three approaches are displayed in Figure 5. The first
approach, training one model for the whole data set (general model), yields the worst
score. Even with PF and CF used, the score of the model is below 0.2. This shows that one
model cannot accurately describe the relationships between features and discomfort of
all participants.
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Figure 5. Comparison of model approaches. Averaged R2 scores over model approach. For each
model approach, three feature sets are evaluated (passenger features (PF), contextual features (CF),
and PF + CF). Error bars show the SD of the average score over models. The general model has no
error bars, because it is only one model for each feature set and thus does not require averaging.

Therefore, the second approach (passenger models) is more suitable for predicting
passenger discomfort. Since one model is trained here for each participant (‘participant
models’), each model can focus on the participants’ individual discomfort responses to the
environment and more accurately describe the relationships between features and reported
discomfort. Because multiple models are trained in this approach, Figure 5 now displays
the average score all of these models, with the respective SD as error bar. As displayed, the
performance of these models reaches 0.51 ± 0.09 in the best case (using PF and CF).

Our third approach uses additional knowledge that can originate from the AV, namely
the current contextual situation, and uses it to create situation-specific passenger models
as explained in Section 2.3. The idea is to create multiple simple models that only operate
within a certain contextual scope. This approach increases performance because each
model has to consider only contextualized feature–target-relationships. In Figure 5, the
scores are displayed, averaged over both scopes and all participants. As shown, the
performance increases to a score of up to 0.72 ± 0.14 using PF and CF. This absolute
score cannot be compared directly to the scores of the other two approaches, because
only a subset of data is modelled. However, the full data set would be predicted by
using the model from approach 2, when no overtaking maneuver or GLOSA situation
is given, and the situational passenger model approach, when these situations occur.
This way, the overall score would lay between the two approaches, depending on how
often these situations occur. Besides the performance increase, the situational passenger
models can fit feature–target-relationships, which are specific for their respective scenario,
without needing to adhere to all other scenarios. These specific relations can be used for
explainability, which will be more precise than the more general models. Using the SHAP
method, we will subsequently analyze the different relationships between discomfort and
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features calculated by the situational passenger models in comparison to the personal
model approach, and will cover the topic of explainability.

As shown with the R2 scores, models that work purely with CF do not perform
well, since the discomfort values indicated by different participants vary greatly across
contextually similar situations. Thus, the addition of passenger features and the approach of
training one model per participant increases performance through the usage of participants’
individual feature responses instead of the average response over all participants.

Figure 6 illustrates these improvements for a section of the time series data of one
overtaking scenario for three participants. From left to right, the examples show an
increasingly larger difference between CF and CF + PF, i.e., on the left is only a very minor
improvement noticeable, on the right a larger one. In all three cases, the CF model predicts
the situations of discomfort with less precision than the model using CF + PF. It predicts
discomfort with less temporal accuracy, i.e., the discomfort value is higher for times where
no discomfort was reported and also does not predict the reported discomfort magnitude
as precise as the CF + PF model.

Vehicles 2021, 3, FOR PEER REVIEW 9 
 

 

cannot be compared directly to the scores of the other two approaches, because only a 

subset of data is modelled. However, the full data set would be predicted by using the 

model from approach 2, when no overtaking maneuver or GLOSA situation is given, and 

the situational passenger model approach, when these situations occur. This way, the 

overall score would lay between the two approaches, depending on how often these situ-

ations occur. Besides the performance increase, the situational passenger models can fit 

feature–target-relationships, which are specific for their respective scenario, without 

needing to adhere to all other scenarios. These specific relations can be used for explaina-

bility, which will be more precise than the more general models. Using the SHAP method, 

we will subsequently analyze the different relationships between discomfort and features 

calculated by the situational passenger models in comparison to the personal model ap-

proach, and will cover the topic of explainability. 

As shown with the 𝑅2 scores, models that work purely with CF do not perform well, 

since the discomfort values indicated by different participants vary greatly across contex-

tually similar situations. Thus, the addition of passenger features and the approach of 

training one model per participant increases performance through the usage of partici-

pants’ individual feature responses instead of the average response over all participants. 

