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Abstract: With the fast-paced growth of computational horsepower and its affordability, computational
fluid dynamics (CFD) has been rapidly evolving as a popular and effective tool for aerodynamic design
and analysis in the automotive industry. In the real world, a road vehicle is subject to varying wind
and operating conditions that affect its aerodynamic characteristics, and are difficult to reproduce in a
traditional wind tunnel. CFD has the potential of becoming a cost-effective way of achieving this,
through the application of different boundary conditions. Additionally, one can view wind tunnel
testing, be it a fixed-floor or rolling road tunnel, as a physical simulation of actual on-road driving.
The use of on-road track testing, and static-floor, and rolling-road wind tunnel measurements are
common practices in industry. Subsequently, we investigated the influences of these test conditions
and the related boundary conditions on the predictions of the aerodynamic characteristics of the flow
field around a vehicle using CFD. A detailed full-scale model of Hyundai Veloster with two vehicle
configurations, one with the original and the other with an improved spoiler, were tested using a
commercial CFD code STAR-CCM+ from Siemens. Both vehicle configurations were simulated using
four different test conditions, providing overall eight different sets of simulation settings. The CFD
methodology was validated with experimental data from the Hyundai Aero-acoustic Wind Tunnel
(HAWT), by accurately reproducing the test section with static floor boundary conditions. In order to
investigate the effect of the blockage ratio on the aerodynamic predictions, the vehicle models were
then tested with moving ground plus rotating wheel boundary conditions, using a total of four virtual
wind tunnel configurations, with tunnel solid blockage ratios ranging from 1.25%, which corresponds
to the actual HAWT, to 0.04%, which presents an open air driving condition.
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1. Introduction

As one of the three major source of road vehicle energy losses, besides the power train losses
and vehicle mass [1], aerodynamic drag reduction remains the one of the major focuses of interest
for both race and road vehicle industries over the last few decades. To minimize exhaust emissions,
and improve the fuel efficiency and handling characteristics, automotive manufacture focuses on the
aerodynamic drag reduction starting from the early stages of vehicle design. Wind tunnel testing,
road testing, and CFD simulations are the three common tools used by the industry to evaluate the
aerodynamic performance of a vehicle. However, during the early design and optimization stages,
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road testing cannot be applied, since a complete car has not been manufactured. Thus, manufacturers
can only rely on wind tunnel testing and CFD simulation to improve the design.

Automotive wind tunnels are designed to simulate the on-road vehicle performance with a
physical vehicle model placed in bounded test sections. Wind tunnel test sections are categorized as
closed wall, open jet, slotted wall, and adaptive wall; however, none of these can accurately reproduce
the actual on-road aerodynamic performance of the vehicle [2]. Subsequently, correction factors must
be applied to wind tunnel test results, to account for the restrictions in the testing conditions, such as
the effects of wind tunnel solid blockage and other boundary corrections.

Wind tunnel test section interference effects on ground vehicle aerodynamic testing have been
investigated for decades. Both experimental and numerical studies have sought to quantify and
correct the interference effects on the tested vehicle model caused by differences in the test section
configuration and size. Since closed wall and open jet configurations are the two most commonly
used test section configurations, a vast majority of the research works concentrated primarily on these
two designs.

Studies on the wind tunnel interferences were first reported by Glauert [3] when he introduced a
blockage correction to measurements on aircraft wings and bodies carried out in a closed wall test
section. Cooper [4] and his co-workers pioneered the automotive related studies with his complete
view on “closed-test-section wind tunnel blockage correction for road vehicles”. Later, Mercker and
Wiedemann [5] suggested four other interference effects evident in open jet tunnels, all of which are
related to the changes of static pressure along the streamwise direction in the test section.

