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Abstract: Evaluation of dairy cow exposure to DON can generally be managed through analyses
of feed or physiological specimens for DON residues. The latter enables a diagnosis not only on
an individual basis but also on a herd basis. For this purpose, on the basis of published data, linear
regression equations were derived for blood, urine, milk, and bile relating DON residue levels as
predictor variables to DON exposure. Amongst the matrices evaluated, blood was identified to reflect
the inner exposure to DON most reliably on toxicokinetic backgrounds, which was supported by
a linear relationship between DON residues in blood and DON exposure. On the basis of this, and
because of extended blood data availability, the derived regressions were validated using internal
and external data, demonstrating a reasonable concordance. For all matrices evaluated, the ultimately
recommended linear regression equations intercepted the origin and enabled the prediction of
the DON exposure to be expected within the prediction intervals. DON exposure (µg/kg body
weight/d) can be predicted by multiplying the DON residues (ng/mL) in blood by 2.52, in urine by
0.022, and in milk by 2.47. The span of the prediction intervals varied according to the dispersion
of the observations and, thus, also considered apparent outliers that were not removed from the
datasets. The reasons were extensively discussed and included toxicokinetic aspects. In addition,
the suggestions for sample size estimation for future characterization of the mean exposure level of
a given herd size were influenced by expectable variation in the data. It was concluded that more
data are required for all specimens to further qualify the preliminary prediction equations.
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1. Introduction

Deoxynivalenol (DON) is a common Fusarium sp.-derived contaminant of feedstuffs
for cows [1–3]. In particular, maize-originating feedstuffs, such as maize grain and maize
silage, are significant sources of exposure for dairy cows [4,5]. Moreover, distillers grains
and solubles (DDGS) might further contribute to DON exposure, as ethanol production is
known to concentrate mycotoxins in the by-product DDGS [6]. Ruminants, in general, and
dairy cows, in particular, are regarded as quite resistant to the toxic effects of DON due
to ruminal metabolism of the toxicologically less active derivative DOM-1 [7]. However,
an efficient inactivation requires a functioning rumen, a situation that might be disturbed
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due to inadequate feeding strategies, leading to ruminal acidosis, or as a consequence of
poor feeding hygiene, resulting in ruminal dysbiosis. Furthermore, high levels of feed
intake of cows increase the ruminal passage rate of ingesta and decrease the time available
for rumen metabolism, including that of mycotoxins [8]. All these conditions might become
even more relevant when the DON content of the diet is increased. To avoid adverse effects
of DON, a guidance value of 5 mg DON/kg diet at a reference dry matter (DM) content of
88% must not be exceeded [9].

Exposure of cows to DON might be diagnosed either through analysis of represen-
tative feed samples for DON or via determination of DON and its derivative DOM-1 in
blood or other physiological specimens, such as urine, milk, or bile. Both approaches
have advantages and disadvantages. Analyzing feed samples for DON allows a direct
comparison with the guidance value, enabling the determination of the compliance of the
feed sample and forcing all involved parties to locate the source of contamination in case of
non-compliance. On the other hand, DON might not be evenly distributed in the feed stock.
Thus, if the sampling procedure is inadequate, the analytical result does not necessarily
reflect the exposure. In addition, modified forms of DON, such as DON glucosides and
acetylated DON, might be metabolized to free DON once ingested, consequently contribut-
ing to the inner DON exposure. Moreover, feed analysis provides an indication of the
exposure of the herd and, consequently, does not consider individual variation in toxin
intake via feed.

Analyzing physiological specimens, on the other hand, offers the opportunity to eval-
uate individual exposure, which might be influenced by the level of feed intake relative to
body weight. Furthermore, the ratio of DOM-1 to the sum of DON plus DOM-1 provides
additional information on ruminal function and would be expected to decrease for severe
ruminal disorders. On the other hand, the toxin levels detected in physiological specimens
cannot yet be evaluated with regard to toxicological relevance for the animal, as a relation-
ship between inner exposure with toxin residue levels in the specimens as an indicator and
the oral exposure still needs to be established for DON. For zearalenone (ZEN), another
Fusarium toxin often co-occurring with DON, linear relationships between ZEN residues in
physiological specimens and oral ZEN exposure, expressed in µg/kg body weight (BW)
and d, have been suggested to be useful for the prediction of oral ZEN exposure based on
the determination of ZEN residues in physiological specimens of individual cows [10].

Hence, the aim of the present study was to evaluate the relationships between DON
residue levels in blood, milk, urine, and bile and the oral DON exposure, with the aim of
establishing prediction equations (regressions) for future measurements. The data that were
used were based on experiments published in the context of toxic effects, aspects of transfer
of the toxin from feed to milk (carry over), and general diagnostic opportunities [11–15].

Established prediction equations can be used in two principal ways. First, if the aim
is to evaluate the exposure of an individual animal, the prediction intervals of the corre-
sponding regressions provide an exposure range to be expected with a defined confidence
level. Second, if the aim is to characterize the (mean) exposure level of the herd using
established prediction equations, an adequate sampling number n for a dairy herd with
a finite herd size N is required. Thus, a second aim was to derive recommendations on
adequate sampling size n dependent on herd size N and on variation of DON exposure.

2. Materials and Methods
2.1. Description of Data
2.1.1. Data for the Derivation of Prediction Equations and Internal Validation

Data from two published experiments were used for evaluation of the relationships
between individual DON residue levels and DON exposure. Detailed descriptive statistics
of both experiments are presented in Table 1.
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Table 1. Descriptive statistics for deoxynivalenol (DON) exposure and DON residue levels in
blood and other specimens for Experiments 1 and 2 used for deriving prediction equations and for
Experiment 3 used for external validation.

DON (mg/kg Diet,
88% DM) N Mean Standard

Deviation Median Minimum Maximum

Experiment 1
DON exposure
(µg/kg BW/d) 0.06–4.61 116 64.3 69.0 61.5 0.8 213.3

0.06 56 1.7 0.6 1.6 0.8 3.0
2.31 30 83.5 16.3 82.0 56.2 120.2
4.61 30 161.7 29.5 158.8 111.8 213.3

DON residue levels
(ng/mL)
Blood plasma 0.06–4.61 116 21.7 25.2 9.5 1.0 112.3

0.06 56 4.8 3.0 4.5 1.0 18.0
2.31 30 20.9 10.1 18.8 2.5 48.0
4.61 30 53.9 27.6 54.6 4.8 112.3

Urine 0.06–4.61 99 1914.3 2839.6 609.5 39.9 13,555.0
0.06 44 184.7 147.3 121.0 39.9 664.5
2.31 29 1772.5 1182.1 1690.0 422.7 5587.5
4.61 26 4999.3 3849.6 4108.8 271.2 13,555.0

Bile 0.06–4.61 85 22.5 32.2 9.1 0.3 207.0
0.06 45 3.2 2.9 2.5 0.3 11.0
2.31 20 27.7 17.9 23.6 7.3 65.5
4.61 20 61.0 42.3 56.3 9.9 207.0

Milk 0.06–4.61 109 1.1 1.5 0.5 0 5.7
0.06 49 0.0 0.0 0.0 0.0 0.0
2.31 30 1.1 0.7 1.0 0.0 2.8
4.61 30 3.0 1.4 3.3 0.5 5.7

Experiment 2
DON exposure
(µg/kg BW/d) 0.14–0.2 121 9.8 4.5 10.1 2.8 18.4

DON residue levels
(ng/mL)
Blood plasma 0.14–0.2 121 2.7 1.6 2.6 0.0 8.0
Experiments 1 and 2
DON exposure
(µg/kg BW/d) 0.06–4.61 237 36.5 55.5 10.6 0.8 213.3

DON residue levels
(ng/mL)
Blood plasma 0.06–4.61 237 11.9 20.0 3.7 0.0 112.3
Experiment 3
DON exposure
(µg/kg BW/d) 0.35–4.66 267 88.2 75.4 34.8 3.8 224.5

DON residue levels
(ng/mL)
Blood serum 0.35–4.66 267 23.3 25.2 12.0 0.0 127.0

Abbreviations: DM, dry matter; BW, body weight.

Experiment 1 [11–14] was designed as a dose–response experiment with three levels
of dietary DON (0.06—background DON contamination, control diet; 2.31; and 4.61 mg
DON/kg at a reference dry matter (DM) content of 88%). Each of the three diets was tested
on 10 Holstein cows of different parities starting from day 7 post-partum (p.p.).

During the 13 weeks, the lasting feeding experiment blood samples were collected the
day before starting the experiment and after 1, 9, and 13 weeks feeding of the experimental
diets. It needs to be noted that cows who were fed the diets containing 2.31 and 4.61 mg
DON/kg were exposed to the background dietary DON level of 0.06 before the experimen-
tal diets were introduced. Therefore, the number of replications assigned to the control diet
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was accordingly higher not only for blood but also for urine, bile, and milk. Urine, bile,
and milk were sampled at a similar frequency, except for bile, for which the sampling at
one week after starting the experiment was omitted.

Due to the increase in dietary DON concentration from 0.06 to 4.61 mg DON/kg diet,
the corresponding DON exposure covered a range between 0.8 and 213.3 µg/kg BW/d.

Experiment 2 [15] was designed to investigate the interactions between roughage type
(maize vs. grass silage) and concentrate feed proportion (20% vs. 60% on a DM basis)
on late-lactating Holstein cows of different parities. Diets were fed for 12 weeks, and
blood samples were collected just before the 4 experimental diets were introduced, and
at weeks 3, 6, and 12 of experiment. Due to the use of grass or maize silage as the main
dietary component, the DON concentration of the diets varied, albeit at a low background
level, between 0.14 and 0.2 mg DON/kg diet at a DM content of 88%. On the basis of the
differences in dietary DON concentrations, in DM intake, and in BW of the individual cows,
the DON exposure varied between 2.8 and 18.4 µg/kg BW/d.

2.1.2. Data for External Validation

Experiment 3 [16] served as external validation of the prediction equations based
on blood samples. The feeding experiment aimed at investigating the effects of a DON-
containing diet (4.7 mg/kg DM) compared with a control diet (0.5 mg DON/kg DM) on
fresh lactating cows (31 days in milk, on average) for a duration of 11 weeks (Period 1)
and on the interactions between DON contamination and concentrate feed proportion of
the diet during the established lactation for a duration of 18 weeks (Period 2: 30% concen-
trates, 0.5 mg DON/kg DM; 30% concentrates, 3.9 mg DON/kg DM; 60% concentrates,
0.4 mg DON/kg DM; and 60% concentrates, 4.0 mg DON/kg DM). Blood samples were
collected in weeks 0 (before starting the experiment), 2, 4, 6, and 8 (Period 1), and in weeks
16, 18, 20, 22, and 28 (Period 2). Over the entire experiment, the DON exposure differed
between 3.8 and 224.5 µg/kg BW/d (Table 1).

