
Citation: Wagner, W.; Hecht, M.;

Zitzmann, S. A SAS Macro for

Automated Stopping of Markov

Chain Monte Carlo Estimation in

Bayesian Modeling with PROC

MCMC. Psych 2023, 5, 966–982.

https://doi.org/10.3390/

psych5030063

Academic Editor: Okan Bulut

Received: 6 July 2023

Revised: 28 August 2023

Accepted: 29 August 2023

Published: 5 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

A SAS Macro for Automated Stopping of Markov Chain Monte
Carlo Estimation in Bayesian Modeling with PROC MCMC
Wolfgang Wagner 1,* , Martin Hecht 2 and Steffen Zitzmann 1

1 Hector Research Institute of Education Sciences and Psychology, University of Tübingen,
72072 Tübingen, Germany; steffen.zitzmann@uni-tuebingen.de

2 Department of Psychology, Helmut Schmidt University, 22043 Hamburg, Germany; martin.hecht@hsu-hh.de
* Correspondence: wolfgang.wagner@uni-tuebingen.de

Abstract: A crucial challenge in Bayesian modeling using Markov chain Monte Carlo (MCMC)
estimation is to diagnose the convergence of the chains so that the draws can be expected to closely
approximate the posterior distribution on which inference is based. A close approximation guarantees
that the MCMC error exhibits only a negligible impact on model estimates and inferences. However,
determining whether convergence has been achieved can often be challenging and cumbersome
when relying solely on inspecting the trace plots of the chain(s) or manually checking the stopping
criteria. In this article, we present a SAS macro called %automcmc that is based on PROC MCMC
and that automatically continues to add draws until a user-specified stopping criterion (i.e., a certain
potential scale reduction and/or a certain effective sample size) is reached for the chain(s).

Keywords: Bayesian statistics; Markov chain Monte Carlo; SAS; PROC MCMC

1. Introduction

The Bayesian modeling framework has become more and more popular in psychology
and related sciences [1]. This is because Bayesian modeling offers greater flexibility in
modeling, fewer estimation problems, and more accurate estimates (e.g., [2–4]). Typically,
Markov chain Monte Carlo (MCMC) techniques are used, which draw from the distribution
of the parameters given the prior beliefs and the observed data—the so-called posterior
distribution. These draws constitute one or more MCMC chains per parameter. As the
chain starts from a specific initial value (also called starting value), it undergoes some
iterations before it potentially reaches convergence and settles into a stable pattern. Thus,
researchers need to determine whether and when estimation has converged, including
whether the model estimates are approximated well by summary statistics, such as the
mean, from the MCMC chain(s). Importantly, to ensure a close approximation, the MCMC
error needs to be small (e.g., [5,6]). However, visually monitoring convergence by inspecting
the trace plots of the chain(s) or manually checking stopping criteria can be challenging
and requires expertise, which researchers, especially those new to MCMC, may lack.
Fortunately, there are software options available, like the Bayes module in Mplus [7], that
offer automatic convergence monitoring. These tools assess convergence by checking
if a specified value for the chosen stopping criterion has been achieved [8]. However,
to the best of our knowledge, such an automated tool is not yet available in SAS for
PROC MCMC [9], which is another powerful tool for conducting statistical analyses based
on MCMC techniques. The advantages of PROC MCMC compared with different R
packages for MCMC analyses are, for example, that it shows fewer memory limitations
and—due to multithreading (which is, however, not available in the online version of SAS
OnDemand for Academics freely accessible for academic researchers)—is computationally
more efficient [10]. Moreover, the syntax of SAS PROC MCMC is not only intuitive for
beginners but also highly flexible for advanced users. By default, SAS PROC MCMC utilizes
a random walk Metropolis sampler. Additionally, it provides a range of 28 standard prior

Psych 2023, 5, 966–982. https://doi.org/10.3390/psych5030063 https://www.mdpi.com/journal/psych

https://doi.org/10.3390/psych5030063
https://doi.org/10.3390/psych5030063
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/psych
https://www.mdpi.com
https://orcid.org/0000-0001-9781-4630
https://orcid.org/0000-0002-5168-4911
https://doi.org/10.3390/psych5030063
https://www.mdpi.com/journal/psych
https://www.mdpi.com/article/10.3390/psych5030063?type=check_update&version=2

Psych 2023, 5 967

distributions that can be readily applied. However, the flexibility of the procedure extends
further as users can also define their own samplers and prior distributions according to
their specific requirements [9]. In recent years, many articles utilizing PROC MCMC have
been published in various fields. These applications cover a wide range of model classes,
including multilevel modeling [11,12], mediation analyses [13,14], item response theory
(IRT) modeling [10,15–17], and growth curve modeling [18,19].

We developed a SAS macro called %automcmc (see Supplementary Materials) that is
based on PROC MCMC and that automatically continues to add iterations of the sampler
until a user-specified stopping criterion (i.e., a certain potential scale reduction and/or
a certain effective sample size) is reached for the chain(s). In this article, we present this
macro and illustrate its use with the help of simulated data.

2. Automatic Monitoring of Stopping Criteria in Markov Chain Monte
Carlo Estimation

In this section, we give a brief overview of convergence and the selection of stopping
criteria in MCMC estimation, and we explain and show how the %automcmc macro can be
used to apply automatic monitoring of user-specified stopping criteria for arbitrary models.