Research works on the open jet and closed wall wind tunnels were carried over by Mercker’s team
and others into the new century as well [5,6]. Wickern [7] had his first summary on the application of
automotive wind tunnel corrections, followed by Wickern and Schwartekopp [8], who investigated
the nozzle gradient effects in open jet wind tunnels. Hoffman et al. [9,10] studied the test section
configuration effects on the aerodynamic drag and lift predictions as well, with different vehicle shapes
using the Ford/Sverdrop Drivability Test Facility. Based on experiments carried out using various
vehicle models, Mercker and his co-workers were able to quantify the effects of the static pressure
gradients in wind tunnels [11]. They proposed two-measurement correction methods [12], which are
currently widely used in the industry for aerodynamics prediction corrections for both experiments [13]
and CFD simulations [14,15].

Even though CFD capabilities have greatly been improved with the rapid growth of computational
power, showing much better correlation with wind tunnel measurements, the latter is still considered
the favored reference, due to the real physical models and real air-flow conditions [16]. CFD simulations,
however, can provide a much deeper insight into the flow field interacting with the vehicle [17,18], and
can be a very effective tool during the design optimization process [19]. Researchers have demonstrated
the capabilities of CFD in delivering valuable aerodynamic predictions, and even replicating the wind
tunnel tests with certain mesh resolutions, boundary conditions, and physical modeling. By taking
the Jaguar Land Rover program as an example, Gaylard [20] emphasized that a good combination of
simulation and wind tunnel testing can provide more competitive aerodynamic performance than
relying fully on either methodology. Similarly, Ueno et al. [21] reported a good agreement between
the CFD simulation results and wind tunnel measurements with an error margin of ±5% for their
open-wheel race car study. Most recently, the Hyundai Motor Company used a quarter-scale Genesis
model to investigate the reproduction of wind tunnel tests with CFD simulations [22].

Two major challenges of replicating wind tunnel tests in CFD are, firstly, correctly simulating
the different types of ground configurations in the test section and secondly, the implementation of
the upstream boundary conditions. Many numerical studies have been carried out on these topics
as well. Wickern et al. [23] from AUDI AG studied the boundary layer suction effects on vehicle
drag, and illustrated the importance of a suction or boundary layer control system. Buscariolo and
Mariani [24] investigated the influence of three types of ground, viz. the static floor, elevated plate,
and moving belt, using a small pickup truck model in 2D simulations. Hennig et al. [25] used CFD to
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evaluate measurement interference effects of various Rolling Road Systems (RRS), which include single
belt, 3-belt, 5-belt, and T-belt systems. Most recently, Meederira et al. [26] presented CFD analyses
characterizing the wake flow structures past an isolated wheel and its interaction with a 5-belt moving
ground plane (MVP).

Simulating the rolling-road system requires accurate modeling of the wheel rotation as well.
In fact, the drag results coming from the configuration with only moving ground and no wheel
rotation are higher, when compared to the static floor and fixed-wheel conditions; with both moving
ground and wheel rotation active, the drag prediction will be lower [27]. The effects of the moving
ground plane (MVP) and rotating wheel (RW) systems have been studied both experimentally and
computationally during the last two decades. Research in this area covered isolated wheels, to cite
but a few [26,28], and vehicle models with both simplified wheels [29] and detailed wheels [27,30].
More recently, several CFD works [27,31,32] have focused on investigating the MVG-RW influence
on vehicle aerodynamic predictions using PowerFLOW, a Lattice Boltzmann based CFD approach.
In these studies, different wheel rotation methods were applied, which include rotating boundary
conditions, moving reference frames (MRF), and sliding mesh.

Although a significant number of works have been published concerning CFD and wind tunnel
correlations [33–40], very few of these studies investigated the comparison among wind tunnel tests
with both static floor, rolling-road, and track testing from a numerical investigation point of view.
A numerical comparison between different wind tunnel test sections, viz. open jet, slotted wall,
and adaptive wall and a blockage free tunnel, was presented by Connor et al. [41]. The blockage
free domain was designed to simulate conditions equivalent to the road testing. All the simulations
were run with the rolling-road system. Moreover, the focuses on the interference effect of open jet
test sections suggested that having different vehicle models or mounting the same model at different
longitudinal locations caused pressure gradient and wake changes. Not many researchers investigated
the influence of the test section volume on the prediction results, since the open jet test section itself is
less sensitive to the blockage effects compared to the closed wall section.