2.2. Calculations and Statistics
2.2.1. Calculations

DON exposure as the response criterion (predicted variable) was calculated on the
basis of the individually recorded diet intake, BW, and the analyzed DON concentration of
the complete diets:

DON exposure =
diet intake · DON concentration o f diet

BW

On the basis of the calculation of DON exposure, it became clear that only free DON
was considered as the sole DON source. As discussed later in detail, orally ingested free
and modified DON (e.g., DON glucoside and acetylated DON) are metabolized mainly
to free DON, DOM-1, DON, and DOM-1 sulfates and glucuronides, which are detected
in physiological specimens by the analytical method either directly (DON and DOM-1)
or indirectly after enzymatic hydrolysis of the corresponding conjugates [7]. Thus, DON
residues as regressor variable (predictor variable) contained the following metabolites as
a sum:

DON residues = DON + DOM-1 + conjugates (glucuronidated and sulfated DON and DOM-1)

DON residues lower than the corresponding limits of detection (LOD) or quantification
(LOQ) (Table A1) were generally considered to have a value of zero for further evaluations.

The calculated DON exposure, expressed in µg/kg BW/d, was used as the response
variable dependent on DON residue levels in various specimens, expressed in ng/mL, as
predictor variables.

An exposure threshold was derived from the intercept of the lower limit of the predic-
tion interval from linear regressions of DON residue levels in physiological specimens on
DON exposure on the abscissa. This intercept is exclusively larger than zero and marks
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the limit of DON residue levels in the absence of DON exposure. Therefore, DON residue
levels larger than the exposure threshold cover the entire and, consequently, valid range of
DON exposures larger than zero.

2.2.2. Statistics

All statistical analyses were performed in the environment of RStudio, R version
4.2.1 [17]. Graphic presentations were prepared using the package ggplot2 [18].

Development of Prediction Equations

The general evaluation strategy included comparisons of parameter estimations after
bootstrapping of linear and robust linear regressions along with influential statistics to
examine the effects of extreme observations. On the basis of the toxicokinetic consideration
that non-detectable DON residues should be associated with no DON exposure, regressions
were performed either with or without the intercept to investigate the effects of observations
close to the origin, which might be differently influenced by LODs/LOQs for feed and
physiological specimens.

In particular, DON residue levels in blood, urine, bile, and milk were each linearly
regressed on DON exposure using the lm function of the package stats [17]. Prediction
intervals were extracted from the regression results by the function predict.lm of the
same package.

As linear regression employing ordinary least square (OLS) fitting is vulnerable to
extreme observations, a robust fitting was additionally conducted by iterated re-weighted
least squares (IWLS) using the rlm function of the MASS package [19]. The robust linear
fitting puts less weights on influential observations, making regression results more robust
compared with OLS estimations. In the next step, the validity of the regression coefficients
obtained from the lm and rlm procedures was evaluated through the bootstrapping method.
As a re-sampling method, bootstrapping does not rely on a known probability distribution;
instead, it estimates the sampling distribution from which the means and standard errors
are derived by the percentile method [20]. Regression coefficients were estimated from
2000 bootstrap replications; most researchers use this number, which is based on a sufficient
accuracy to investigate regressions [21,22] and to ensure comparability in methodology.
Distributions of regression coefficients were plotted as histograms for visual inspection,
and mean values and standard errors were derived using the bootstraps procedure of the
package rsample [23].

Linearity of trait relationships was additionally tested using the raintest function,
which performs the rainbow test and is implemented in the package lmtest [24].

The above-described regressive methods were applied to all available matrices from
Experiment 1 (blood, urine, bile, and milk) and Experiment 2 (blood). Slopes from those
regressions generally provide information on the incremental increase in DON exposure per
unit increase in DON residue levels in a particular matrix. A justification of a generalized
application of derived regressions as prediction equations would be supported by compa-
rable regression coefficients from independent studies. For this purpose, the relationships
between DON residue levels in blood and DON exposures from Experiments 1 and 2 were
further evaluated by a linear model, including DON exposure as the response variable,
DON residues in blood as the continuous independent variable, the experiment number as
a categorial variable, and the interactions between DON residues and experiment number
using the lm procedure.

Indicators of influential statistics for regressions, such as Cook’s distance, hat score
(leverage), and Studentized residuals, were evaluated using the augment.lm function of
package broom [25].

Internal and External Validation of Prediction Equations for DON Residues in Blood

The ultimately derived prediction equation for DON residues in blood was used for
internal and external validation. The corresponding regression coefficients were used to
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predict the DON exposure on the basis of DON residues in blood used for deriving the
underlying prediction equation and from Experiment 3 for internal and external validation,
respectively. The so-estimated DON exposures were linearly regressed on the correspond-
ing observed DON exposures. As a number of predicted DON exposures of Experiment 3
were equal to zero, a Tobit model was additionally applied to these data, as OLS regression
does not provide the best estimates for such censored data. The tobit function of the
package AER was used for this purpose [26].

The precision and accuracy of these calibration lines were evaluated by the concor-
dance correlation coefficient using the CCC function of the package DescTools [27]. Further-
more, concordance between the two methods was visually evaluated by the Bland–Altman
method plotting the difference of corresponding data pairs, i.e., measured and estimated
DON exposure, against their means [28]. The scatter of these data pairs was descriptively
evaluated with the aid of horizontal helper lines, indicating the mean of the difference
covered by the range limited by the ±1.96 standard deviation of that differences [28].

Estimation of Sample Size for Future Predictions

The definition of the confidence interval serves as a starting point for the planning of
sample size for future predictions of the mean DON exposure (y) for a given herd size N.
The width of the confidence interval of an arithmetic mean y depends on the variability of
the trait expressed as the residual standard deviation se, sample size n, and the t-quantile
for a given confidence level P = 1 − α:[

y− syt
(

1− α

2
; n− 1

)
; y + syt

(
1− α

2
; n− 1

)
]

(
s−

y
=

se√
n

)
Thus, the half interval width d is given as:

d = syt(1 − α/2;n− 1)

and can be rearranged for n when the standard error sy is expressed through the ratio of
the corresponding residual standard deviation se and the square root of n:

n = t2(1− α/2; n− 1) · s2
e /d2

The consequence of considering finite populations of the size N is that the standard
deviation and, thus, the standard error of the mean for infinite populations are modified to:

sy =

√
s2

e
n

N − n
N

By considering this modified standard error for finite populations N, the sampling
size can be derived through rearranging the half interval width d as [29]:

n =
s2

e
d2

t2(1−α/2;n−1)
+ s2

e
N

The sample size must be determined iteratively since the t-quantile depends on the
searched n.

3. Results

The goodness of fit for each different model was generally evaluated through the
residual standard error (RSE) of the regressions rather than by r2 since the latter is not
applicable for robust regressions.
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3.1. Prediction Equations
3.1.1. Blood

Separate regressions of DON exposure on DON residues in blood for Experiments 1
and 2 revealed positive intercepts on the ordinate that were significantly different from
zero in both cases (p < 0.05; Figure A1, Table 2). Assuming that a DON exposure of zero
would inevitably be associated with zero DON residue levels in blood, the intercept was
omitted in a second step on the basis of these toxicological backgrounds. Due to such
a redirection of positive intercepts on the ordinate towards to a zero intercept, the slopes
became steeper. Due to forcing the regressions through the origin, the final minimum OLS
and, consequently, the RSE became larger, albeit only slightly and at a generally higher
level for Experiment 1 compared with Experiment 2 (Figure A1, Table 2).

Table 2. Parameter estimates for different regression models relating deoxynivalenol (DON) exposure
(=y, µg/kg BW/d) or dietary DON concentrations (=y, mg/kg diet at 88% DM) to DON residues (sum
of all detected metabolites) in various specimens from cows (ng/mL) (=x) based on linear regression
(b = slope) with and without an intercept (a) using either a linear model (lm) or a robust linear model
(rlm) for estimation of regression coefficients, which are presented with standard errors (SE) and
p-values. The ultimately recommended prediction equations (6 for blood, 20 for urine, and 28 for
milk) are printed in red; for details, please see text.

Speci-men Me-thod Experiment y a
p-Value SE b

p-Value SE Rainbow Test
(p-Value)

RSE (µg/kg
BW/d) N

Exposure
Threshold 1

(ng/mL)

Figure
Equation

Blood lm 1 DON
exposure 17.36 5.157 2.17 0.156 0.012 42.1 116 Figure A1A,B

0.001 <0.001 1

Blood lm 2 DON
exposure 4.98 0.598 1.81 0.191 0.122 3.4 121 Figure A1A,B

<0.001 <0.001 2

Blood lm 1 DON
exposure 2.52 0.123 0.039 44.0 116 Figure A1C,D

<0.001 3

Blood lm 2 DON
exposure 3.17 0.125 0.043 4.3 121 Figure A1C,D

<0.001 4

Blood lm 1 and 2 DON
exposure 8.68 2.272 2.33 0.098 1.000 30.0 137 21.8 Figure 1A

<0.001 <0.001 5

Blood lm 1 and 2 DON
exposure 2.52 0.086 1.000 30.9 137 24.3 Figure 1C

<0.001 6

Blood rlm 1 DON
exposure 7.61 4.107 2.50 0.124 0.012 30.6 116 Figure A2A,B

0.068 <0.001 7

Blood rlm 2 DON
exposure 4.83 0.671 1.89 0.215 0.122 3.1 121 Figure A2A,B

<0.001 <0.001 8

Blood rlm 1 DON
exposure 2.67 0.090 0.039 27.8 116 Figure A2C,D

<0.001 9

Blood rlm 2 DON
exposure 3.20 0.131 0.043 4.6 121 Figure A2C,D

<0.001 10

Blood rlm 1 and 2 DON
exposure 1.65 0.926 2.60 0.040 1.000 8.7 137 6.0 Figure A3A

0.066 <0.001 11

Blood rlm 1 and 2 DON
exposure 2.67 0.034 1.000 9.4 137 6.9 Figure A3C

<0.001 12

Blood lm 1 DON
diet 0.52 0.143 0.06 0.004 <0.001 1.16 116 Figure A4A,B

<0.001 <0.001 13

Blood lm 2 DON
diet 0.15 0.003 0.01 0.001 0.012 0.02 121 Figure A4A,B

<0.001 <0.001 14

Blood lm 1 DON
diet 0.07 0.003 <0.001 1.22 116 Figure A4C,D

<0.001 15

Blood lm 2 DON
diet 0.05 0.002 0.176 0.08 121 Figure A4C,D

<0.001 16
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Table 2. Cont.