2.1. Convergence and Stopping Criteria in Markov Chain Monte Carlo

Several statistics have been proposed as stopping criteria, with the potential scale
reduction (PSR) being one of the most notable [20]. For an estimate of a parameter θ based
on m chain sequences of length n, the PSR is defined as proposed by Asparouhov and
Muthén [21] and implemented in Mplus [7] as follows:

PSR =
√
(W + B)/W with W = 1

m ∑m
j=1

1
n ∑n

i=1 (θij− θ•j)
2, and

B = 1
m−1 ∑m

j=1 (θ•j − θ••)2

where W denotes the pooled variance within the chain and B is the variance between the
sequences. The rationale behind this statistic is that for a chain to be considered converged,
it is necessary for the ratio of the variance of the draws to the average of the variances within
sequences of the chain to approach 1. This indicates minimal between-sequence variance,
signifying convergence. Rather than inspecting convergence by using a single chain [5],
multiple chains may be used, which is also recommended by Gelman and Rubin [20]. In
this case, the PSR compares the overall variance of the draws to the average within-chain
variance. Here again, when the PSR is close to 1, this is an indication of convergence.
If multiple chains are run with our macro based on PROC MCMC, a two-step check is
performed by first checking each chain separately and then checking whether the whole
sampling process (consisting of multiple chains) has converged. However, it has been
argued that besides a PSR that is close to 1, another condition should ideally be met
before model estimates are computed from the chain(s): the number of independent draws
from the posterior (i.e., the effective sample size; ESS) should be large [6,8,22]. Based on
their simulations, Zitzmann and Hecht [6] suggested an ESS of at least 400 and ideally
1000 independent draws. Thus, in addition to the PSR—or as an alternative to it—the ESS
may be selected as the stopping criterion in the macro. It is worth noting that there is a
relationship between the two criteria, as demonstrated by Equation (10) in Zitzmann and
Hecht [6]. This relationship allows for an approximate transformation of a specific value of
the PSR into an ESS value, and vice versa, unless the autocorrelation for the samples is not
large. In the case of large autocorrelations, the formula in [23] yields a better estimate of
the ESS—which is why this formula is used in our macro. On the other hand, the ESS may
not be very sensitive to differences between chain sequences and, therefore, provides an
exact measure of the “true” effective sample size only if the burn-in phase is long enough.
Thus, a combination of the PSR and the ESS criteria might be the best strategy.

Psych 2023, 5 968

2.2. The %automcmc Macro

In the following subsection, we provide a detailed description of the macro’s function-
ality, specifically focusing on the parameters that can be used with either default values or
user-specified values. These parameters pertain to model estimation and customization
of the output. Lastly, we demonstrate the application of the %automcmc macro through a
series of examples.

2.2.1. Macro Parameters for Model Estimation

Two different stopping criteria may be applied that are related to one another, as noted
in Section 2.1. The %automcmc macro uses the SAS %ESS autocall macro for postprocess-
ing [9] with default settings to estimate the effective sample size for a given parameter
estimate, taking into account the autocorrelation as proposed in [23]. The default stopping
criterion is set to ESSconv = 1E3 meaning the effective sample size must be at least 1000
for each estimated parameter (for this recommendation, see [6]). The second stopping
criterion, which uses the PSR with a default setting of PSRconv = 1.01, as suggested by
Vehtari et al. [24], is satisfied when the PSR value for each estimated parameter is below the
specified threshold. Either one of the stopping criteria, or both, can be ignored by setting
the corresponding macro parameter to zero. If both stopping criteria are specified, which is
the default setting, all the estimated parameters must satisfy both criteria. In many cases,
users may need to modify only these two macro parameters.

For a single chain, the default setting applies the stopping criteria to two sequences of
the chain. The first sequence, referred to as the burn-in iterations, is discarded to remove
any potential influence from the initial starting values. The length of the burn-in sequence
is determined by the biratio parameter, which is set to a default value of 0.50. To illustrate,
consider a total chain length of 10,000 iterations. With the default biratio of 0.50, the first
5000 iterations are discarded as burn-in. The remaining iterations, from 5001 to 7500 and
from 7501 to 10,000, are then used for assessing convergence using the PSR criterion. For
estimating the ESS, the 5000 iterations from 5001 to 10,000 are used. Regarding the PSR,
this procedure is identical to that applied in Mplus [7,8] for a single chain.

If any of the specified stopping criteria are not met for at least one parameter estimate,
and the number of remaining iterations (after thinning, if specified in PROC MCMC) does
not exceed the specified maximum (e.g., maxnmc = 1E4, defaulting to 10,000 iterations),
PROC MCMC will be restarted. A new seed value is used, incremented by 1 from the
previous PROC MCMC run’s seed value (if no seed is specified, SEED = 1 is used for the
first start). Additionally, the starting values for all parameters are set based on the last
iteration of the preceding PROC MCMC run. When burn-in iterations are defined in the
PROC MCMC code using the NBI option, the respective number of iterations are discarded
in the first PROC MCMC run (as those iterations are not included in the dataset generated
by the PROC MCMC option OUTPOST). If the stopping criterion or criteria are not met and
the procedure is restarted, the NBI option will automatically be set to zero. This means that
no additional burn-in iterations will be employed in the subsequent PROC MCMC runs.

When multiple chains are specified (e.g., chains = 2, with the default being chains = 1),
the chains are sequentially generated because PROC MCMC does not include the option for
multiple chains. In this case, the specified stopping criteria are applied for each single chain.
Finally, the ESS criterion (in case ESSconv is not set to 0) is applied to a combined chain
consisting of all remaining chain sequences after discarding the initial burn-in iterations.
Note that these chain sequences might be of different length, as the stopping criterion might
be reached after different numbers of iterations in each chain. The PSR, when specified as a
stopping criterion, is calculated based on these chain sequences from the different chains.
In contrast to the processing of one or more single chains, however, no additional iterations
will be added to the chains if the stopping criterion/criteria is/are not met. Vehtari et al. [24]
suggested that at least four chains should be run by default, because “[m]ultiple chains are
more to likely to reveal multimodality and poor adaptation or mixing” (p. 671).