In the present study, a detailed full-scale model of Hyundai Veloster was tested using CFD
under both wind tunnel and interference free conditions. The simulations were validated using the
experimental results from the Hyundai Aero-acoustic Wind Tunnel (HAWT) in Namyang, South Korea.
Both static floor with fixed wheels and moving ground with rotating wheels were modeled in both
domains to evaluate ground simulation effects. To capture the open jet test section interference effects
on the vehicle model, the virtual test section was scaled up by 225% and 400% of the original CAD
(Computer-Aided Design) model. The static pressure distribution for each scale was studied in the
streamwise direction. Changes of the vehicle drag coefficient caused by different pressure gradients
were indicated and explained. In addition, a modified rear spoiler was designed during the study
and its performance is assessed against the baseline vehicle model using wind tunnels with MVP and
no-MVP. As a matter of fact, the discrepancy observed between the CFD and HAWT wind tunnel
predicted performance gain is the primary reason of undertaking the studies presented in this paper.

2. Wind Tunnels and Boundary Conditions

Two types of computational domains were modeled in the study, with both static and moving
floor cases in each model. Firstly, the Hyundai Aero-acoustic Wind Tunnel (HAWT) at Namyang
Technical Center was simulated by accurately reproducing its three-quarter semi-open jet test section,
using information available in the literature. The purpose of reproducing HAWT is to validate the
CFD methodology with the static floor test data from that tunnel. The blockage effect of the open
jet test section was evaluated by scaling the wind tunnel model in width and height to 1.5 and
2.0 times its original dimensions, but keeping the same length, which resulted in 225% and 400% of
the actual HAWT test section in volume, respectively. Secondly, for the road-testing simulations, a
nearly interference-free domain (blockage ratio of 0.04%) was built to eliminate the blockage effect,
where the CFD predictions are more comparable to the real vehicle performance. As mentioned
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before, two spoiler geometries were tested in all four domains, and the results will be discussed in the
following sections.

2.1. Hyundai Aero-Acoustic Wind Tunnel (HAWT) Model

The Hyundai Aero-acoustic Wind Tunnel, HAWT for short, is a full-scale, closed circuit, open jet
working-section wind tunnel designed for carrying out aerodynamic, aero-acoustic, and engine cooling
related tests [42]. HAWT has a test section 25.5 m long, 17.7 m wide, 9.65 m high, and a nozzle outlet
measuring 28 m2; this corresponds to a wind tunnel solid blockage ratio of 1.25% for the tested vehicle
model, 2014 Hyundai Veloster. Interested readers are referred to Kim et al. [42] for more details of the
HAWT design methodologies, layout, instrumentations, flow controls, and visuals, which includes
photographs of the critical sections and top and side views of the test section. A CAD model of the
HAWT tunnel was created using the information available in [42], and is shown in Figure 1. This CAD
model includes a simplified flow inlet, an outlet diffuser, and a moving-belt system under the vehicle.
The nozzle contraction for the inlet was not included in the model, because it has little impact on the
flow in the test section [15,43].
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Figure 1. Computational fluid dynamics (CFD) representation of the Hyundai Aero-Acoustic Wind
Tunnel (HAWT) test section, drawn using the geometry details given in Kim et al. [42].

In order to investigate the effects of the test section volume on the prediction of aerodynamic
characteristics of the test vehicle, the computational test section was inflated in horizontal (Y) and
vertical (Z) directions to reach expanded test section volumes, which are 225% and 400% of the actual
test section volume. Figure 2 represents top and side views of the scaled-up test sections. These
two inflations of the test section in vertical and spanwise directions resulted in the wind tunnel solid
blockage ratios of 0.56% and 0.30%, respectively, for the tested vehicle.
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Figure 2. Top and side views of the computational domain used for various blockage ratios, based on
the HAWT baseline tunnel, as used by Kim et al. [42].