Speci-men Me-thod Experiment y a
p-Value SE b

p-Value SE Rainbow Test
(p-Value)

RSE (µg/kg
BW/d) N

Exposure
Threshold 1

(ng/mL)

Figure
Equation

Blood lm 1 and 2 DON
diet 0.19 0.064 0.07 0.003 1.000 0.84 137 22.5 Figure A5A

<0.001 <0.001 17

Blood lm 1 and 2 DON
diet 0.07 0.002 1.000 0.86 137 24.3 Figure A5C

<0.001 18

Urine lm 1 DON
exposure 35.67 6.249 0.017 0.002 0.937 51.5 99 4021 Figure A6A

<0.001 <0.001 19

Urine lm 1 DON
exposure 0.022 0.002 0.468 59.2 99 5237 Figure A6C

<0.001 20

Urine rlm 1 DON
exposure 26.59 5.21 0.018 0.00 0.937 42.57 99 3083 Figure A7A

<0.001 <0.001 21

Urine rlm 1 DON
exposure 0.023 0.00 0.468 26.42 99 2179 Figure A7C

0.00 22

Bile lm 1 DON
exposure 27.71 7.00 1.59 0.18 0.026 52.82 85 50.1 Figure A8A

<0.001 <0.001 23

Bile lm 1 DON
exposure 2.00 0.16 0.003 57.24 85 58.2 Figure A8C

0.00 24

Bile rlm 1 DON
exposure 7.62 4.46 2.24 0.11 0.026 25.53 85 19.2 Figure A9A

0.098 <0.001 25

Bile rlm 1 DON
exposure 2.38 0.08 0.003 22.16 85 18.3 Figure A9C

0.00 26

Milk lm 1 DON
exposure 27.46 5.30 35.40 2.79 0.576 43.99 109 1.7 Figure A10A

<0.001 <0.001 27

Milk lm 1 DON
exposure 44.17 2.47 0.300 48.97 109 2.2 Figure A10C

0.00 28

Milk rlm 1 DON
exposure 15.40 3.72 39.02 1.96 0.576 21.11 109 0.67 Figure A11A

<0.001 <0.001 29

Milk rlm 1 DON
exposure 43.39 1.16 0.300 13.57 109 0.61 Figure A11C

<0.001 30

1 The exposure thresholds were derived from the intercepts of the lower limit of the prediction interval from linear
regressions of DON residue levels in physiological specimens on DON exposure on abscissa. Abbreviations: DM,
dry matter; BW, body weight; RSE, residual standard error of regression.

In addition to separate simple linear regressions for Experiments 1 and 2, both datasets
were additionally investigated through an analysis of covariance (ANCOVA) of the linear
model, with DON exposure as the dependent variable. This ANCOVA demonstrated
significant effects of the experiment as the categorial independent variable (p < 0.05)
and of DON residues in blood as the continuous independent variable (p < 0.05) but
failed to reach significance for the interactions between the experiment and DON residues
(p = 0.827). The latter suggested that the slopes for Experiments 1 and 2 were not signifi-
cantly different. For this reason, it was assumed that data from both experiments belonged
to a similar population. Thus, data sets were combined for all further regressions to increase
the number of observations used for deriving the final prediction equation. Regression
of the joint dataset with and without an intercept, resulted, generally, in steeper slopes
and suggested linearity, according to the rainbow test, when compared with the individual
regressions. The height of the RSE was found to lie between those that were estimated
separately for Experiments 1 and 2. The prediction interval and, consequently, the exposure
threshold were tighter and smaller, respectively. Bootstrapping from the joint dataset
resulted in a mean intercept with an ordinate of 8.43 and a slope of 2.36. The frequency
distributions for both parameters suggest reasonable symmetry, and the corresponding
intercept of 8.68 and the slope of 2.33 estimated for the original dataset were close to the
corresponding bootstrapping means (Figure 1, Table 2). The qq-plot for the intercept sug-
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gested linearity over the entire range, while some departure from linearity was noticed at
both ends. Interestingly, these deviations appeared less pronounced when the joint dataset
was forced through the origin.

Dairy 2023, 4, 2  368 
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Figure 1. Linear regression (method lm) of deoxynivalenol (DON) residues in blood on DON expo-
sure with (A) and without intercept (C) using the original dataset pooled over Experiments 1 and 2 
(n = 237). Red solid lines denote the linear regression, and dashed red lines limit the prediction 
intervals at a 0.95 confidence level for future predictions. Red dots show the measured data pairs. 
Blue solid lines represent 200 bootstrap regressions randomly selected from a total of 2000 bootstrap 
replications. Intercept and slopes generated by bootstrapping (n = 2000) using the original dataset 
were used for validation and presented as density distributions (solid red vertical lines show the 
mean value of the regression coefficients, and dashed blue vertical lines include the 0.95 confidence 
interval) and qq-plots (with intercept (B) and without intercept (D)). 

Robust linear regressions using the rlm function were performed in a similar way as 
described for the linear models employing the procedure lm. In general, robust regres-
sions resulted in substantially lower RSE and correspondingly tighter prediction intervals 
and lower exposure thresholds. Moreover, slopes were steeper, and intercepts were esti-
mated to be located closer to the origin (Figures A2 and A3, Table 2). 

Additionally, attempts were made to regress DON concentrations of diets directly on 
DON residues in blood while being aware that individual variation occurred only in the 
abscissa direction at the same time. For this reason, only lm procedures were tested (Fig-
ures A4 and A5, Table 2). 

The initial ANCOVA of the linear model for Experiments 1 and 2 for DON concen-
tration in feed showed significant effects of the experiment as a categorical independent 
variable (p < 0.05) and of DON residues in blood as a continuous independent variable (p 
< 0.05) but did not reach significance for the interactions between the experiment and 
DON residues (p = 0.259), suggesting the experiment-specific slopes were not significantly 
different. Thus, datasets of both experiments were pooled for further regressions. Linear 
regression of DON residues in blood on DON concentration of the diets using the joint 

Figure 1. Linear regression (method lm) of deoxynivalenol (DON) residues in blood on DON
exposure with (A) and without intercept (C) using the original dataset pooled over Experiments 1
and 2 (n = 237). Red solid lines denote the linear regression, and dashed red lines limit the prediction
intervals at a 0.95 confidence level for future predictions. Red dots show the measured data pairs.
Blue solid lines represent 200 bootstrap regressions randomly selected from a total of 2000 bootstrap
replications. Intercept and slopes generated by bootstrapping (n = 2000) using the original dataset
were used for validation and presented as density distributions (solid red vertical lines show the
mean value of the regression coefficients, and dashed blue vertical lines include the 0.95 confidence
interval) and qq-plots (with intercept (B) and without intercept (D)).

Robust linear regressions using the rlm function were performed in a similar way as
described for the linear models employing the procedure lm. In general, robust regressions
resulted in substantially lower RSE and correspondingly tighter prediction intervals and
lower exposure thresholds. Moreover, slopes were steeper, and intercepts were estimated
to be located closer to the origin (Figures A2 and A3, Table 2).

Additionally, attempts were made to regress DON concentrations of diets directly
on DON residues in blood while being aware that individual variation occurred only in
the abscissa direction at the same time. For this reason, only lm procedures were tested
(Figures A4 and A5, Table 2).

The initial ANCOVA of the linear model for Experiments 1 and 2 for DON concen-
tration in feed showed significant effects of the experiment as a categorical independent
variable (p < 0.05) and of DON residues in blood as a continuous independent variable
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(p < 0.05) but did not reach significance for the interactions between the experiment and
DON residues (p = 0.259), suggesting the experiment-specific slopes were not significantly
different. Thus, datasets of both experiments were pooled for further regressions. Linear
regression of DON residues in blood on DON concentration of the diets using the joint
dataset resulted in a slope of 0.07, irrespective of regressing with or without an intercept.
When an intercept was included in the model, it was estimated markedly lower when
compared with the intercept when the data of Experiment 1 were regressed individually.
As for DON exposure, the RSE of the regression using the combined dataset was lower
than that resulting from the regression using Experiment 1 data only. The bootstrapping
means for intercept and slopes reasonably matched those obtained from the regressions
of the original datasets. The histograms suggested symmetric distributions, although the
qq-plots displayed some deviation from linearity at both ends, particularly for the slopes.

3.1.2. Urine, Bile, and Milk

Urine, bile, and milk samples were available from Experiment 1 only. Thus, lm and
rlm were tested exclusively for these matrices (Figures A6–A11, Table 2). In general, for
models with intercepts, those were significantly higher than zero, except for the rlm for bile.
As for the blood models described, the slopes increased when the intercepts were omitted
both for lm and rlm, albeit at a higher level for the latter. Although the bootstrapping
means for intercepts and slopes matched those estimated from the original regressions for
all three matrices both for lm and rlm, the histograms and qq-plots suggested departures
from symmetry depending on the matrix and estimation procedure. While for urine and
milk the lm procedure appeared to be superior to rlm, the opposite was noticed for bile.

3.2. Influential Statistics

On the basis of a literature review, Chatterjee and Yilmaz [30] concluded that 25 or more
regression diagnostic indices are known, many of which provide similar information. The
authors recommended that three to five measures that are easily available from statistical
software should be used. Amongst these five, the authors favored Studentized residuals,
as they provide information on outliers; the hat values, as the diagonal elements of the hat
matrix, they provide information on the influence independent of the value of the response
variable; and Cook’s distance, which informs the change in parameter estimates.

Consequently, “suspicious” individual values were filtered using hat scores, Studen-
tized residuals, and Cook’s distance. These influential indicators were evaluated for the
final lm models without an intercept for the combined blood dataset (Figure 2) and the other
matrices (data not shown). Hat scores for blood increased with distance from the centroid
in the direction of the abscissa up to 0.11. A larger portion of the data of Experiment 1 were
characterized by larger positive Studentized regression residuals compared with those
with negative residuals. Only three observations located in the right part of the scatter
showed larger Cook’s distances. Combining all 3 measures in 1 plot revealed that a total
of 18 suspicious observations were identified, characterized by Studentized residuals that
were either greater than 2; less than −2; had hat scores greater than the value represented
by the mean of the hat scores plus the twofold standard deviation of the hat scores; or had
a Cook’s distance larger than 1. Applying the same three filtering conditions to urine, bile,
and milk revealed nine, four, and eight suspicious data points, respectively. In particular,
hat scores varied from 0.01 to 0.18, 0.01 to 0.4, and 0.009 to 0.09; Studentized residuals
ranged from −2.21 to 3.36, −3.17 to 3.39, and −2.55 and 3.73; and Cook’s distances ranged
from ~0.0 to 0.54, ~0.0 to 7.07, and ~0.0 to 0.39 for urine, bile, and milk, respectively.
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Figure 2. Influential statistics for the linear regression (method lm) of deoxynivalenol (DON) resi-
dues in blood on DON exposure without intercept (black crosses mark the centroid of the scatter; 
red and blue filled dots represent data from Experiments 1 and 2, respectively): Hat scores (A) 
(scores increase from smallest to largest dot size from 0.004 to 0.11); Studentized residuals (B) (re-
siduals increase from smallest to largest dot size from −3.62 to 7.01); Cook’s distance (C) (distances 
increase from smallest to largest dot size from ~0.0 to 0.8); plot of Studentized residuals against hat 
scores with Cook’s distances indicated by dot size (D) (distances increase from smallest to largest 
dot size from ~0.0 to 0.8); blue vertical lines indicate the mean value of hat score plus the two- and 
threefold standard deviation of hat score. Blue horizontal lines show −2 and +2 Studentized residu-
als. Observations that were either greater than 2, less than −2 Studentized residuals, had values 
larger than the mean value of hat scores plus the two- and threefold standard deviation of hat scores, 
or had a Cook’s distance greater than 1 are circled in black. Red solid lines denote the linear regres-
sion, and dashed red lines limit the prediction intervals at a 0.95 confidence level for future predic-
tions. Red dots show the measured data pairs. 