Psych 2023, 5 969

In the case of multiple chains, starting values (also called initial values) are automati-
cally generated using the PROC MCMC option INIT = RANDOM, except for the first chain
where potentially user-specified starting values in the PROC MCMC code are used. It may
happen that the generated starting values will lead to error messages of PROC MCMC
and estimation will be stopped. In situations where the initial attempts to find acceptable
starting values for the chains are unsuccessful, the procedure is restarted with a new seed
in an attempt to generate usable starting values. However, there may be cases where even
after multiple attempts with different seeds, suitable starting values cannot be found. In
such situations, the process of sampling starting values is stopped after a user-specified
number of procedure starts. The parameter maxsvloops (defaulting to 100) determines
the maximum number of attempts allowed to find applicable starting values for all chains.
When the maximum number of procedure starts is reached without finding usable starting
values for all chains, the process of sampling starting values is terminated. One possible so-
lution for addressing this issue could involve increasing the number of potential procedure
starts by adjusting the parameter maxsvloops to a higher value (e.g., maxsvloops = 250).
Another option is a two-step approach (see Section 3.3. for an example): in the first step, a
modified model with more informative priors is used, which may help to avoid extreme
starting values. The starting values generated for that model are automatically stored in
datasets (_para1, _para2, . . . for chains 2, 3, ...; _para for chain 1) that can be used to provide
starting values for the target model with the original priors in a second step by specifying
svdat = yes (default: svdat = no). It should be noted that it is not possible to generate
starting values with PROC MCMC if the GENERAL or DGENERAL function is used as a
prior distribution.

2.2.2. Output Customization

Output customization in the context of applying the %automcmc macro refers to the
ability to control what information is displayed in the SAS output window, SAS log, or
stored as SAS datasets. The output that would be directly produced by the PROC MCMC
command(s) is suppressed with the default setting output = no (but can be enabled by
output = yes), because the focus is on the final results after the convergence criterion/criteria
have been reached based on the specified chain sequence instead of only on the interim
results. If the PROC MCMC code contains an ODS SELECT statement, this specific output
will not be suppressed for the first start of PROC MCMC but in all following procedure
starts. The final results are shown as default (results = yes) in the SAS output window and
stored as a temporary SAS dataset named results in the work library as default (resultsdat =
results) that includes all estimated parameters (including random effects and parameters for
missing data) under the default setting outpostvar = _all_. It is also possible to restrict the
estimated parameters in the specified output dataset to monitored parameters (including
secondary parameters) as specified within the PROC MCMC code (e.g., by the MONITOR
option in the PROC MCMC statement) by the option outpostvar = _parms_. The results
are based on the chain sequence or—in the case of multiple chains—combined chain
sequences (discarding burn-in iterations as specified by the biratio option), applying the
SAS %SUMINT [9] autocall macro for postprocessing that calculates number of posterior
draws (N), mean and standard deviation (M, SD), and highest posterior density (HPD)
intervals for the specified alpha value (alpha = 0.05 as default).

It is also possible to request the PROC MCMC code that is generated by the %au-
tomcmc macro in the SAS log by the option PROCLOG = on (off as default). In this case,
the starting values for the model parameters that are taken from the last iteration of the
preceding PROC MCMC run are given in the lines between a BEGINCNST command and
an ENDCNST command. A problematic issue can arise when the ARRAY option of PROC
MCMC is used: sometimes, PROC MCMC stops with an error message (“ERROR: The
value of a parameter in an array is modified. This is not allowed”.) when the ARRAY
option is used in conjunction with BEGINCNST and ENDCNST to specify starting values.
In such cases, the arrays must be replaced by the respective code that would be generated

Psych 2023, 5 970

by PROC MCMC (for an example, see Section 3.4), or the analysis must be run on a single
thread (NTHREADS = 1 in the PROC MCMC statement; SAS Technical Support, personal
communication, 13 October 2022).

Another very important note refers to the use of double quotes in the PROC MCMC
code that is not allowed when using the %automcmc macro. For instance, when the
READ_ARRAY function is used in PROC MCMC and the column names are enclosed in
double quotes, these must be replaced by single quotes.

3. Examples: Applying the %Automcmc Macro

In the following, we provide examples of item response theory (IRT) analysis using
the %automcmc macro with SAS PROC MCMC [9]. The analyses were conducted on simu-
lated data (IRTdat, see Appendix A) consisting of N = 250 observations and k = 10 items.
The population model used was a one-parameter logistic (1PL) IRT model with the item
discrimination parameter a set to 1. The item difficulties bj ranged from −0.9 to 0.9 with
an interval of 0.2 between consecutive items. A second simulated dataset (IRT3pldat, see
Appendix A) consisting of N = 250 observations was based on a three-parameter logistic
(3PL) population model with aj and bj ranging from 0.80 to 1.25 and −0.9 to 0.9, respectively.
The guessing parameters (cj) were all equal to 0.20. The analyses were performed using
SAS 9.4 TS Level 1M6 on a Windows Version 1.0.19041 X64_10PRO platform.

We demonstrate the estimation of both the 1PL (Examples 1 to 3) and the 3PL (Ex-
ample 4) model using PROC MCMC with a parameterization proposed by Stone and
Zhu [16]. In this parameterization, item intercepts (dj) are used instead of item difficulties,
and informative priors are specified for the item intercepts as dj~N(0, 1) and for the item
discrimination parameter as a~logN(0, 1) in the 1PL model and aj~logN(0, 1) in the 3PL
model. Example 1 showcases the estimation using a single chain, whereas Example 2
demonstrates the estimation using three chains.