2.2. Blockage-Free Domain

The blockage free domain, which is a rectangular box, has a negligible blockage ratio of 0.04%;
therefore, the model can be considered as placed in free air simulating road testing conditions for the
vehicle. The domain extends 12-car length (50 m) in X, 21-car lengths (90 m) in Y, and 10.5-car lengths
(45 m) in Z, as shown in Figure 3. The boundary conditions on the ground plane of this free air tunnel
is the same as the MVP version of the HAWT tunnel. That is an area on the floor around the vehicle is
designated as a moving ground, which has a no-slip boundary condition with a tangential velocity
equal to the free-stream velocity assigned to it, while the rest of the ground plane is treated as slip-wall
for computational efficiency. The two side walls and the roof of the domain were also set to as slip
walls, to avoid any possible effects from the growth of boundary layers over these boundaries.
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2.3. Spoiler Geometries

One purpose of this study is to verify the performance increase of the redesigned spoiler in
terms of drag reduction, compared to the original spoiler. In order to reduce the vehicle drag and lift,
the redesigned spoiler was extended by 29 mm in chord length (Figure 4), and featured a smoother
trailing edge. The new spoiler also features a smoother transition from the roof, to positively impact
the flow resistance at that point, as shown in Figure 5.
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Both spoilers were tested in the HAWT test section and free air environment, with both static and
moving floor boundary conditions. The comparisons showed a consistent improvement for the drag
with the redesigned spoiler.

3. Numerical Setup

3.1. HAWT Model

The CFD model was meshed using the trimmer mesh; prism layer mesh was activated to better
capture the boundary layers along the no-slip boundaries. As seen in Figure 6, higher mesh density
was applied to the regions surrounding the vehicle and its wake, to capture the areas of high flow
gradients. The underbody mesh was sufficiently refined to capture the ground effect. The shear layer
development and the possible flow recirculation at the nozzle exit were also accounted for with a
relatively dense mesh. The total cell number for the HAWT model configuration with the full-scale
Veloster was about 70 million.
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3.3. Spoiler Mesh

As a more accurate prediction of the spoiler performance was critical to this study, the flow
surrounding the spoiler needed to be predicted with a sufficient level of accuracy. As such, the region
surrounding the spoiler was resolved, with a very fine mesh of 6 mm to minimize the numerical error
accumulation; our preliminary studies showed that going below this mesh size does not affect the
results at all. This mesh scheme for the spoiler is shown in Figure 8.
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3.4. Initial and Boundary Conditions

A velocity inlet boundary condition was applied to the domain upstream with a constant
uniformed incoming flow of 31.293 m/s or 70 mph and a turbulence intensity of 0.5% to match the wind
tunnel test conditions. A pressure outlet boundary condition is used at the domain outlet. The moving
ground effect was achieved by applying a tangential velocity, the same as the air speed, to the no-slip
floor patch under the vehicle. The tire rotation in this case was simulated by a constant tire rotation rate.

3.5. Turbulence Model

The simulations were carried out using a commercial CFD code, STAR-CCM+ by Siemens, using
a steady-state Reynolds-Averaged Navier-Stokes (RANS) solver. The two turbulence models tested
during the study which include the Realizable k − ε (RKE) [44] and Shear Stress Transport k − ω
(SST) [45] models. The k− ε turbulence model solves for the turbulent kinetic energy (k) and kinetic



Vehicles 2020, 2 326

energy dissipation rate (ε). The RKE model is an improvement over the standard k − ε model, as it
features a different formulation for the turbulence viscosity, and a new transport equation for the
dissipation rate. Instead of a constant Cµ, the RKE model uses a variable Cµ to make the model to be
more compatible. The existing literature suggests that the SST model predicts both free-stream flows
and boundary layers all the way down to the viscous sub-layer with good accuracy; however, it usually
predicts larger turbulence levels when compared to the the k− ε model.