Figure 6 illustrates these improvements for a section of the time series data of one 

overtaking scenario for three participants. From left to right, the examples show an in-

creasingly larger difference between CF and CF + PF, i.e., on the left is only a very minor 

improvement noticeable, on the right a larger one. In all three cases, the CF model predicts 

the situations of discomfort with less precision than the model using CF + PF. It predicts 

discomfort with less temporal accuracy, i.e., the discomfort value is higher for times where 

no discomfort was reported and also does not predict the reported discomfort magnitude 

as precise as the CF + PF model. 

 

Figure 6. Three examples of discomfort over time. Each plot displays 3 discomfort values for one 

participant and for the same overtaking scenario. The discomfort values are the self-reported dis-

comfort (labelled as target), the situational passenger model’s predictions only using CF, and the 

situational passenger model’s prediction using CF + PF. The time is relative to the beginning of the 

overtaking maneuver. 

3.3. Model Explanation 

As mentioned, the situational passenger model approach leads to more specific mod-

elling and thus to better explainability. We now use the SHAP method to analyze how the 

features influence the prediction and how this influence varies across the general model 

and the situational passenger model approach. For this purpose, we use the SHAP sum-

mary plot explained in Section 2. For the situational passenger model approach, we 

pooled together all SHAP values from all participants, since we have 50 models to be 

Figure 6. Three examples of discomfort over time. Each plot displays 3 discomfort values for
one participant and for the same overtaking scenario. The discomfort values are the self-reported
discomfort (labelled as target), the situational passenger model’s predictions only using CF, and the
situational passenger model’s prediction using CF + PF. The time is relative to the beginning of the
overtaking maneuver.

3.3. Model Explanation

As mentioned, the situational passenger model approach leads to more specific mod-
elling and thus to better explainability. We now use the SHAP method to analyze how the
features influence the prediction and how this influence varies across the general model
and the situational passenger model approach. For this purpose, we use the SHAP sum-
mary plot explained in Section 2. For the situational passenger model approach, we pooled
together all SHAP values from all participants, since we have 50 models to be looked at.
This can lead to non-linearly appearing relationships between features and model output,
which are in fact just inter-participant differences of the models.

For this analysis, we use three different model types: the participant models (Figure 7,
first row) and the situational passenger models for overtaking (Figure 7, second row) as
well as GLOSA (Figure 7, third row). For each of these model types we show the SHAP
summary plots with the top 5 contextual features (first column) and the top five passenger
features (second column), according to the SHAP value rating. Next to the feature symbols
are the ranking numbers for the according feature in the combined ranking, i.e., CF + PF.
This ranking is the sum of the according absolute SHAP values for each feature.
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(CF + PF) feature set.

It can be noted that most of the SHAP value distributions have very long tails and are
not normal distributed. This results from the short moments of maneuvers in relation to
the whole study duration where discomfort is reported and the SHAP values being most
relevant in these situations. Thus, most data points over the duration of the ride have
SHAP values close to zero and only a few have extreme values.

To demonstrate how the situational passenger model approach increases explainability
and changes the feature–target relations in contrast to the participant models, we analyze
the situational passenger model SHAP values and the participant models’ SHAP values of
the contextual features. In Figure 7 top row, the SHAP values of the participant models are
shown. The most important feature over all participants is the velocity of the vehicle in
front of the ego vehicle vFront, which increases the discomfort the higher the velocity gets,
for most of the participants. The lateral acceleration aLat is especially important when very
high, as seen on the second rank with the very long tail towards the higher model output
impacts. The following features are the distance to the vehicle behind the ego vehicle
dBack, the velocity of the ego vehicle vEgo, and the throttle of the ego vehicle TEgo. These
variables, although important, do not share a common relationship across all participants;
low values of one feature can impact the model output either positively or negatively.
Overall, in these models which have to take into account data of the whole ride, very
general features, for example speed, lateral acceleration, and distance, the front and back
vehicles are most important.