Further, we show how starting values for multiple chains can be generated based on
a model with more informative priors when the starting value generation with a target
model with uninformative priors—item intercepts dj~N(0, 10,000), item discrimination
a~logN(0, 6)—failed to lead to acceptable starting values (Example 3). In Example 4 we
demonstrate the advantage of using the %automcmc macro in the case of a 3PL model.
Finally, we show solutions to estimate a model when the ARRAY command of PROC
MCMC led to an error message (Example 5).

The following section provides a step-by-step description of the five examples. We
begin by presenting the target model coded in PROC MCMC. Then, we demonstrate how
this code can be incorporated into the %automcmc macro to facilitate estimation with
user-specified stopping criteria for the potential scale reduction (PSR) and/or effective
sample size (ESS).

3.1. Example 1: 1PL Model with Informative Priors (Single Chain)

We begin with the target model as specified with PROC MCMC (Listing 1) with
5000 burn-in iterations (NBI option) and 25,000 iterations afterwards (NMC option), which
are stored in the dataset ex1_2_out (OUTPOST option). The random number seed is set
to 1000 (SEED option), and the number of hyperthreaded cores on the system is specified
as the number of available threads (NTHREADS = −1). Regarding the output, the a and
all bj parameters (b is specified as a vector by the ARRAY option) are requested by the
MONITOR option.

Psych 2023, 5 971

Listing 1: PROC MCMC Code for Example 1.

PROC MCMC DATA=IRTdat NBI=5000 NMC=25000 OUTPOST=ex1_2_out SEED=1000
NTHREADS=-1 MONITOR=(a b);
ARRAY b [10]; ARRAY d [10]; ARRAY p [10];
PARMS a 1; PARMS d:0;
PRIOR a:~LOGNORMAL(0, VAR=1);
PRIOR d:~NORMAL(0, VAR=1); RANDOM theta~NORMAL(0, VAR=1) SUBJECT=person;
DO j=1 TO 10; p[j]=LOGISTIC(a*theta-d[j]); b[j]=d[j]/a; END;
MODEL item01~BINARY(p1);
MODEL item02~BINARY(p2);
MODEL item03~BINARY(p3);
MODEL item04~BINARY(p4);
MODEL item05~BINARY(p5);
MODEL item06~BINARY(p6);
MODEL item07~BINARY(p7);
MODEL item08~BINARY(p8);
MODEL item09~BINARY(p9);
MODEL item10~BINARY(p10);

RUN;

To estimate this model with the %automcmc macro, the complete code (note that the
“RUN; ” statement at the end must not be included!) is simply inserted in a macro called
proc_mcmc, as shown in Listing 2, followed by the execution of the %automcmc macro that
runs the code. If the specified stopping criteria (ESSconv = 1000, PSRconv = 1.01) are not
fulfilled, the procedure will be started again—as long as the total number of iterations is
smaller than 106 (as specified by maxnmc = 1E6).

Listing 2: Execution of PROC MCMC Code (Example 1) with the %automcmc Macro.

%MACRO proc_mcmc;
PROC MCMC DATA=IRTdat NBI=5000 NMC=25000 OUTPOST=ex1_2_out SEED=1000

NTHREADS=-1 MONITOR=(a b);
ARRAY b [10]; ARRAY d [10]; ARRAY p [10];
PARMS a 1; PARMS d:0;
PRIOR a:~LOGNORMAL(0, VAR=1); PRIOR d:~NORMAL(0, VAR=1);
RANDOM theta~NORMAL(0, VAR=1) SUBJECT=person;
DO j=1 TO 10; p[j]=LOGISTIC(a*theta-d[j]); b[j]=d[j]/a; END;
MODEL item01~BINARY(p1);
MODEL item02~BINARY(p2);
MODEL item03~BINARY(p3);
MODEL item04~BINARY(p4);
MODEL item05~BINARY(p5);
MODEL item06~BINARY(p6);
MODEL item07~BINARY(p7);
MODEL item08~BINARY(p8);
MODEL item09~BINARY(p9);
MODEL item10~BINARY(p10);

%MEND;
%automcmc(ESSconv=1000, PSRconv=1.01, maxnmc=1E6, output=no,

PROCLOG=on);

After satisfying the stopping criteria, which took seven restarts in this example, the
final results for the combined chain sequences are presented in the output window. The
output includes the ESS results shown in Figure 1, the PSR results displayed in Figure 2,
and the posterior summaries, which include the highest posterior density (HPD) intervals,
shown in Figure 3. As can be seen in Figure 3, the final results are based on 87,500 iterations,
namely the second half (biratio = 0.50 as default) of the total number of iterations, which
is given by 25,000 (NMC option) × 7 (procedure restarts) = 175,000 that are stored in the
specified data set ex1_2_out. As the PROCLOG option was set to “on”, the PROC MCMC

Psych 2023, 5 972

code that was executed—and that is slightly modified at each step (e.g., starting values,
burn-in iterations set to zero from step two on, seed incremented by one)—was listed in
the SAS log.

Psych 2023, 5, FOR PEER REVIEW 7

 MODEL item07~BINARY(p7);

 MODEL item08~BINARY(p8);

 MODEL item09~BINARY(p9);

 MODEL item10~BINARY(p10);

%MEND;

%automcmc(ESSconv=1000, PSRconv=1.01, maxnmc=1E6, output=no,

 PROCLOG=on);

After satisfying the stopping criteria, which took seven restarts in this example, the

final results for the combined chain sequences are presented in the output window. The

output includes the ESS results shown in Figure 1, the PSR results displayed in Figure 2,

and the posterior summaries, which include the highest posterior density (HPD) intervals,

shown in Figure 3. As can be seen in Figure 3, the final results are based on 87,500 itera-

tions, namely the second half (biratio = 0.50 as default) of the total number of iterations,

which is given by 25,000 (NMC option) × 7 (procedure restarts) = 175,000 that are stored

in the specified data set ex1_2_out. As the PROCLOG option was set to “on”, the PROC

MCMC code that was executed—and that is slightly modified at each step (e.g., starting

values, burn-in iterations set to zero from step two on, seed incremented by one)—was

listed in the SAS log.