3.3. Internal and External Validation of Prediction Equations for DON Residues in Blood 
Internal and external validations of Equation 6 were performed using the data from 

which the regression was estimated (combined dataset of Experiments 1 and 2) and data 
from an independent study (Experiment 3), respectively (Figure 3). The linear regressions 
for DON exposure predicted by Equation 6 on the observed DON exposure showed slopes 
less than 1.0 for both the internal and external validation (fig). Consequently, DON expo-
sures were underestimated by 0.23 and 0.26 µg/kg BW/d per 1 µg/kg BW/d increase in 
observed DON exposure for internal and external validation, respectively. In the case of 
the external validation, the application of the Tobit regression to the data decreased this 
underestimation to 0.13 µg/kg BW/d. The Lin’s concordance correlation coefficient (CCC) 
of 0.83 and Pearson’s correlation coefficient (r) of 0.84 for internal validation as well as 

Figure 2. Influential statistics for the linear regression (method lm) of deoxynivalenol (DON) residues
in blood on DON exposure without intercept (black crosses mark the centroid of the scatter; red and
blue filled dots represent data from Experiments 1 and 2, respectively): Hat scores (A) (scores increase
from smallest to largest dot size from 0.004 to 0.11); Studentized residuals (B) (residuals increase from
smallest to largest dot size from −3.62 to 7.01); Cook’s distance (C) (distances increase from smallest
to largest dot size from ~0.0 to 0.8); plot of Studentized residuals against hat scores with Cook’s
distances indicated by dot size (D) (distances increase from smallest to largest dot size from ~0.0 to
0.8); blue vertical lines indicate the mean value of hat score plus the two- and threefold standard
deviation of hat score. Blue horizontal lines show −2 and +2 Studentized residuals. Observations
that were either greater than 2, less than −2 Studentized residuals, had values larger than the mean
value of hat scores plus the two- and threefold standard deviation of hat scores, or had a Cook’s
distance greater than 1 are circled in black. Red solid lines denote the linear regression, and dashed
red lines limit the prediction intervals at a 0.95 confidence level for future predictions. Red dots show
the measured data pairs.

3.3. Internal and External Validation of Prediction Equations for DON Residues in Blood

Internal and external validations of Equation 6 were performed using the data from
which the regression was estimated (combined dataset of Experiments 1 and 2) and data
from an independent study (Experiment 3), respectively (Figure 3). The linear regressions
for DON exposure predicted by Equation 6 on the observed DON exposure showed
slopes less than 1.0 for both the internal and external validation (fig). Consequently, DON
exposures were underestimated by 0.23 and 0.26 µg/kg BW/d per 1 µg/kg BW/d increase
in observed DON exposure for internal and external validation, respectively. In the case of
the external validation, the application of the Tobit regression to the data decreased this
underestimation to 0.13 µg/kg BW/d. The Lin’s concordance correlation coefficient (CCC)



Dairy 2023, 4 371

of 0.83 and Pearson’s correlation coefficient (r) of 0.84 for internal validation as well as
Lin’s CCC of 0.79 and Pearson’s r of 0.87 for external validation (full dataset, including
left-censored data) demonstrated accuracy and precision less than 1 and supported the
systematic underestimation of the predicted DON exposure, as indicated by the slopes of
the linear regressions less than 1.0. The scale and location shifts were 0.91 and −0.12 for
the internal validation and 1.18 and 0.42 for the external validation, respectively.
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blood (Equation 6) using the data from which the regression was estimated (combined dataset of 
Experiments 1 and 2) and data from an independent study (Experiment 3), respectively. Results of 
the linear regressions of the DON exposure as predicted by Equation 6 on observed DON exposure 
are shown as regression lines along with the 90° angle bisector (dotted lines) in (A,C) and as Bland–
Altman plots in (B,D) for internal and external validation, respectively. (A) y = 2.12 + 0.77x, n = 237, 
RSE = 27.3 µg/kg BW/d for solid line; Lin’s concordance correlation coefficient (CCC) = 0.83, Pear-
son’s correlation coefficient (r) = 0.84. (B) Mean difference of 6.4 (red solid line) ± 1.96·30.2 (standard 
deviation of difference, blue dashed lines) µg/kg BW/d. (C) y = −29.06 + 0.87x, n = 267, left-censored 
n = 80, residual standard error (RSE) = 38.2 µg/kg BW/d for the Tobit regression (dashed line), and 
y = −6.28 + 0.74x, n = 267, RSE = 31.1 µg/kg BW/d for the ordinary linear regression (solid line); Lin’s 
CCC = 0.79, Pearson’s r = 0.87. (D) Mean difference of −29.4 (red solid line) ± 1.96·36.8 (standard 
deviation of difference, blue dashed lines) µg/kg BW/d. Red, blue, and green dots represent data 
from Experiments 1, 2, and 3, respectively, in (A,C); orange dots indicate the addition of the left-
censored data from Experiment 3. 

The Bland–Altman plots (Figure 3) demonstrate that the mean difference between 
the predicted and observed DON exposures nearly matched the zero-line for internal val-
idation, but a systematic bias of −29.4 µg/kg BW/d was found for external validation. Bias 
did not systematically change with increasing mean values of predicted and observed 
DON exposures in either validation, and a total of 10 and 19 differences were identified 

Figure 3. Internal (A,B) and external (C,D) validation of prediction equation for DON residues in
blood (Equation 6) using the data from which the regression was estimated (combined dataset of
Experiments 1 and 2) and data from an independent study (Experiment 3), respectively. Results
of the linear regressions of the DON exposure as predicted by Equation 6 on observed DON expo-
sure are shown as regression lines along with the 90◦ angle bisector (dotted lines) in (A,C) and as
Bland–Altman plots in (B,D) for internal and external validation, respectively. (A) y = 2.12 + 0.77x,
n = 237, RSE = 27.3 µg/kg BW/d for solid line; Lin’s concordance correlation coefficient (CCC) = 0.83,
Pearson’s correlation coefficient (r) = 0.84. (B) Mean difference of 6.4 (red solid line) ± 1.96·30.2
(standard deviation of difference, blue dashed lines) µg/kg BW/d. (C) y = −29.06 + 0.87x, n = 267,
left-censored n = 80, residual standard error (RSE) = 38.2 µg/kg BW/d for the Tobit regression (dashed
line), and y = −6.28 + 0.74x, n = 267, RSE = 31.1 µg/kg BW/d for the ordinary linear regression (solid
line); Lin’s CCC = 0.79, Pearson’s r = 0.87. (D) Mean difference of −29.4 (red solid line) ± 1.96·36.8
(standard deviation of difference, blue dashed lines) µg/kg BW/d. Red, blue, and green dots repre-
sent data from Experiments 1, 2, and 3, respectively, in (A,C); orange dots indicate the addition of the
left-censored data from Experiment 3.

The Bland–Altman plots (Figure 3) demonstrate that the mean difference between
the predicted and observed DON exposures nearly matched the zero-line for internal
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validation, but a systematic bias of −29.4 µg/kg BW/d was found for external validation.
Bias did not systematically change with increasing mean values of predicted and observed
DON exposures in either validation, and a total of 10 and 19 differences were identified to
be located outside the ranges covered by the mean difference ± 1.96 standard deviation
(limits of agreement).

3.4. Estimation of Sampling Size for Future Predictions

On the basis of the standard deviation of 20 ng DON residues/mL blood (Table 1), as
determined for the combined dataset of Experiments 1 and 2, the half interval width of the
confidence interval as a measure for precision requirements for sampling size estimation
was expressed as a fraction of this standard deviation ranging from 0.1 to 1.0 or from
10 to 100%, respectively. On the basis of these prerequisites, the sampling sizes were
iteratively estimated dependent on herd size ranging from N = 10 to N = 1000. It became
clear that the required sampling size increased asymptotically with herd size and with
lowering the half width of the confidence interval. The general interrelationships between
these determining factors are shown in Figure 4, and specific numbers are provided in
Abbreviations (HPLC—high-performance liquid chromatography; MS—mass spectrometer;
UVD—ultraviolet detector; DAD—diode array detector; SPE—solid phase extraction; and
IAC—immunoaffinity columns) and Table A2.
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Figure 4. (A) Sample size to be collected dependent on herd size as a fraction of standard deviation
(std) for different half widths of the confidence interval (CI; green: 0.6 × std; blue: 0.5 × std; red:
0.4 × std) (B) Sample size to be collected dependent on half width of the confidence interval (CI) as
a percent fraction of standard deviation (std) for different herd sizes (N; green: N = 100; blue: N = 50;
red: N = 10).

4. Discussion

Regression equations intended for future prediction of DON exposure or DON con-
centration of the entire diet dependent on DON residues in physiological specimens should
be as easy as possible while still being statistically sound and based on toxicological back-
grounds. The compromise between these requirements will be elaborated. As such, the
consequences of variation in the observed data for future sampling size adequate to predict
mean DON exposure as predicted by the estimation equations are discussed.

4.1. Toxicokinetic Aspects of DON as a Basis for Regressive Evaluation of the Data for
Diagnostic Purposes

Prediction of oral exposure to DON by DON residues in physiological specimens
requires a modellable relationship between the levels ingested and measured in those
specimens. Simple positive Pearson correlation coefficients between 0.68 and 0.85 for the
relationship between DON exposure and DON residue levels in urine, milk, bile, and
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blood suggest that inner exposure, as represented by the DON residues in those specimens,
increases with oral DON exposure.

The nature of these relationships is basically related to all sub-processes of toxicoki-
netics, i.e., liberation of DON from the feed matrix in the digestive tract, absorption,
distribution, metabolism, and elimination, and it can be either linear or non-linear, which
has consequences for the modelling strategy. The levels of a drug or toxin in the blood
depend on the dosage regimen or exposure scenario, respectively. The time vs. blood
concentration profile of a multiple oral drug administration regimen is characterized by
an initial increase until a steady state is reached [31] (Figure 5). The oscillation of plasma
drug concentrations at a steady state depends on the half-life of the drug and the length
of the administration interval [31]. Intuitively, a comparable situation might be assumed
when cows consume a DON-contaminated total mixed ration (TMR) over a certain period
of time. Here, the shape of the DON residues in blood at a steady state depends mainly
on the meal size and meal frequency, representing the dose and administration intervals,
respectively. When TMR is offered for ad libitum consumption, the meal frequency varies,
for example, between 31 and 56 bouts/day depending on diet type, whereby meal intervals
are not equidistant, and meal sizes fluctuate between 0.4 and 0.7 kg/bout [32]. Therefore,
the oscillation of DON residue concentrations in blood at a steady state, as depicted in
Figure 5, is an idealized one but will differ in magnitudes for peak and trough levels among
individual animals depending on their eating behavior. The level of the mean steady state
concentration of DON residues in blood is assumed to be dependent on the total oral dose,
which, in turn, is related mainly to the dietary DON concentration. This situation is similar
to drugs where an increase in dose linearly increases the drug concentration in blood at
a steady state [31] for non-accumulating drugs. A similar situation might be assumed for
DON, which is rapidly absorbed and eliminated both in non-ruminants and in ruminants
without being accumulated [7]. Indeed, linear relationships between DON exposure and
DON residue levels in blood were demonstrated for wethers [33], Holstein bulls [34], and
dairy cows, which were re-evaluated in the present study.