To show how an expert model changes the feature importance and relationships to
discomfort prediction, the situational passenger models for overtaking are displayed in
the second row. Here, the most important feature is vEgo, which is not only increased from
rank 4 in comparison to the participant models, but now also with a very strong negative
correlation to the model output. When overtaking, low speeds are associated with high
discomfort. An interpretation of this will follow below. The next most important features
are the distance dLe f t and velocity vLe f t to the opposing traffic vehicle on the left lane. This
shows a strong relation to overtaking maneuvers, since the lane crossing into opposing
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traffic is a strong cause for discomfort. These two features do not occur within the top
ranks of the participant models, showing that they are not important enough during the
whole ride. This is understandable, since an overtaking maneuverer typically does not
last long in comparison to the ride duration. The same principle applies to the situational
passenger models for GLOSA scenarios. Here, vEgo is again the most important feature, but
the direction of influence is switched with regards to the overtaking manoeuvre. Also, one
can notice an increase in the importance of features related to the vehicle directly in front of
the ego vehicle, thus now the velocity vFront and the distance dFront are on rank 2 and 4. The
importance of the front vehicle is expected in GLOSA scenarios, since a sudden brake of this
vehicle in response to a red light is a potential hazard. These two examples demonstrate
that different maneuvers and scenarios cannot be captured by general, cross-situational
models, and how expert models select more situation-specific features. Notice that these
explanations occur without putting any more knowledge into the model, but only the
correct contextual data split. Thus, this approach is scalable to large amounts of data and
arbitrary more contexts.

The SHAP method also allows for interpreting the features in regard to the model
impact direction, which proved to be a challenging task, but also gives lots of insights on
how complex further interpretation of sensor data can be. For example, the feature dLe f t
in the overtaking expert model has a positive relation to the model output: The larger
the distance between ego vehicle and the left lane opposing vehicle, the more discomfort
is predicted. This seems unintuitive at first, since one would expect close distances to
induce higher discomfort. However, in the general, in a safely driven overtaking scenario,
a passenger experiences the highest discomfort in the initial stages of the maneuver (when
approaching the obstacle on the own lane), when the oncoming vehicle on the left lane
typically is still far away. At this stage, discomfort is induced by the decreasing distance
to the obstacle on the own lane and the passenger’s uncertainty about whether or not the
automation will initiate the overtaking maneuver in time. In contrast, the distance to the
oncoming traffic on the left lane is the smallest when the obstacle is already safely bypassed
and discomfort is therefore removed, resulting in a statistical association between a small
distance and low discomfort. Another exemplary feature in this model is vEgo. According
to the model, lower speed is associated with higher predicted discomfort. This seems
unintuitive at first, but can again be explained by the discomfort reasons during the initial
stages of this scenario. Thus, the vehicle is reducing speed slightly before initiating the
overtaking process, when passenger discomfort is at its highest point. When the vehicle is at
normal speeds again, the overtaking is already in process, and the passenger’s uncertainty
regarding the obstacle is already dissolved. This is contrary to the GLOSA expert model,
where high levels of vEgo cause high discomfort, which makes sense because the ego
vehicle is moving towards a red light, thus it should slow down to reduce discomfort.
These examples show how difficult an analysis of the impact direction of the features
is. It does not only depend on the scenario and the human response to it, but also can
be complicated by indirect relations between perceived discomfort and certain context
features, which make the automatic modelling using the SHAP method even more useful.

The passenger features also contribute significantly to the model output, although
generally not as much as the contextual features. In the participant models, the SHAP
importance for PF is starting at rank 7 with the pupil diameter Pdiam. Overall, in the PF
data, we observe larger differences in contrast to the CF across the participants: Many PF
have different directions of impact on the models. These differences coupled with the low
amounts of data in the situational passenger models leads to poor quality SHAP results for
situational passenger models for Overtaking and GLOSA. Therefore, we will concentrate
on the participant approach for the PF analysis.

As mentioned, over the whole ride, the pupil diameter is the best passenger-related pre-
dictor for discomfort. Across all participants, the larger the diameter, the more discomfort
was reported, which is consistent with previous statistical analyses of this relationship [3].
Additionally, the next best predictor is the standard deviation of the y component of the
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gaze vector SD(gy). For all participants, the lower this value, the more discomfort was
reported. This suggests the fixation of the eye onto certain objects on the simulator screen.
The next passenger feature is the standard deviation of the heart rate SD(H), although the
high values of both suggest low and high discomfort, which suggests that the participants
heart rate did not react in the same way to discomfort across all participants. A more
detailed data analysis with more data should be conducted to analyze this relationship
more thoroughly. Similarly, the SHAP values of all passenger features in the situational
passenger models are very noisy and do not show a clear direction in their relation to
discomfort. We believe that this is due to the fact that the PF are overall noisier than the CF
and thus need more observations to be fitted correctly.