Preliminary investigations with the models show that he RKE and SST models over-predicted
the vehicle drag coefficient by 10 and 22 counts, respectively, compared to the test data from HAWT.
This small three to five percent over-prediction of drag may come from two reasons. Firstly, our CFD
replication of the HAWT may not be exact, and we might have missed some flow control of the
HAWT. Secondly, the RANS simulations of the unsteady flow around a vehicle are far from perfect.
In consideration of these two facts, the CFD results seems to be well within the acceptable level of
accuracy, which adds a reasonable confidence in the of the CFD results presented in this paper. Since
the RKE results better correlate with the wind tunnel data, with less than 3% of difference in drag
prediction, it was chosen as the turbulence model for further investigations.

The transport equations for turbulent kinetic energy k, and the dissipation rate ε, for the RKE
model are given by
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√
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the mean rate of train tensor.

3.6. Solver and Convergence

The simulations were carried out with a segregated solver. A 2nd order discretization was used
for the source and diffusion terms, and a 2nd order upwind scheme for the convection terms of the
momentum equations. Each simulation took 4000 iterations to converge. The oscillations of drag and
lift coefficient values of the vehicle were within 0.5% during the last 1000 iterations, and the reported
mean drag coefficient CD and lift coefficient CL were calculated by averaging the values over last
500 iterations.

4. Results and Discussion

Several cross-sections were created around the vehicle to analyze the flow-filed around it which
are shown in Figure 9. To facilitate the subsequent discussion these cross sections are labels with
numbers 1–7, the list below shows the location and plane-type of each of these sections.

1. XZ-plane along the vehicle center line at Y = 0;
2. XZ-plane through the right-tire center at Y = 0.78 m;
3. XY-plane thru the spoiler at Z = 1.17 m;
4. XY-plane near the ground at Z = 0.05 m;
5. YZ-plane at the rear fascia at X = 3.4 m, wake cross-Section 1;
6. YZ-plane at X = 3.6 m, wake cross-Section 2;
7. XY-plane observing jet expansion at Z = 0.47 m.
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4.1. Wind Tunnel Boundary Interference Effects

The simulation results of the detailed full-scale model of Veloster was validated in the virtual
HAWT test section with the test data from HAWT. Table 2 shows the CFD and wind tunnel correlation
results. HAWT data are proprietary and confidential. As such, all results presented in this paper
were normalized by an arbitrary frontal area, to match the drag coefficients seen in open domain
published resources.

Table 2. Tabulated values of drag coefficient CD.

CD Original Spoiler Improved Spoiler ∆CD

Wind-tunnel 0.328 0.326 0.002
CFD 0.338 0.336 0.002

The discrepancies between the CFD prediction and wind tunnel result are consistent for both
spoilers. If the reported drag coefficient value from wind tunnel is the measured data without
any interference correction, the numerical model over-predicted the vehicle drag by 3% (10 counts);
however, because of the lack of details about the HAWT test procedure, the authors cannot guarantee
if the reported data had been corrected. Despite that, an attempt has been made to correct the CFD
predicted drag value thus obtained using a simplified wind tunnel interference correction procedure.
An interested reader is referred to a recent publication by Cooper et al. [46], for details of why boundary
corrections are a standard practice for the open-jet wind tunnel testing of automobiles.

The current literature is rich with various methods proposed for wind tunnel interference effect
corrections. Some of these procedures are rather simple, and some are very sophisticated and require
multi-point measurements. This paper attempts to apply wind tunnel interference corrections to the
uncorrected CFD data, using one of these simple methods, as outlined below.

The correction methodology used in this paper is a twostep process. This process starts with
first applying the solid blockage correction to the uncorrected CD measurements to account for wind
tunnel test section solid blockage restriction. The next step is to apply the buoyancy corrections to
this first = order corrected drag to account for the higher-order wall interference induced variation of
pressure gradient along the vehicle centerline.