On the basis of these theoretical considerations, the relationships between DON
residue levels in physiological specimens and DON exposure were generally assumed to
be linear. Therefore, exclusively linear models of regression were evaluated, and apparent
departures from linearity were traced back to toxicokinetic features of DON becoming
apparent in the available datasets, reflecting a practical exposure scenario.

If it is further acknowledged that a zero exposure to DON should not result in any DON
residues in a physiological specimen, the linear regression line is supposed to intercept the
origin. On the basis of this theoretical background, the linear regression models without
an intercept are supposed to reflect the toxicokinetic situation more reliably, irrespective
of the fact that the intercepts were significantly different from zero in most cases when
estimated for comparative purposes (Table 2). Difficulties in matching the origin when inter-
cepts are estimated result from the aspects depicted in Figure 5 and can be partially traced
back to differences in the LOD/LOQ between feed and physiological matrix (Table A1),
resulting in either DON residues or DON exposures intercepting the ordinate and abscissa,
respectively. Such situations occur particularly when diets with (low) background DON
contaminations are fed and inevitably cause noise in the region of origin. To counteract
this methodological noise, the regression models forced through the origin (i.e., models
without an intercept) are supposed to reflect the real situation in this region more reliably,
although a slight loss in statistical power and, consequently, a broadening of the prediction
interval have to be accepted at the same time.

4.2. Handling of Influential Observations and Fitting Methods

Influential statistics evaluate the effects of (suspicious) observations on the results
of the regression analysis [35]. The general strategy is to examine the consequences on
regression coefficients when such observations are omitted. Standardized measures that
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employ this approach are hat scores (hat values, leverages), Studentized residuals, and
Cook’s distance, and they allow comparisons across different regressions [35].
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Figure 5. Theoretical toxicokinetic profiles of deoxynivalenol (DON) residue concentrations in 
blood for 3 exposure levels (blue—low, green—medium, and red—high) (A) as a basis for linear 
relationships between DON concentration in blood and diet (B) or exposure (C): (A) After feeding 
the DON-contaminated diets for the first time, the (mean) DON concentration in blood increases 
until a mean steady state is reached (filled circles, dashed line). This scenario applies for ad libitum 
fed animals consuming contaminated meals several times per day. The magnitude of oscillation of 
DON concentrations in blood depends mainly on the half-lives of DON in blood, meal frequency, 
and on meal size. (B) Based on (A), plotting of mean steady state DON residues (filled circles) or 
individual DON residues (unfilled circles) versus the DON concentration of the underlying DON-
containing diets results in linear dose–response relationships. Variation of individual values at com-
parable exposure levels occurs in the direction of the abscissa only and represents variation in time 
of blood sampling relative to the last meal and is further modified by the meal size. (C) Compared 
with (B), variation additionally occurs in the direction of the ordinate, as individual DON exposure 

Figure 5. Theoretical toxicokinetic profiles of deoxynivalenol (DON) residue concentrations in
blood for 3 exposure levels (blue—low, green—medium, and red—high) (A) as a basis for linear
relationships between DON concentration in blood and diet (B) or exposure (C): (A) After feeding the
DON-contaminated diets for the first time, the (mean) DON concentration in blood increases until
a mean steady state is reached (filled circles, dashed line). This scenario applies for ad libitum fed
animals consuming contaminated meals several times per day. The magnitude of oscillation of DON
concentrations in blood depends mainly on the half-lives of DON in blood, meal frequency, and on
meal size. (B) Based on (A), plotting of mean steady state DON residues (filled circles) or individual
DON residues (unfilled circles) versus the DON concentration of the underlying DON-containing
diets results in linear dose–response relationships. Variation of individual values at comparable
exposure levels occurs in the direction of the abscissa only and represents variation in time of blood
sampling relative to the last meal and is further modified by the meal size. (C) Compared with (B),
variation additionally occurs in the direction of the ordinate, as individual DON exposure varies at
similar dietary DON concentrations due to differences in body weight (BW) and DON intake as the
product of dry matter intake and DON concentration of the diet. This individuality may result in
overlapping between different exposure levels and an overall increased dispersion of observations
over the entire observation range. Black unfilled circles and squares represent possible scenarios
observable at dietary DON background contamination. In addition to non-detection in blood (unfilled
squares that intercept the ordinate), the DON exposure might become virtually zero when dietary
DON concentrations remain lower than LOD/LOQ. In this situation, DON residues in blood might
still be detectable (unfilled black squares that intercepts the abscissa), owing to sensitivity differences
of analytical methods for feed and blood.

If the residual of an observation obtained from an OLS fitting with this observation is
small compared with its residual resulting from an OLS fitting without that observation,
then its hat score is high. Hat scores vary between 0 and 1 and are evaluated differently.
Common to all definitions for setting limits for separating suspicious observations is
that they are based on rules of thumb. While some recommend setting the limits at 2 to
3 times the mean hat score [36,37], others set the limit at mean value of the hat scores
plus the two- to threefold standard deviation of the hat scores [38]. The Studentized
residual of an observation increases as the residual itself increases, and it is regarded as
critical when it becomes greater than two or less than negative 2. Cook’s distance combines
Studentized residuals with hat scores and increases when both influential measures increase.
Observations with Cook’s distances greater than 1 are expected to have significant effects
on the regression coefficients [35]. All these influential measures can only aid in identifying
observations that behave differently from most other observations. It is generally agreed
that the experimenter has to decide whether these suspicious observations are indeed
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outliers or explainable observations to be retained in the data. In the present study, none of
the 18 identified suspicions observations originating exclusively from Experiment 1 could
be traced back to experimental, pre-analytical, or analytical errors. Rather, their suspicious
deviation from the scatter of most other observations might be due to toxicokinetics, as
discussed above and further elaborated here. On specimen collection days, cows were
sampled between ~8:00 and ~13:30 without noting the exact clock time. On the basis of
this time span of approximately 5.5 h and on the automatic recording of the time of the last
meal prior to the beginning of sampling at 8:00, the real time span between the last meal
of a cow and the sampling of blood and other specimens varied between less than 20 min
for cows that were coincidentally taking a meal when picked up for sampling and more
than 10 h when the last meal was taken on the evening before sampling. Additionally, meal
sizes for the last meals before sampling varied between 0.1 and ~5 kg fresh matter TMR.
Furthermore, taking into account the rapid absorption and elimination of DON in dairy
cows, as indicated by blood peak times of 3.5 h and 4.7 h, and an estimated elimination
half-life of approximately 2.5 h to 3 h [39] after a single oral DON bolus, it is likely that
individual cows of similarly calculated DON exposures exhibited large differences in
DON residue levels, reflecting rather the kinetics observable after a single DON bolus
than that at the postulated steady state. In fact, the minimum and maximum values of
1.0 and 18.0 ng/mL, 2.5 and 48.0 ng/mL, and 4.8 and 112.3 ng/mL for the low, medium,
and highly DON-exposed groups of Experiment 1, respectively, support a departure from
the steady state conditions. Nevertheless, most observations followed the postulated linear
pattern, which was confirmed by the rainbow test, particularly when the combined dataset
of DON residue levels in blood from Experiments 1 and 2 was used for the regression.
However, the apparent departures from linearity observed for some regression equations
are likely caused by the discussed noise in the region of the origin and by the fact that lower
toxin concentrations both in the diets and the physiological specimens are associated with
larger unavoidable errors, according to the rules of Horwitz [40]. While linearity can be
assumed for DON residues in blood on the basis of toxicokinetic backgrounds, the situation
for the other specimens appears to be more complex. Urine, bile, and milk are the main
excretory routes for DON residue elimination but are excreted irregularly (bile and urine) or
with an artificial pattern (milk). Thus, DON residues are more or less concentrated in these
matrices depending on the magnitude of influx from the blood, which, in turn, depends
on the time elapsed since the last meal and its size. Although these factors contribute
to the variation, linearity was also confirmed for the regression equations estimated for
urine and milk, while DON residue levels in bile obviously did not follow a linear pattern,
according to the rainbow test. A closer look at the scatter of bile residues revealed that
two observations in particular that were located in the right lower quadrant were flagged
as influential. In fact, the maximum DON residue concentration in bile was the only
observation amongst all matrices that exceeded a Cook’s distance of 1 and reached a value
of 7.07. Bootstrapping of the linear models resulted in two-peaked slope distributions and
substantial deviations from linearity in the qq-plots. In this situation, bootstrapping of the
robust linear regression largely overcame these problems, leading to a symmetrical slope
distribution, particularly when estimated without an intercept. Moreover, the differences
in the slopes estimated through linear and robust linear regression were larger for bile
than for the other matrices. Larger differences in regression results obtained from OLS
fitting vs. IWLS, as observed for bile, provided a practical diagnostic warning that outliers
may be influencing the OLS results [41]. That this was observed only for bile, although
even more individual observations were flagged as apparently influential in other matrices,
might be due to the fact that extreme values occurred both in the direction of the abscissa
and the ordinate, which was not the case for bile. This might also be the reason why the
robust fitting of milk DON residues using bootstrapping even deteriorated the symmetry
of slope distribution and the corresponding qq-plot. The same phenomenon was observed
for blood DON residues, where OLS was found to be superior compared with IWLS.
A similar trend was noticed for urine.
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4.3. Comparative Aspects on Suitability of Various Matrices as Predictors

In addition to the discussed toxicological and statistical features, particularly practical
aspects need to be considered to decide which matrix is preferred for the diagnosis of DON
exposure (Table 3). The inner exposure to DON is best reflected by blood since it transports
DON residues directly to target tissues. Only fractions of systemically absorbed DON
residues are extracted from blood and finally excreted via urine or milk, whereas DON
residues in these specimens are less related to the levels in target tissues on theoretical
backgrounds. The same is principally true for bile, but closeness to inner exposure is further
compromised by a putative, but up to now not quantifiable, enterohepatic cycling of DON
residues, although comparable ranges of DON residues in blood and bile suggest at least
a less pronounced role of such a cycling as compared with ZEN residues. These aspects
further support the discussed problems in fitting DON residues in bile to linear models.
Thus, the relationship to dietary DON exposure is rated as less linear than that for blood,
urine, and milk.

Table 3. Comparative aspects regarding the usefulness of various specimens from cows for estimation
of exposure to deoxynivalenol (DON).

Specimen Urine Blood Bile Milk

Expected DON residue levels very high low low very low
Specimen collection non-invasive minimally invasive minimally invasive non-invasive

Closeness to the inner (systemic) exposure reasonable good poor reasonable
Relationship to dietary exposure 1 linear linear weakly linear linear

1 at steady state.