Overall, the eye-related PF over the whole ride shows a strong, directed relation to
discomfort over all participants, which suggests that an eye tracking device should be
applied to future studies and application context and combined with contextual feature
loggers to enhance the prediction of discomfort.

4. Discussion

The results of our three model approaches show a major improvement from method
one (training one model for all participants) to method two (training one model for each
participant). This, in combination with the results from the SHAP method, suggests to use
the second, passenger-based method in future applications. It allows to train models for
every passenger of a vehicle and to create a learning model for each passenger that adapts
to only that passenger, without being influenced by other humans. In combination with
the used explanation method, this also gains passenger specific insights about possible
driving features that are correlated with the measured uncertainty.

A more detailed explanation would be given by the third method, where models are
trained not only per passenger, but also for a selected number of driving maneuvers. This
however, was problematic in our work, because of the few data that remains after such
specific data splits. Although the performance of the models increased, which is often the
case when modelling less data, the SHAP method showed very poor results, which proves
that the amount of data was too small and we thus could not focus on the results in this
work. However, we still believe this method is promising and it should be investigated
further on a bigger data set in future research. Collecting a data set that is magnitudes
bigger than our training set is not unlikely in practice, since in privately owned cars a
single person can easily accumulate hundreds of driving hours within a few months, and
it should thus be possible to outperform our results in a long-term vehicle usage.

One challenge concerning the measuring of discomfort is the need of sensors that
are often attached to the body of the passengers, hindering them in their mobility and
comfort, and thus reducing the probability of a positive user experience. Therefore, the
high predictor results of the pupil-related sensors are of special interest, since a camera
based measurement approach could work without contact to the passengers and without
hindering their mobility or the need to put something onto their body before driving,
which results in a very practical application scenario.

For data analysis, the SHAP methods proved to be a very promising tool to analyze
the correlations in the data models. However, even when using linear models, some of the
discovered relations were hard to put into context, which showed how difficult further
interpretation and modelling of the results might be. Seemingly easy to interpret features,
for instance the distance to an approaching car, can completely change meaning to the
passenger based on the driving context. Future research is needed in this field to create
models that can fully model and help to understand these relations.

When a sufficient understanding of the feature relations is given, we believe that it
is possible to infer driving style changes from these relations. Using our results from the
SHAP method, each feature can be used individually to improve driving styles and reduce
discomfort. For example, a high lateral acceleration aLat in the passenger models is very
often related with higher values of discomfort, as seen in Figure 7. Thus, it is easy to infer
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that aLat should be reduced. One can also deduce out of the data how much aLat has to be
reduced for every participant by using the SHAP values. We expect the same to be possible
for every feature and for every maneuver if the maneuver models are trained on enough
data. Thus, an automatic and model based driving style adaption specific for every driver
could be implemented in future autonomous vehicles using this method.

5. Conclusions

For this work, we conducted a driving simulator study to investigate human dis-
comfort while driving autonomously through inner city scenarios. We demonstrated that
participants’ discomfort experiences vary greatly across different scenarios, and that one
general model cannot predict discomfort across all scenarios and participants. Thus, we
used two different approaches: training one model for one passenger, and also training
such passenger-specific models for single types of driving scenarios. We found that in com-
parison with a general model, both approaches increased prediction performance greatly.
The latter approach creates multiple expert models which are used only in their respective
scenario, thus even simple linear models are able to make precise predictions. We used
the SHAP method to investigate which features of the environment affected discomfort
the most and how the use of expert models specializes this influence. We found that the
expert models can create better explanations for discomfort, since they only operate on a
specific type of driving scenario. These scenario-specific explanations could be used by the
vehicle to adapt the driving style or in-vehicle information presentation in that scenario
accordingly to reduce passenger discomfort.

We also quantified to which degree the use of passenger state features improves the
model performance of all of our approaches and, using the SHAP method, which of these
features contribute most to the prediction of discomfort. Our analysis demonstrates that
eye tracking data is most important for the models and thus a promising tool to effectively
increase the discomfort prediction performance without obstructing the passenger.

In future research, our approaches may be applied to more diverse simulated scenarios
or to real-world driving studies to enhance the generalizability and external validity of our
results. A study with a real autonomous vehicle would be of special interest to confirm
the possibility of the mixture of expert approach, since the vehicle’s sensory data could be
evaluated for automatic scenario classification.
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