In many typical applications, the estimation process using the %automcmc macro

will be straightforward and simple, as demonstrated in the previous example. However,

there are cases where the estimation process can become more complex and require addi-

tional attention from the user. This can occur when multiple chains are used or when the

PROC MCMC code includes ARRAY statements.

Figure 1. Example 1—ESS for the Model Parameters. Figure 1. Example 1—ESS for the Model Parameters.

Psych 2023, 5, FOR PEER REVIEW 8

Figure 2. Example 1—Output for Specified Parameter Estimates (PSR).

Figure 3. Example 1—Output for Posterior Summaries and Intervals.

3.2. Example 2: 1PL Model with Informative Priors (Multiple Chains)

In Example 1, we estimated the model using a single chain. In this new scenario, Ex-

ample 2, we re-estimate the model using three chains instead of just one (Listing 3). The

first chain in Example 2 produces identical results to those obtained in Example 1. This

outcome is expected because the same starting values (specified within PROC MCMC in

the PARMS statements), the random number seed, and other settings were used. The re-

sults of the second and third chains differed because they were initiated with different sets

of automatically generated starting values. For the second chain, the stopping criteria

were reached after five restarts (25,000 × 5 = 125,000 iterations in total after burn-in) and

for the third chain the stopping criteria were fulfilled after six restarts (25,000 × 6 = 150,000

iterations). For each chain, the results are shown in the output window (e.g., results of the

third chain in Figure 4), and all iterations are stored in the specified dataset (here, OUT-

POST=Ex1_2_out), followed by an underscore and the number of the chain (e.g.,

Ex1_2_out_1 for chain 1). The final results of the combined chain sequences (second half

Figure 2. Example 1—Output for Specified Parameter Estimates (PSR).

In many typical applications, the estimation process using the %automcmc macro will
be straightforward and simple, as demonstrated in the previous example. However, there
are cases where the estimation process can become more complex and require additional
attention from the user. This can occur when multiple chains are used or when the PROC
MCMC code includes ARRAY statements.

Psych 2023, 5 973

Psych 2023, 5, FOR PEER REVIEW 8

Figure 2. Example 1—Output for Specified Parameter Estimates (PSR).

Figure 3. Example 1—Output for Posterior Summaries and Intervals.

3.2. Example 2: 1PL Model with Informative Priors (Multiple Chains)

In Example 1, we estimated the model using a single chain. In this new scenario, Ex-

ample 2, we re-estimate the model using three chains instead of just one (Listing 3). The

first chain in Example 2 produces identical results to those obtained in Example 1. This

outcome is expected because the same starting values (specified within PROC MCMC in

the PARMS statements), the random number seed, and other settings were used. The re-

sults of the second and third chains differed because they were initiated with different sets

of automatically generated starting values. For the second chain, the stopping criteria

were reached after five restarts (25,000 × 5 = 125,000 iterations in total after burn-in) and

for the third chain the stopping criteria were fulfilled after six restarts (25,000 × 6 = 150,000

iterations). For each chain, the results are shown in the output window (e.g., results of the

third chain in Figure 4), and all iterations are stored in the specified dataset (here, OUT-

POST=Ex1_2_out), followed by an underscore and the number of the chain (e.g.,

Ex1_2_out_1 for chain 1). The final results of the combined chain sequences (second half

Figure 3. Example 1—Output for Posterior Summaries and Intervals.

3.2. Example 2: 1PL Model with Informative Priors (Multiple Chains)

In Example 1, we estimated the model using a single chain. In this new scenario, Exam-
ple 2, we re-estimate the model using three chains instead of just one (Listing 3). The first
chain in Example 2 produces identical results to those obtained in Example 1. This outcome
is expected because the same starting values (specified within PROC MCMC in the PARMS
statements), the random number seed, and other settings were used. The results of the
second and third chains differed because they were initiated with different sets of automat-
ically generated starting values. For the second chain, the stopping criteria were reached
after five restarts (25,000 × 5 = 125,000 iterations in total after burn-in) and for the third
chain the stopping criteria were fulfilled after six restarts (25,000 × 6 = 150,000 iterations).
For each chain, the results are shown in the output window (e.g., results of the third chain in
Figure 4), and all iterations are stored in the specified dataset (here, OUTPOST=Ex1_2_out),
followed by an underscore and the number of the chain (e.g., Ex1_2_out_1 for chain 1). The
final results of the combined chain sequences (second half of each chain: 87,500, 62,500, and
75,000 for chains 1, 2, and 3) also reached the stopping criteria, and the posterior output
was based on 225,000 iterations.

Psych 2023, 5, FOR PEER REVIEW 9

of each chain: 87,500, 62,500, and 75,000 for chains 1, 2, and 3) also reached the stopping

criteria, and the posterior output was based on 225,000 iterations.

Listing 3: Estimation of PROC MCMC Code (Example 2) with the %automcmc Macro.

%automcmc(ESSconv=1000, PSRconv=1.01, maxnmc=1E6, output=no, chains=3);

Figure 4. Example 2—Output for Posterior Summaries and Intervals.