In addition to these toxicological and statistical aspects, analytical issues and practica-
bility of the sample collection need to be balanced with the former aspects for a decision on
a particular specimen. Particularly when it comes to exposure assessment at background
DON contamination of feed, rather low LODs/LOQs are required both for feed and for
physiological samples to avoid the decision of how to handle analytical results which are
lower than LOD (results might set to zero, to the value of the LOD, or to the half of the value
of the LOD for further calculations) or higher than LOD but lower than LOQ (values are
generally regarded as questionable but are sometimes used for further statistical analyses).
All these uncertainties cause the discussed noise in the region of the origin, consequently
causing predictive uncertainty. Comparing the LODs/LOQs with the respective ranges
detected in various matrices (Tables 1 and A1), particularly at lower dietary exposure
levels, would clearly favor urine, where rather large DON residue concentrations that are
safely detectable can be expected. Moreover, the sampling of urine is non-invasive but
might require more time than the sampling of blood, milk, or even bile. Milk sampling,
on the other hand, could be implemented in the daily milking routine but is hampered
by the lowest DON residue concentrations. Blood and bile can be sampled by a simple
puncturing of a blood vessel or of the bile bladder, respectively. While puncturing of
a Vena jugularis externa can be accomplished with a routine diagnostic tool, the sampling
of bile requires an ultrasound-guided localizing and puncturing of the bile bladder situated
at the right abdominal wall (Figure 6). Although prediction equations based on DON
residues in bile need to be qualified further, the collection of bile could be interesting when
monitoring ZEN exposure at the same time. ZEN and its metabolites undergo an intensive
enterohepatic cycling, whereby diagnostic opportunities are likely better than for DON.
DON and ZEN often co-occur in maize-based feedstuffs commonly used in cow feeding.
Therefore, analytical methods for detecting DON and ZEN residues at the same time, as
applied in Experiments 1 and 2, make bile interesting as a diagnostic specimen.
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Figure 6. Ultrasound-guided localization and puncturing of the gall bladder (photographs by Alex-
ander Starke). 
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posed by Lin [43]. Furthermore, it is strongly recommended to estimate the intercept in ad-
dition to the slope of the regression line as an essential part of an overall (fully quantifying) 
calibration as a regressive form of validation of the known (measured) DON exposure. Thus, 
the calibration curves for internal and external validation were estimated with intercepts. 
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slope suggested that the predicted DON exposure was 0.23 µg/kg BW/d lower per each 1.0 
µg/kg BW/d increase in observed DON exposure, which is equivalent to a 23% underesti-
mation. The smaller location shift compared with the larger scale shift further substantiated 
the systematic deviation of the regression line from the 90° angle bisector. The closer both 
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both shifts were higher for the external calibration, whereby the slope nearly reached that 
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4.4. Internal and External Validation of Prediction Equations for DON Residues in Blood

A simple Pearson correlation coefficient and the r2 of a corresponding linear regression
are unsuited to confirm the concordance, defined as the degree of agreement, between
two methods, as they can still deviate systematically from each other [22,42]. Pearson’s
r just reflects the precision component of the linear relationship and is a measure of how
far the observations are located from the best-fit line, while accuracy considers how far
the best-fit line deviates from the 45◦ line [43]. Precision and accuracy are combined in the
CCC as proposed by Lin [43]. Furthermore, it is strongly recommended to estimate the
intercept in addition to the slope of the regression line as an essential part of an overall
(fully quantifying) calibration as a regressive form of validation of the known (measured)
DON exposure. Thus, the calibration curves for internal and external validation were
estimated with intercepts. The intercept for the internal calibration line did not signifi-
cantly differ from zero, while the slope suggested that the predicted DON exposure was
0.23 µg/kg BW/d lower per each 1.0 µg/kg BW/d increase in observed DON exposure,
which is equivalent to a 23% underestimation. The smaller location shift compared with the
larger scale shift further substantiated the systematic deviation of the regression line from
the 90◦ angle bisector. The closer both shifts are to zero, the more closely the regression
line will match the 45◦ line and CCC will reach 1.0 when both shifts are equal to zero [44].
Compared with the internal calibration, both shifts were higher for the external calibration,
whereby the slope nearly reached that estimated for the internal calibration curve, resulting
in an underestimation of 26%. For a number of observations (n = 80) of the dataset used
for external validation (Experiment 3), the predicted DON exposure was zero, although
a positive DON exposure was noticed at the same time, which likely resulted from the
more than tenfold higher LODs for DON residues in blood compared with Experiments
1 and 2. OLS fitting does not provide the best estimates for regression coefficients when
dependent observations are equal to zero, for example, such as when they are left-censored,
while Tobit regression uses a modified likelihood function in such a way that it mirrors the
unequal sampling probability for non-censored and censored observations [45]. Applying
this method to Experiment 3 increased the slope from 0.77 when estimated using OLS to
0.87 when using Tobit regression. At the same time, the intercept on the ordinate decreased
markedly to a value −29 µg DON/kg BW/d and, consequently, had a more pronounced
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location shift. Moreover, the RSE was higher compared with OLS fitting. On the basis
of this and for a better comparability with the internal validation, the results of the OLS
were preferred.

CCCs were comparable and reached 0.83 and 0.79 for internal and external non-Tobit
OLS calibrations, respectively. Assigning the height of the CCC to the categories of poor,
excellent, or further is handled differently in the literature [46]. If the CCC is interpreted
in a similar way to Pearson’s r, as suggested by [47], then the CCCs for both internal and
external validation are rated as moderate to very strong, depending on the author, as
reviewed in [46]. Nonetheless, the decision of whether the degree of agreement is sufficient
largely depends on the professional context. A further evaluation of agreement between
two methods is possible when the differences between the corresponding data of the two
methods to be evaluated are plotted against their means (Bland–Altman plots). Compared
with correlation or regression plots, with this type of plot, the size of the differences
are easily evaluable; the distribution around the zero line can be assessed, and it can
be evaluated whether the differences increases with means [47]. The mean difference is
regarded as an estimate of the average bias of one method relative to the other one [47].
For the current data, the bias differed only slightly from zero for the internal validation
but to a larger extent for the external validation. Here, the bias of 29 µg DON/kg BW/d
would correspond to an underestimation of approximately 1 mg DON/kg diet through
the prediction Equation 6 (Table 2) when extrapolated to DON concentration in feed. In
addition to the overall bias, the evaluation of how individual observations agree for the two
methods can be managed by using the standard deviations for constructing the limits of
agreement as ±1.96 standard deviation of the differences. Thus, approximately 95% of the
observations are expected to be within the limits of agreement when a normal distribution
is assumed. That this assumption holds true for both internal and external validation
might be deduced from the homoscedastic scatter. The observations located outside the
limits of agreement are those considered as possible influential observations, which, were
discussed as valid data from a toxicokinetic viewpoint and, thus, were not omitted from
the regression analyses. At the same time, these observations cannot, or can only poorly, be
predicted. In addition to the toxicokinetic issues already discussed for these observations,
the dilemma with these data might also be caused by the method of calculating the DON
exposure and the timing of the individual blood sample assigned to this exposure. DON
exposure represents the daily mean value, while the blood sample was collected at a specific
timepoint on that particular day, matching the average DON exposure more or less.

Taken together, the Bland–Altman plots suggested a reasonable agreement between
measured and predicted DON exposure for internal validation, while a systematic underes-
timation was noticed for the external validation, whereby a generalization of prediction
Equation 6 is questioned. However, Bland and Altman [28] suggested a correction for this
bias. This would entail adding a constant value of 29 µg DON/kg BW/d to the predicted
DON exposures based on Equation 6, irrespective of the level of DON residues detected in
the blood. Further data should be generated for external validation. Except for the bias
that was not revealed by the Bland–Altman method, the validation results for external and
internal calibration were reasonably comparable, although different analytical methods
were used for the detection of DON residues in the blood.

4.5. Recommendations for Appropriate Sampling Sizes for Future Predictions

Assessment of DON exposure based on DON residues in physiological specimens
aims at differential diagnostics of clinically ill individual cows or at a general evaluation
of the herd exposure level. For the latter, one is interested in the mean expected exposure
level as a basis for management measures. For matching this mean exposure to a defined
statistical confidence, it has to be determined how many cows need to be sampled. This,
in turn, depends on the expected standard deviation of DON residues, e.g., in the blood,
as a predictor for DON exposure on herd size and on statistical confidence, which can
be influenced by setting an appropriate half width of the confidence interval. Standard
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deviation of DON residues in blood obtained from the pooled datasets of Experiments 1
and 2 (Table 1) was used as a starting point for defining the half width of the confidence
interval as a proportion ranging from 0.1 to 1.0 or from 10 to 100%. The decision regarding
an adequate half interval width must be derived from a professional viewpoint, i.e., to
decide whether the associated precision is low or high from a practical viewpoint. For
example, assuming the half interval width of the confidence interval to be onefold that
of the standard deviation of 20 ng DON residues/mL blood places it between 10 and
30 ng/mL (Figure 7), which corresponds to an estimated mean of 20 ng DON residues/mL
blood. This would correspond to a range of DON exposures between 25 and 76 µg/kg
BW/d when Equation 6 (Table 2) is used for prediction.
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Figure 7. Exemplarily demonstration of the consequences of setting different half interval widths
of the confidence interval (CI) as a fraction of standard deviation (SD = 20 ng/mL blood, see
Table 1, combined dataset for Exps. 1 and 2) as an indicator of the precision of the estimation of the
mean value at the predictor (DON residues in blood) and, consequently, at the response variable
(DON exposure).

This range can be even better evaluated when the exposure is traced back to the diet
contamination with DON. This requires an assumption regarding feed intake and BW.
Assuming a DMI of 20 kg/d and a BW of 700 kg would correspond to a dietary DON
contamination range of 2 mg (1 to 3 mg/kg) at a reference DM content of 88%, which is
clearly independent of the real DON residue levels. Taking further into account that 5 mg
DON/kg diets are considered as critical for dairy cows, a range of 2 mg DON/kg diet
would be regarded as too imprecise for the expected mean value. Reducing the half width of
the confidence interval to 0.5 times the standard deviation would result in a range of 1 mg
DON/kg diet as a measure for precision for the associated mean value. The reduction in
the half interval width of the confidence interval from 1 to 0.5 times the standard deviation
would correspond to requiring 9 additional cows to be sampled for a herd size of 100 cows,
i.e., 15 cows vs. 6 cows (see Table A2), which is the price for the improvement in precision.

5. Conclusions

The fluctuation of DON residues in blood and other matrices needs to be examined
frequently in the course of the day along with the times and sizes of meals relative to
sampling in order to substantiate the expected steady state conditions claimed for ad libitum
fed cows, which, in turn, is the toxicokinetic basis for the assumed linearity. In addition to
linearity, the assumption was made that zero DON residue levels in physiological matrices
cannot be associated with a significant DON exposure. Therefore, linear models without
intercepts were preferred.
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IWLS fitted models (robust regressions, rlm models) generally resulted in lower RSEs
and tighter prediction intervals through the outweighing of apparent outliers. However, on
the basis of toxicokinetic considerations, these outliers were identified as valid observations.
Together with the overall variability in the data, OLS-fitted models (ordinary linear regres-
sions, lm models) were considered as more appropriate. The associated wider prediction
intervals appeared to reflect the practical situation more reliably. Furthermore, bootstrap-
ping of IWLS and OLS models was used to avoid having to rely on the assumptions that
usually have to be fulfilled for regressions. Results showed that OLS fitting was superior
compared with the corresponding IWLS fittings, except for the case of bile. On the basis of
the limited data situation for bile, the derived equations should only be used with caution.