Per Katz [2], one of the simplest solid blockage corrections can be formulated as:

CdB = Cdu
1(

1 + 1
4 ·

A
C

)2 , (5)

where Cdu is the uncorrected drag coefficient, CdB is the corrected CD after blockage correction, A is the
model front area, and C is the cross-sectional area of the open jet test section. The correction method
proposed by Mercker and his co-workers [11,12] was then applied to the solid-blockage corrected
drag coefficient CdB. This procedure, as outlined below, corrects measurement errors induced due to
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the wake distortion caused by the pressure gradient over the vehicle wake [12]. The corrected drag
coefficient (Cdc), after considering of the wake distortion and horizontal buoyancy corrections, can be
written as:

Cdc =

[
CdB −

(
±∆CpD

)]
n

(6)

∆CpD = ∆CpW + ∆CDHB (7)

∆CpW = CPwc −CPmb (8)

where n = qc/qu is the dynamic pressure correction factor, ∆CDHB is the horizontal buoyancy correction
term, qc denotes the corrected dynamic pressure of the wind tunnel stream, and qu is the measured
dynamic pressure, CPmb and CPwc are the pressure coefficients in the empty tunnel at the base of the
vehicle model and at the location of wake closure, respectively.

∆CDHB = G
(
Vm

/
S f

)(dCp

dx

)
(9)

where Vm is the model volume and
dCp
dx denotes the static pressure gradient. The Glauert factor [47] G

is defined as:
G =

(
1 + 0.4

t
L

)
(10)

where L is the model length, and the model thickness t is given by t = 2
√

2S f
π , where S f is model

frontal area. An interested reader is referred to Mercker et al. [12] for further details.
When the corrections detailed above are applied to the CFD calculations, the corrected CFD

predicted Cd of the original spoiler case becomes 0.329, which shows only 0.5% discrepancy when
compared to the wind tunnel data. Without further verification from the experiment, it is hard to claim
that the CFD predicted the vehicle drag accurately; however, the fact that the CFD result is close to the
corrected wind tunnel test data gives some confidence in the numerical settings for the CFD model.

4.2. Static and Moving Ground Effects

The static and moving ground planes in the wind tunnel were simulated in CFD using two
different boundary conditions. For fixed ground and fixed wheels (FG&FW) simulations, the physics
conditions for tires, wheels, and ground were set to be static walls. Denser prism layers were applied
to the frictional ground to capture the boundary layer development, similar to [26].

For the moving ground and rotating wheels (MVG&RW) simulations, two common methods of
wheel rotation are (1) moving reference frame (MRF) and (2) local rotation rate. To avoid numerical
artifacts arising from the geometry complexity near the wheels, a local rotation rate boundary condition
was applied to all rotating boundaries, including the tires, wheel frames, wheel hubs, and brake rotors.
Since the four wheels of the Hyundai Veloster model have the same radius, they were all set to a
rotation rate of 100.1 rad/s. A moving-ground boundary condition was also applied to the no-slip floor
at the same speed of the incoming flow (70 mph or 31.393 m/s).

A comparison between the drag coefficients obtained from the static and moving floor CFD
simulations, with the vehicle model placed inside HAWT, can be seen in Table 3. For both the original
and improved spoiler cases, the delta CD between the static floor and moving ground simulations
is 5 counts. In other words, the moving ground boundary condition simply translated the Veloster
performance line vertically down by 5 counts. This trend agrees with the work done by Waschle [48]
on the influence of rotating wheels on the vehicle’s aerodynamics characteristics obtained using a
detailed Mercedes E class model, where a reduction of 12 counts of drag was reported when changing
from static to moving ground. Waschle [48] stated that the change in drag due to the rotating wheels
and moving ground is mainly caused by the change of underbody flow and rear tire wakes.
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Table 3. Drag coefficient values obtained from the static and moving ground plane CFD simulations
with the vehicle model placed inside the HAWT.

HAWT (CD) Original Spoiler Improved Spoiler

Static Floor 0.338 0.336
Moving Floor 0.333 0.331

∆CD 0.005 0.005

Figure 10 compares the streamwise mean velocity on a Z-plane at Z = 0.05 (plane 4) obtained
from the static floor and moving ground CFD simulations with the vehicle model placed inside the
HAWT. The velocity contours show a marked difference between the cases in the wake region behind
the tires. For the static floor case, both front and rear tires generated much stronger wakes compared
to the moving ground case, especially for the rear tires. This is in line with the findings of Waschle [48],
and is the main reason why the static floor CFD simulations show a higher drag for the same vehicle
configuration. The change in the front tire wakes can be identified more clearly on the side view
analysis, as shown in Figure 11. It is noticeable that the wake has a shorter streamwise extent for the
moving ground case.
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Figure 10. Streamwise mean velocity on a Z-plane at Z = 0.05 (plane 4) for static floor vs. moving
ground with vehicle placed inside HAWT.