3.3. Example 3: 1PL Model with Uninformative Priors (Multiple Chains)

In Example 3, we aimed at estimating the identical model as in Example 1 except that

the priors differed by larger variances–PRIOR a:~LOGNORMAL (0, VAR = 5); PRIOR

d:~NORMAL (0, VAR = 10000). In this case, even 100 attempts to find sets of starting values

(with default setting maxsvloops = 100) did not lead to acceptable sets for chains 2 and 3

(with respective error messages in the SAS log). One way to handle this problem is to

increase the maxsvloops macro parameter to, say, 1000. But often, a more promising ap-

proach is to estimate the starting value sets based on a model with (slightly) more informa-

tive priors (Listing 4)—here, PRIOR a:~LOGNORMAL (0, VAR = 2); PRIOR d:~NORMAL

(0, VAR = 100)—and set the number of burn-in iterations to zero (NBI = 0) and the number

of iterations to 1 (NMC = 1). The resulting starting values are stored in the datasets _para1

(chain 2) and _para2 (chain 3) and can be used in a subsequent analysis with the macro

parameter svdat = yes after respecifying the %proc_mcmc macro to refer to the PROC

MCMC code of the target model (Listing 5).

Listing 4: Generating Starting Values (Example 3) with the %automcmc Macro.

%MACRO proc_mcmc;

PROC MCMC DATA=IRTdat NBI=0 NMC=1 OUTPOST=ex3_out SEED=1000

 NTHREADS=-1 MONITOR=(a b);

 ARRAY b [10]; ARRAY d [10]; ARRAY p [10];

 PARMS a 1; PARMS d:0;

 PRIOR a:~LOGNORMAL(0, VAR=2); PRIOR d:~NORMAL(0, VAR=100);

 RANDOM theta~NORMAL(0, VAR=1) SUBJECT=person;

 DO j=1 TO 10; p[j]=LOGISTIC(a*theta-d[j]); b[j]=d[j]/a; END;

Figure 4. Example 2—Output for Posterior Summaries and Intervals.

Listing 3: Estimation of PROC MCMC Code (Example 2) with the %automcmc Macro.

%automcmc(ESSconv=1000, PSRconv=1.01, maxnmc=1E6, output=no, chains=3);

3.3. Example 3: 1PL Model with Uninformative Priors (Multiple Chains)

In Example 3, we aimed at estimating the identical model as in Example 1 except
that the priors differed by larger variances–PRIOR a:~LOGNORMAL (0, VAR = 5); PRIOR
d:~NORMAL (0, VAR = 10000). In this case, even 100 attempts to find sets of starting values
(with default setting maxsvloops = 100) did not lead to acceptable sets for chains 2 and 3

Psych 2023, 5 974

(with respective error messages in the SAS log). One way to handle this problem is to in-
crease the maxsvloops macro parameter to, say, 1000. But often, a more promising approach
is to estimate the starting value sets based on a model with (slightly) more informative
priors (Listing 4)—here, PRIOR a:~LOGNORMAL (0, VAR = 2); PRIOR d:~NORMAL
(0, VAR = 100)—and set the number of burn-in iterations to zero (NBI = 0) and the number
of iterations to 1 (NMC = 1). The resulting starting values are stored in the datasets _para1
(chain 2) and _para2 (chain 3) and can be used in a subsequent analysis with the macro
parameter svdat = yes after respecifying the %proc_mcmc macro to refer to the PROC
MCMC code of the target model (Listing 5).

Listing 4: Generating Starting Values (Example 3) with the %automcmc Macro.

%MACRO proc_mcmc;
PROC MCMC DATA=IRTdat NBI=0 NMC=1 OUTPOST=ex3_out SEED=1000

NTHREADS=-1 MONITOR=(a b);
ARRAY b [10]; ARRAY d [10];
ARRAY p [10];
PARMS a 1; PARMS d:0;
PRIOR a:~LOGNORMAL(0, VAR=2); PRIOR d:~NORMAL(0, VAR=100);
RANDOM theta~NORMAL(0, VAR=1) SUBJECT=person;
DO j=1 TO 10; p[j]=LOGISTIC(a*theta-d[j]); b[j]=d[j]/a; END;
MODEL item01~BINARY(p1);
MODEL item02~BINARY(p2);
MODEL item03~BINARY(p3);
MODEL item04~BINARY(p4);
MODEL item05~BINARY(p5);
MODEL item06~BINARY(p6);
MODEL item07~BINARY(p7);
MODEL item08~BINARY(p8);
MODEL item09~BINARY(p9);
MODEL item10~BINARY(p10);

%MEND;
%automcmc(ESSconv=0, PSRconv=0, maxnmc=1E6, biratio=0, output=no, results=no,

chains=3);

Listing 5: Estimation of PROC MCMC Code (Example 3) with the %automcmc Macro and Given
Starting Values.

%MACRO proc_mcmc;
PROC MCMC DATA=IRTdat NBI=5000 NMC=25000 OUTPOST=ex3_out SEED=1000

NTHREADS=-1 MONITOR=(a b);
ARRAY b [10]; ARRAY d [10]; ARRAY p [10];
PARMS a 1; PARMS d:0; PRIOR a:~LOGNORMAL(0, VAR=5); PRIOR d:~NORMAL(0,

VAR=10000);
RANDOM theta~NORMAL(0, VAR=1) SUBJECT=person;
DO j=1 TO 10; p[j]=LOGISTIC(a*theta-d[j]); b[j]=d[j]/a; END;
MODEL item01~BINARY(p1);
MODEL item02~BINARY(p2);
MODEL item03~BINARY(p3);
MODEL item04~BINARY(p4);
MODEL item05~BINARY(p5);
MODEL item06~BINARY(p6);
MODEL item07~BINARY(p7);
MODEL item08~BINARY(p8);
MODEL item09~BINARY(p9);
MODEL item10~BINARY(p10);

%MEND;
%automcmc(ESSconv=1000, PSRconv=1.01, maxnmc=1E6, output=no, chains=3,

svdat=yes);