On the basis of the above concluded assumptions and limitations, Equation 6 is
recommended for blood, Equation 20 for urine, and Equation 28 for milk. On the basis of
both internal and external validation, blood is currently the most trustworthy for prediction
of DON exposure, and the use of larger sets is recommended.

Models directly relating DON residues in blood to the DON concentration in the diet
are the models of choice, as the DON concentrations in the diet can be associated with
established critical concentrations, while predicted DON exposures need to be transformed
to DON concentrations of the diets by assuming a particular BW and DMI. Although
Equations 13 to 16 are based on DON concentrations of the diets as a response variable,
their validity might be hampered by left-censored data, limiting the validity to only a few
levels. More graded DON levels should be tested to improve these equations.

For DON residue levels in physiological matrices which are lower than the exposure
thresholds, an unknown proportion of future predictions will result in a zero DON expo-
sure, although the best estimate is located on the regression line and will, consequently,
predict positive DON exposures. In other words, DON residue levels larger than the expo-
sure threshold predict positive DON exposures lying within the prediction interval with
a 95% probability.

With regard to sampling size for future predictions of the mean exposure of a given
herd size, the standard deviation and half width of the confidence interval are the determin-
ing parameters. Pooling of the collected samples to one individual sample to be analyzed
for DON residues is not recommended since extreme individual values are assumed to
adulterate the mean value and, consequently, the predicted DON exposure. Individual
predictions are loaded with a large portion of uncertainty, as was evident by the width of
the prediction intervals.
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Figure A1. Linear regression (method lm) of deoxynivalenol (DON) residues in blood on DON ex-
posure with ((A,B) for zooming in the lower concentration range) and without intercept ((C,D) for 
zooming in the lower concentration range) separately for Experiments 1 and 2 (n = 116 and n = 121, 
respectively). Red and blue solid lines denote the linear regressions, and dashed red and blue lines 
limit the prediction intervals at a 0.95 confidence level for future predictions for Experiments 1 and 
2, respectively. Red and blue filled dots show the corresponding measured data pairs. Blue open 
circles lying on the red solid line represent the predicted values of Experiment 2 when regression of 
Experiment 1 is used as prediction equation. 
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Figure A3. Linear regression (method rlm) of deoxynivalenol (DON) residues in blood on DON exposure
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with (A) and without intercept (C) using the original dataset pooled over Experiments 1 and 2
(n = 237). Red solid lines denote the linear regression, and dashed red lines limit the prediction
intervals at a 0.95 confidence level for future predictions. Red dots show the measured data pairs.
Blue solid lines represent 200 bootstrap regressions randomly selected from a total of 2000 bootstraps.
Intercept and slopes generated by bootstrapping (n = 2000) using the original dataset were used for
validation and are presented as density distributions (solid red vertical lines show the mean value of
the regression coefficients, and dashed blue vertical lines include the 0.95 confidence interval) and
qq-plots (with intercept (B) and without intercept (D)).
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value of the regression coefficients, and dashed blue vertical lines include the 0.95 confidence inter-
val) and qq-plots (with intercept (B) and without intercept (D)). 
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Figure A4. Linear regression (method lm) of deoxynivalenol (DON) residues in blood on DON con-
centration in feed with ((A,B) for zooming in the lower concentration range) and without intercept 
((C,D) for zooming in the lower concentration range) separately for Experiments 1 and 2 (n = 116 
and n = 121, respectively). Red and blue solid lines denote the linear regressions, and dashed red 
and blue lines limit the prediction intervals at a 0.95 confidence level for future predictions for Ex-
periments 1 and 2, respectively. Red and blue filled dots show the corresponding measured data 
pairs. Blue open circles lying on the red solid line represent the predicted values of Experiment 2 
when regression of Experiment 1 is used as prediction equation. 

  

Figure A4. Linear regression (method lm) of deoxynivalenol (DON) residues in blood on DON
concentration in feed with ((A,B) for zooming in the lower concentration range) and without intercept
((C,D) for zooming in the lower concentration range) separately for Experiments 1 and 2 (n = 116 and
n = 121, respectively). Red and blue solid lines denote the linear regressions, and dashed red and blue
lines limit the prediction intervals at a 0.95 confidence level for future predictions for Experiments 1
and 2, respectively. Red and blue filled dots show the corresponding measured data pairs. Blue open
circles lying on the red solid line represent the predicted values of Experiment 2 when regression of
Experiment 1 is used as prediction equation.
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Figure A5. Linear regression (method lm) of deoxynivalenol (DON) residues in blood on DON con-
centration in feed with (A) and without intercept (C) using the original dataset pooled over Experi-
ments 1 and 2 (n = 237). Red solid lines denote the linear regression, and dashed red lines limit the 
prediction intervals at a 0.95 confidence level for future predictions. Red dots show the measured 
data pairs. Blue solid lines represent 200 bootstrap regressions randomly selected from a total of 
2000 bootstraps. Intercept and slopes generated by bootstrapping (n = 2000) using the original da-
taset were used for validation and are presented as density distributions (solid red vertical lines 
show the mean value of the regression coefficients, and dashed blue vertical lines include the 0.95 
confidence interval) and qq-plots (with intercept (B) and without intercept (D)). 
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Figure A5. Linear regression (method lm) of deoxynivalenol (DON) residues in blood on DON
concentration in feed with (A) and without intercept (C) using the original dataset pooled over
Experiments 1 and 2 (n = 237). Red solid lines denote the linear regression, and dashed red lines limit
the prediction intervals at a 0.95 confidence level for future predictions. Red dots show the measured
data pairs. Blue solid lines represent 200 bootstrap regressions randomly selected from a total of
2000 bootstraps. Intercept and slopes generated by bootstrapping (n = 2000) using the original dataset
were used for validation and are presented as density distributions (solid red vertical lines show the
mean value of the regression coefficients, and dashed blue vertical lines include the 0.95 confidence
interval) and qq-plots (with intercept (B) and without intercept (D)).
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Figure A6. Linear regression (method lm) of deoxynivalenol (DON) residues in urine on DON ex-
posure with (A) and without intercept (C). Red solid lines denote the linear regression using the 
original dataset of Experiment 1, n = 99, and dashed red lines limit the prediction intervals at a 0.95 
confidence level for future predictions. Red dots show the measured data pairs. Blue solid lines 
represent 200 bootstrap regressions randomly selected from a total of 2000 bootstraps. Intercept and 
slopes generated by bootstrapping (n = 2000) using the original dataset were used for validation and 
are presented as density distributions (solid red vertical lines show the mean value of the regression 
coefficients, and dashed blue vertical lines include the 0.95 confidence interval) and qq-plots (with 
intercept (B) and without intercept (D)). 
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Figure A7. Linear regression (method rlm) of deoxynivalenol (DON) residues in urine on DON 
exposure with (A) and without intercept (C). Red solid lines denote the linear regression using the 
original dataset of Experiment 1, n = 99, and dashed red lines limit the prediction intervals at a 0.95 
confidence level for future predictions. Red dots show the measured data pairs. Blue solid lines 
represent 200 bootstrap regressions randomly selected from a total of 2000 bootstraps. Intercept and 
slopes generated by bootstrapping (n = 2000) using the original dataset were used for validation and 

Figure A6. Linear regression (method lm) of deoxynivalenol (DON) residues in urine on DON
exposure with (A) and without intercept (C). Red solid lines denote the linear regression using
the original dataset of Experiment 1, n = 99, and dashed red lines limit the prediction intervals at
a 0.95 confidence level for future predictions. Red dots show the measured data pairs. Blue solid lines
represent 200 bootstrap regressions randomly selected from a total of 2000 bootstraps. Intercept and
slopes generated by bootstrapping (n = 2000) using the original dataset were used for validation and
are presented as density distributions (solid red vertical lines show the mean value of the regression
coefficients, and dashed blue vertical lines include the 0.95 confidence interval) and qq-plots (with
intercept (B) and without intercept (D)).
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Figure A7. Linear regression (method rlm) of deoxynivalenol (DON) residues in urine on DON 
exposure with (A) and without intercept (C). Red solid lines denote the linear regression using the 
original dataset of Experiment 1, n = 99, and dashed red lines limit the prediction intervals at a 0.95 
confidence level for future predictions. Red dots show the measured data pairs. Blue solid lines 
represent 200 bootstrap regressions randomly selected from a total of 2000 bootstraps. Intercept and 
slopes generated by bootstrapping (n = 2000) using the original dataset were used for validation and 