A similar phenomenon was observed too in the CFD simulations with the vehicle model placed
in the blockage free domain, labelled as the free air environment, as presented in Figures 12 and 13.
The rotating tires and moving ground significantly reduced the wake behind the tires (Figure 12),
which indicates higher velocity flow under the vehicle. From the side view of the velocity magnitude
scalar image in Figure 13, the increase of velocity is obvious with the expansion of high velocity
contour area. The change of the velocity profile under the car also leads to a lift change, the MVG&RW
system in the simulations caused a decrease in vehicle lift for both domains. Table 4 presents the drag
and lift coefficient delta between the static and moving ground boundary condition cases; the data
presented correspond to the vehicle model with the original spoiler mounted. Although no reported lift
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coefficient values were available from the wind-tunnel test to validate the lift prediction, the reduction
in lift for the free air case is close to what Waschle [48] has reported in his work.
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Figure 13. Velocity magnitude for the static floor and moving belt cases with the vehicle in free air
environment; the Y-plane is taken through the right-tire center at Y = 0.78 (plane 2).

Table 4. Influence of moving ground and rotating wheels on drag and lift coefficients.

HAWT CD CL

Static Floor 0.338 0.157
Moving Floor 0.333 0.105

Delta (∆) 0.005 0.052

Free Air CD CL

Static Floor 0.326 0.140
Moving Floor 0.320 0.098

Delta (∆) 0.006 0.042

4.3. Blockage Effects of the Semi Open Jet Test Section

The frontal area of the virtual HAWT test section was expended by 225% and 400%, which resulted
in reduced blockage ratios of 0.56% and 0.30%, respectively. The simulations were carried out with
the moving ground and rotating wheel boundary conditions, and the results are presented in Table 5.
All three scales ran without the vehicle model in the tunnel first, to obtain the pressure gradient in the
empty plenum chamber. The mean static pressure coefficients along the center line of nozzle outlet are
shown in Figure 14. It is noticeable, in the zoomed-in figure, that the original HAWT test section has a
longitudinal negative pressure gradient in the empty model before it reaches the collector, resulting in
an over-predicted drag value, since the negative pressure gradient causes the air flow to accelerate
when passing over the test vehicle model. By keeping the nozzle and collector at the same location,
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but inflating the open jet test section in horizontal (Y) and vertical (Z) directions, the magnitude of
that negative pressure gradient is reduced, becoming nearly zero when the test section was scaled
up to 400% of its original size. The pressure gradient change caused a drag reduction for the larger
test sections.

Table 5. Effect of blockage ratio on drag prediction.

Test Section Blockage Ratio 1.25% (HAWT) 0.56% 0.30% 0.04%

CD 0.333 0.328 0.325 0.320
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nozzle centerline.

After putting the vehicle model into all three scales of the open jet test sections, (shown in
Figure 15), the mean static pressure distributions on the center plane at different Z positions were
measured. Figure 15 shows the five Z-locations of pressure probes. At all these locations, the original
HAWT test section has the lowest static pressure, while the pressure in the plenum chamber increases
with the increase of the test section volume. At Z = 3.5 m and above, the favorable pressure gradient
in the 100% test section becomes obvious compared to other scales. At Z = 6.5 m, since it is close to
the roof of the 100% domain, the favorable pressure gradient becomes stronger, while the pressure
distributions in 225% and 400% scales also start turning favorable, as they are approaching to the
top boundary.
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Figure 15. Static pressure probes layout.