Psych 2023, 5 975

3.4. Example 4: 3PL Model with Informative Priors (Single Chain)

In Example 4, we estimated a 3PL model, a type of model that is known to be especially
prone to convergence issues [25]. In the first step, we estimated the model as shown in Listing
6—which we here refer to as the “standard” estimation—with 5000 burn-in iterations followed
by 25,000 iterations used for parameter estimation. We then estimated the same model using
our %automcmc macro with standard settings (ESSconv = 1000, PSRconv = 1.01, maxnmc = 1E6).
Finally, we applied a “reference” estimation, which was identical to the “standard” estimation
(Listing 6) except for the number of burn-in iterations (NBI = 50,000) and the number of iterations
after burn-in (NMC = 500,000). Due to the large number of iterations, the Monte Carlo error should
play no significant role. Therefore, the estimates from this approach were taken as a reference
for the “standard” and the %automcmc approach. The largest absolute differences between
both approaches compared with the reference approach were found for parameter estimate a6.
Their posterior means were 0.07 (“standard” approach) and 0.05 (%automcmc approach) larger
than in the reference approach. Even more pronounced were the differences in the posterior
standard deviations (1.50, 1.25, and 1.23 for the “standard”, the %automcmc, and the reference
approach, respectively) as well as in the 95% HPD credible interval limits with maximum absolute
deviations from the estimates of the reference model ranging from 0.11 (%automcmc approach,
upper limit) to 0.52 (“standard” approach, upper limit). A closer look at the results revealed
that the a6 estimate had the lowest ESS in all approaches (204, 1058, and 4913 for the “standard”,
the %automcmc, and the reference approach, respectively). It might be concluded that even a
rather large number of iterations as used in the “standard” approach (25,000 iterations) may not
guarantee a precise approximation in specific cases, indicating that more iterations may be needed
(e.g., the %automcmc macro with default settings used 87,500 iterations).

Listing 6: PROC MCMC Code for Example 4.

PROC MCMC DATA=IRT3pldat NBI=5000 NMC=25000 OUTPOST=ex4_out
SEED=1000 NTHREADS=-1 MONITOR=(a b c);
ARRAY a [10]; ARRAY b [10]; ARRAY c [10]; ARRAY d [10];
ARRAY p [10];
PARMS a1 1 c1 0.2 d1 0;
PARMS a2 1 c2 0.2 d2 0;
PARMS a3 1 c3 0.2 d3 0;
PARMS a4 1 c4 0.2 d4 0;
PARMS a5 1 c5 0.2 d5 0;
PARMS a6 1 c6 0.2 d6 0;
PARMS a7 1 c7 0.2 d7 0;
PARMS a8 1 c8 0.2 d8 0;
PARMS a9 1 c9 0.2 d9 0;
PARMS a10 1 c10 0.2 d10 0;
PRIOR a:~LOGNORMAL(0, VAR=1);
PRIOR c:~BETA(5, 20);
PRIOR d:~NORMAL(0, VAR=1);
RANDOM theta~NORMAL(0, VAR=1) SUBJECT=person;
DO j=1 TO 10;

p[j]=c[j]+(1-c[j])*LOGISTIC(a[j]*theta-d[j]);
b[j]=d[j]/a[j]; END;

MODEL item01~BINARY(p1);
MODEL item02~BINARY(p2);
MODEL item03~BINARY(p3);
MODEL item04~BINARY(p4);
MODEL item05~BINARY(p5);
MODEL item06~BINARY(p6);
MODEL item07~BINARY(p7);
MODEL item08~BINARY(p8);
MODEL item09~BINARY(p9);
MODEL item10~BINARY(p10);

RUN;

Psych 2023, 5 976

3.5. Example 5: 1PL Model with Hierarchical Priors Using Arrays

As mentioned above, in some cases, PROC MCMC does not work when ARRAY
statements are applied in conjunction with BEGINCNST and ENDCNST to specify starting
values together with multithreading (e.g., the number of hyperthreaded cores on the system:
NTHREADS = −1). In Listing 7, we give an example analog to the model proposed in [16]
of a 1PL model with a hierarchical prior for the hyperparameters of the prior distribution
of the bj parameters, namely mub and varb for the mean and the variance of the normal
priors, but—in contrast to [16]—applying multithreading and assigning starting values with
BEGINCNST and ENDCNST. At least on our SAS for Windows system, this model could
not be estimated and led to an error message (“ERROR: The value of a parameter in an array
is modified. This is not allowed”.). One option to estimate this model with the %automcmc
macro would be to simply run it on a single thread by deleting NTHREADS = −1 or,
equivalently, specifying NTHREADS = 1 (which is the default in PROC MCMC). However,
this might, in general, be less time-efficient (see, e.g., [26,27], who made the case for more
efficient computations in Bayesian modeling). Therefore, an alternative model specification
where the framed lines of code referring to arrays in Listing 7 is resolved to “array-free”
code, as in Listing 8.

Listing 7: PROC MCMC Code for Example 5.

PROC MCMC DATA=IRTdat NBI=5000 NMC=25000 OUTPOST=ex4_out SEED=1000
NTHREADS=-1;
ARRAYb[10]; ARRAYp[10];

PARMS a; PARMS b:;
PARMS mub varb;
PRIORb:~NORMAL(mub, VAR=varb);

PRIOR mub~UNIFORM(-6, 6);
PRIOR varb~IGAMMA(.01, SCALE=.01);
PRIOR a~LOGNORMAL(0, VAR=1);
RANDOM theta~NORMAL(0, VAR=1) SUBJECT=person;
DOj=1TO10; p[j]=LOGISTIC(a*theta-b[j]); END;

MODEL item01~BINARY(p1);
MODEL item02~BINARY(p2);
MODEL item03~BINARY(p3);
MODEL item04~BINARY(p4);
MODEL item05~BINARY(p5);
MODEL item06~BINARY(p6);
MODEL item07~BINARY(p7);
MODEL item08~BINARY(p8);
MODEL item09~BINARY(p9);
MODEL item10~BINARY(p10);
BEGINCNST;

mub=0; varb=1;
a=1;
b1=0; b2=0; b3=0; b4=0; b5=0;
b6=0; b7=0; b8=0; b9=0; b10=0;

ENDCNST;
RUN;

Psych 2023, 5 977

Listing 8: PROC MCMC Code for Example 5 Without ARRAY Statements.