Figure A7. Linear regression (method rlm) of deoxynivalenol (DON) residues in urine on DON
exposure with (A) and without intercept (C). Red solid lines denote the linear regression using
the original dataset of Experiment 1, n = 99, and dashed red lines limit the prediction intervals at
a 0.95 confidence level for future predictions. Red dots show the measured data pairs. Blue solid lines
represent 200 bootstrap regressions randomly selected from a total of 2000 bootstraps. Intercept and
slopes generated by bootstrapping (n = 2000) using the original dataset were used for validation and
are presented as density distributions (solid red vertical lines show the mean value of the regression
coefficients, and dashed blue vertical lines include the 0.95 confidence interval) and qq-plots (with
intercept (B) and without intercept (D)).
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are presented as density distributions (solid red vertical lines show the mean value of the regression 
coefficients, and dashed blue vertical lines include the 0.95 confidence interval) and qq-plots (with 
intercept (B) and without intercept (D)). 
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Figure A8. Linear regression (method lm) of deoxynivalenol (DON) residues in bile on DON expo-
sure with (A) and without intercept (C). Red solid lines denote the linear regression using the orig-
inal dataset of Experiment 1, n = 85, and dashed red lines limit the prediction intervals at a 0.95 
confidence level for future predictions. Red dots show the measured data pairs. Blue solid lines 
represent 200 bootstrap regressions randomly selected from a total of 2000 bootstraps. Intercept and 
slopes generated by bootstrapping (n = 2000) using the original dataset were used for validation and 
are presented as density distributions (solid red vertical lines show the mean value of the regression 
coefficients and dashed blue vertical lines include the 0.95 confidence interval) and qq-plots (with 
intercept (B) and without intercept (D)). 
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Figure A8. Linear regression (method lm) of deoxynivalenol (DON) residues in bile on DON
exposure with (A) and without intercept (C). Red solid lines denote the linear regression using
the original dataset of Experiment 1, n = 85, and dashed red lines limit the prediction intervals at
a 0.95 confidence level for future predictions. Red dots show the measured data pairs. Blue solid lines
represent 200 bootstrap regressions randomly selected from a total of 2000 bootstraps. Intercept and
slopes generated by bootstrapping (n = 2000) using the original dataset were used for validation and
are presented as density distributions (solid red vertical lines show the mean value of the regression
coefficients and dashed blue vertical lines include the 0.95 confidence interval) and qq-plots (with
intercept (B) and without intercept (D)).
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Figure A8. Linear regression (method lm) of deoxynivalenol (DON) residues in bile on DON expo-
sure with (A) and without intercept (C). Red solid lines denote the linear regression using the orig-
inal dataset of Experiment 1, n = 85, and dashed red lines limit the prediction intervals at a 0.95 
confidence level for future predictions. Red dots show the measured data pairs. Blue solid lines 
represent 200 bootstrap regressions randomly selected from a total of 2000 bootstraps. Intercept and 
slopes generated by bootstrapping (n = 2000) using the original dataset were used for validation and 
are presented as density distributions (solid red vertical lines show the mean value of the regression 
coefficients and dashed blue vertical lines include the 0.95 confidence interval) and qq-plots (with 
intercept (B) and without intercept (D)). 
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Figure A9. Linear regression (method rlm) of deoxynivalenol (DON) residues in bile on DON ex-
posure with (A) and without intercept (C). Red solid lines denote the linear regression using the 
original dataset of Experiment 1, n = 85, and dashed red lines limit the prediction intervals at a 0.95 
confidence level for future predictions. Red dots show the measured data pairs. Blue solid lines 
represent 200 bootstrap regressions randomly selected from a total of 2000 bootstraps. Intercept and 
slopes generated by bootstrapping (n = 2000) using the original dataset were used for validation and 
are presented as density distributions (solid red vertical lines show the mean value of the regression 
coefficients and dashed blue vertical lines include the 0.95 confidence interval) and qq-plots (with 
intercept (B) and without intercept (D)). 
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Figure A10. Linear regression (method lm) of deoxynivalenol (DON) residues in milk on DON ex-
posure with (A) and without intercept (C). Red solid lines denote the linear regression using the 
original dataset of Experiment 1, n = 109, and dashed red lines limit the prediction intervals at a 0.95 
confidence level for future predictions. Red dots show the measured data pairs. Blue solid lines 
represent 200 bootstrap regressions randomly selected from a total of 2000 bootstraps. Intercept and 
slopes generated by bootstrapping (n = 2000) using the original dataset were used for validation and 

Figure A9. Linear regression (method rlm) of deoxynivalenol (DON) residues in bile on DON
exposure with (A) and without intercept (C). Red solid lines denote the linear regression using
the original dataset of Experiment 1, n = 85, and dashed red lines limit the prediction intervals at
a 0.95 confidence level for future predictions. Red dots show the measured data pairs. Blue solid lines
represent 200 bootstrap regressions randomly selected from a total of 2000 bootstraps. Intercept and
slopes generated by bootstrapping (n = 2000) using the original dataset were used for validation and
are presented as density distributions (solid red vertical lines show the mean value of the regression
coefficients and dashed blue vertical lines include the 0.95 confidence interval) and qq-plots (with
intercept (B) and without intercept (D)).

Dairy 2023, 4, 2  387 
 

 

(C) (D) 

  

Figure A9. Linear regression (method rlm) of deoxynivalenol (DON) residues in bile on DON ex-
posure with (A) and without intercept (C). Red solid lines denote the linear regression using the 
original dataset of Experiment 1, n = 85, and dashed red lines limit the prediction intervals at a 0.95 
confidence level for future predictions. Red dots show the measured data pairs. Blue solid lines 
represent 200 bootstrap regressions randomly selected from a total of 2000 bootstraps. Intercept and 
slopes generated by bootstrapping (n = 2000) using the original dataset were used for validation and 
are presented as density distributions (solid red vertical lines show the mean value of the regression 
coefficients and dashed blue vertical lines include the 0.95 confidence interval) and qq-plots (with 
intercept (B) and without intercept (D)). 

(A) (B) 

  
(C) (D) 

  

Figure A10. Linear regression (method lm) of deoxynivalenol (DON) residues in milk on DON ex-
posure with (A) and without intercept (C). Red solid lines denote the linear regression using the 
original dataset of Experiment 1, n = 109, and dashed red lines limit the prediction intervals at a 0.95 
confidence level for future predictions. Red dots show the measured data pairs. Blue solid lines 
represent 200 bootstrap regressions randomly selected from a total of 2000 bootstraps. Intercept and 
slopes generated by bootstrapping (n = 2000) using the original dataset were used for validation and 

Figure A10. Linear regression (method lm) of deoxynivalenol (DON) residues in milk on DON
exposure with (A) and without intercept (C). Red solid lines denote the linear regression using the
original dataset of Experiment 1, n = 109, and dashed red lines limit the prediction intervals at
a 0.95 confidence level for future predictions. Red dots show the measured data pairs. Blue solid lines
represent 200 bootstrap regressions randomly selected from a total of 2000 bootstraps. Intercept and
slopes generated by bootstrapping (n = 2000) using the original dataset were used for validation and
are presented as density distributions (solid red vertical lines show the mean value of the regression
coefficients and dashed blue vertical lines include the 0.95 confidence interval) and qq-plots (with
intercept (B) and without intercept (D)).
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Figure A11. Linear regression (method rlm) of deoxynivalenol (DON) residues in milk on DON 
exposure with (A) and without intercept (C). Red solid lines denote the linear regression using the 
original dataset of Experiment 1, n = 109, and dashed red lines limit the prediction intervals at a 0.95 
confidence level for future predictions. Red dots show the measured data pairs. Blue solid lines 
represent 200 bootstrap regressions randomly selected from a total of 2000 bootstraps. Intercept and 
slopes generated by bootstrapping (n = 2000) using the original dataset were used for validation and 
are presented as density distributions (solid red vertical lines show the mean value of the regression 
coefficients and dashed blue vertical lines include the 0.95 confidence interval) and qq-plots (with 
intercept (B) and without intercept (D)). 

Table A1. Summary of limits of detection (LOD) and of quantification (LOQ) in feed and various 
physiological matrices for deoxynivalenol (DON) and DOM-1 applied for Experiments 1 to 3. 

Experiment Matrix Toxin LOD (ng/mL) LOQ 
(ng/mL) 

Sample 
Clean-Up 

Detection Method Reference 

1 Feed DON  0.03 mg/kg  IAC HPLC-DAD [48] 
 Blood plasma DON 0.19 0.65 SPE HPLC-MS/MS [11] 
  DOM-1 0.09 0.31 SPE HPLC-MS/MS 
 Urine DON 0.25 0.80 SPE HPLC-MS/MS [13] 
  DOM-1 0.25 0.85 SPE HPLC-MS/MS 
 Milk DON 0.31 1.03 SPE HPLC-MS/MS 

[14]   DOM-1 0.17 0.58 SPE HPLC-MS/MS 
 Bile DON 0.16 0.53 IAC HPLC-MS/MS 

[12]   DOM-1 0.04 0.13 IAC HPLC-MS/MS 
2 Feed DON 0.03 mg/kg  IAC HPLC-DAD [48] 

Figure A11. Linear regression (method rlm) of deoxynivalenol (DON) residues in milk on DON
exposure with (A) and without intercept (C). Red solid lines denote the linear regression using the
original dataset of Experiment 1, n = 109, and dashed red lines limit the prediction intervals at
a 0.95 confidence level for future predictions. Red dots show the measured data pairs. Blue solid lines
represent 200 bootstrap regressions randomly selected from a total of 2000 bootstraps. Intercept and
slopes generated by bootstrapping (n = 2000) using the original dataset were used for validation and
are presented as density distributions (solid red vertical lines show the mean value of the regression
coefficients and dashed blue vertical lines include the 0.95 confidence interval) and qq-plots (with
intercept (B) and without intercept (D)).

Table A1. Summary of limits of detection (LOD) and of quantification (LOQ) in feed and various
physiological matrices for deoxynivalenol (DON) and DOM-1 applied for Experiments 1 to 3.

Experiment Matrix Toxin LOD
(ng/mL)

LOQ
(ng/mL)

Sample
Clean-Up Detection Method Reference

1 Feed DON 0.03 mg/kg IAC HPLC-DAD [48]
Blood plasma DON 0.19 0.65 SPE HPLC-MS/MS

[11]DOM-1 0.09 0.31 SPE HPLC-MS/MS
Urine DON 0.25 0.80 SPE HPLC-MS/MS

[13]DOM-1 0.25 0.85 SPE HPLC-MS/MS
Milk DON 0.31 1.03 SPE HPLC-MS/MS

[14]DOM-1 0.17 0.58 SPE HPLC-MS/MS
Bile DON 0.16 0.53 IAC HPLC-MS/MS

[12]DOM-1 0.04 0.13 IAC HPLC-MS/MS
2 Feed DON 0.03 mg/kg IAC HPLC-DAD [48]

Blood plasma DON 0.22 0.72 SPE HPLC-MS/MS
[34]DOM-1 0.16 0.55 SPE HPLC-MS/MS

3 Feed DON 0.03 mg/kg IAC HPLC-DAD [48]
Blood serum DON 2.0 IAC HPLC-UVD

[16]DOM-1 2.0 IAC HPLC-UVD

Abbreviations: HPLC, high-performance liquid chromatography; MS; mass spectrometer; UVD, ultraviolet
detector; DAD, diode array detector; SPE, solid phase extraction; IAC, immunoaffinity columns.
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Table A2. Sample size n to be collected dependent on half width of the confidence interval (hw_CI)
as a fraction of the standard deviation (fr_SD) for different herd sizes (N). Standard deviation of
DON residues in blood was obtained from the pooled dataset of Experiments 1 and 2 (see Table 1).

fr_SD 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
hw_CI 2 4 6 8 10 12 14 16 18 20

N
25 24 20 17 14 11 9 8 7 6 6
50 45 34 24 18 14 11 9 8 7 6
75 63 43 29 20 15 12 9 8 7 6
100 80 50 32 21 15 12 10 8 7 6
125 95 56 34 22 16 12 10 8 7 6
150 109 60 35 23 16 12 10 8 7 6
175 121 64 36 23 16 12 10 8 7 6
200 132 67 37 24 17 12 10 8 7 6
225 143 69 38 24 17 13 10 8 7 6
250 152 71 39 24 17 13 10 8 7 6
275 161 73 39 24 17 13 10 8 7 6
300 170 75 40 25 17 13 10 8 7 6
325 177 76 40 25 17 13 10 8 7 6
350 184 77 40 25 17 13 10 8 7 6
375 191 78 41 25 17 13 10 8 7 6
400 197 79 41 25 17 13 10 8 7 6
425 203 80 41 25 17 13 10 8 7 6
450 209 81 41 25 17 13 10 8 7 6
475 214 82 41 25 17 13 10 8 7 6
500 219 83 42 25 17 13 10 8 7 6
625 239 85 42 25 17 13 10 8 7 6
750 256 87 43 26 17 13 10 8 7 6
875 269 89 43 26 18 13 10 8 7 6

1000 279 90 43 26 18 13 10 8 7 6
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