The phenomenon of smaller test sections having lower static pressure in the plenum chamber of
open jet wind tunnel, as Figure 16 indicates, can also be observed in Figures 17 and 18, when the vehicle
model is placed inside the tunnel, through the jet expansion change corresponding to different test
section volumes. Both figures present the test section blockage effect on the semi-open jet expansion.
From the side view of the center plane, the comparisons in Figure 17 show that the smaller plenum
chamber causes the jet to expand earlier. The velocity magnitude in the outer layer of the jet is higher
compared to the larger scale test-section models, which corresponds to higher dynamic pressure.
As the total pressure of the domain remains constant, the static pressure in that region is relatively low.
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As both the model and numerical representation of the HAWT domain are symmetric, additional
features of this jet expansion can be observed using a XY-plane, covering only the right or left half
of the simulation domain, which is presented in Figure 18. The velocity magnitude contour shows
the original plenum chamber of HAWT forced the jet to expand much earlier than the other two
larger-scale test-section models in the horizontal direction as well. The early expansion causes higher
jet outer layer velocity at the nozzle outlet, as well as around the vehicle. With faster flow coming
toward the test vehicle, the predicted drag coefficient of the model will be greater than that obtained
from a larger test section with the same jet.

To summarize, the volume change of the open jet test section has a significant effect on the
drag predictions of the test vehicle. The differences in drag coefficient measurements come from the
streamwise pressure gradient change in the plenum chamber and the jet expansion rate. The smallest
test section had a negative pressure gradient when tested as an empty tunnel, while a nearly zero
pressure gradient was found in the larger scales. The early jet expansion causing faster jet flow passing
the vehicle is another important contribution to the higher drag coefficient value in the 100% HAWT
test section.
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Figure 18. Mean velocity magnitude at nozzle outlet (top view).

4.4. HAWT and Free-Air Tunnel Comparison

For a direct comparison between the aerodynamic characteristics observed in a limited area test
section like the HAWT test section and those that might have been observed in the free air domain,
Figure 19 compares the velocity magnitude contours on the center plane, when the vehicle model
is placed in 100% HAWT model and in free air, respectively. For both cases, the flow field near the
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vehicle is similar except for the area above the roof (A), and the region above the hood-windshield
conjunction (B). The deformation of the velocity contours in these regions for the HAWT simulations is
because of the jet shear layer effect in the test section, which changes the flow velocity over the vehicle.
As expected, the aerodynamic coefficients are overestimated in wind tunnel simulations compared to
the free air domain.
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5. Conclusions

In this paper, the full-scale model of 2014 Hyundai Veloster was tested in four different
computational domains using a finite volume CFD code. The CFD simulations were validated
with the wind tunnel test data from the Hyundai Aero-acoustic Wind Tunnel (HAWT) located at
the Hyundai Namyang Technical Center in South Korea. The correlation results are encouraging.
Although the CFD simulation over-predicted the drag coefficient by a small amount in the reproduced
HAWT test section compared to the reported experimental data, the change in CD in CFD from the
improved spoiler to the original spoiler closely matches the wind tunnel results.

The blockage effects of the open jet wind tunnel test section were evaluated by different scales of
the plenum chamber, with a same longitudinal extent. A negative pressure gradient was found in the
original empty HAWT test section in the streamwise direction, as well as an earlier jet expansion, which
contributed to the higher drag predictions. By increasing the volume of the test section, the negative
pressure gradient turned to a nearly zero pressure gradient before approaching the collector, and the
jet expansion was delayed. As a result, the larger test sections have less interference effect on the test
models in open jet wind tunnels, and the drag predictions are closer to the free air condition.
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Two different ground plane boundary conditions, static floor with fixed wheels and moving
ground with rotating wheels, were tested in both HAWT and free-air environments. The changes
in vehicle drag and lift agree with the findings of Waschle [48]. These results also agree well with
the works of Buscariolo et al. [24]. The reasons for the drag and lift reduction with moving floor and
rotating wheels were explained by observing the change in tire wakes and underbody flow velocity
from both top and side views; this study concluded that the reduction of the tire wake size is the
primary attributer to drag reduction.
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