PROC MCMC DATA=IRTdat NBI=5000 NMC=25000 OUTPOST=ex4_out SEED=1000
NTHREADS=-1;

PARMS a; PARMS b1-b10;
PARMS mub varb;
PRIORb1~NORMAL(mub, VAR=varb);

PRIORb2~NORMAL(mub, VAR=varb);

PRIORb3~NORMAL(mub, VAR=varb);

PRIORb4~NORMAL(mub, VAR=varb);

PRIORb5~NORMAL(mub, VAR=varb);

PRIORb6~NORMAL(mub, VAR=varb)

PRIORb7~NORMAL(mub, VAR=varb);

PRIORb8~NORMAL(mub, VAR=varb);

PRIORb9~NORMAL(mub, VAR=varb);

PRIORb10~NORMAL(mub, VAR=varb);

PRIOR mub~UNIFORM(-6, 6);
PRIOR varb~IGAMMA(.01, SCALE=.01);
PRIOR a~LOGNORMAL(0, VAR=1);
RANDOM theta~NORMAL(0, VAR=1) SUBJECT=person;
p1=LOGISTIC(a*theta-b1);

p2=LOGISTIC(a*theta-b2);

p3=LOGISTIC(a*theta-b3);

p4=LOGISTIC(a*theta-b4);

p5=LOGISTIC(a*theta-b5);

p6=LOGISTIC(a*theta-b6);

p7=LOGISTIC(a*theta-b7);

p8=LOGISTIC(a*theta-b8);

p9=LOGISTIC(a*theta-b9);
p10=LOGISTIc(a*theta-b10);
MODEL item01~BINARY(p1);
MODEL item02~BINARY(p2);
MODEL item03~BINARY(p3);
MODEL item04~BINARY(p4);
MODEL item05~BINARY(p5);
MODEL item06~BINARY(p6);
MODEL item07~BINARY(p7);
MODEL item08~BINARY(p8);
MODEL item09~BINARY(p9);
MODEL item10~BINARY(p10);
BEGINCNST;

mub=0; varb=1;
a=1;
b1=0; b2=0; b3=0; b4=0; b5=0;
b6=0; b7=0; b8=0; b9=0; b10=0;

ENDCNST;
RUN;

Psych 2023, 5 978

4. Automated Stopping in Related Software

Other software, too, provide the possibility to automate convergence. For example,
Mplus [7] offers it as the default. Mplus assesses convergence by routinely checking if a
specified value for the PSR has been achieved [8]. This value may be specified by the user.
In a nutshell, the Mplus algorithm can be stated as follows: (1) iteratively sample from each
parameter; (2) after every 100th iteration, discard the first half (i.e., burn-in); (3) compute
the PSR for each parameter from the remaining iterations. If all PSR values fall below the
prespecified maximum value, stop sampling. Otherwise, continue with MCMC.

Whereas the PSR criterion can be specified, a value for the ESS cannot be specified
directly, which led Zitzmann and Hecht [6,8] to propose a workaround that takes advantage
of the relationship between the ESS and the PSR, which becomes apparent when the PSR
and the ESS are both computed by analysis of variance (ANOVA) estimates. This means
that not only the PSR but also the ESS can be used as stopping criteria in Mplus.

Hecht et al. [28] equipped JAGS [29] with a very similar procedure in order to allow
for automated stopping. The algorithm is detailed as a flow chart in their Figure 2, but it
has not been published in the form of a user-friendly function. However, interested readers
can find the program code in the Supplementary Materials and may use it in their own
analyses with JAGS.

To the best of our knowledge, automated routines are not yet available in BUGS or
Stan. As these software programs are also general-purpose samplers and thus similar to
JAGS, Hecht et al.’s [28] automated routine might be easily adapted to them. As Stan in
particular is being further developed in rapid steps, there is a real chance that this software
will offer such a routine in the nearer future.

5. Discussion

In Bayesian modeling with Markov chain Monte Carlo (MCMC), determining chain
convergence through the manual inspection of trace plots or stopping criteria can be
challenging. Existing Bayesian software often lacks user-friendly automated routines
for applying stopping criteria. Therefore, we introduced the %automcmc macro, built
upon PROC MCMC in SAS. This macro simplifies the sampling process by automatically
continuing sampling until a user-defined stopping criterion is met for the chain(s).

The macro determines when to stop by using two statistics as stopping criteria: the
PSR and the ESS, which are implemented in a specific way. However, different versions
of these statistics exist, and alternative statistics have been proposed in the literature. For
example, Vehtari, Gelman, Carpenter, and Bürkner [24] proposed a refined PSR, which
is not yet available in the macro and which might outperform the implemented one. It
is interesting to note that Zitzmann, Weirich, and Hecht [8] found that different statistics
tended to yield different results, a finding that certainly deserves more attention in future
research. Based on the empirical findings regarding the relative performance of these
statistics, the macro could be modified by refining the implemented ones or replacing them
with better performing statistics. But, as noted in Section 4, the options to specify stopping
criteria seem to be more restricted (if available at all) in related software compared with
those in our macro.

It should be noted that a comparison of different Bayesian general-purpose software
packages was beyond the scope of this article. It would nevertheless be interesting to pro-
vide an overview about the pros and cons of available packages with regard to flexibility of
modeling, computational efficiency, and user-friendliness for different classes of Bayesian
models, which is a topic of future research. With a focus on Bayesian multilevel model-
ing, such an overview—including general-purpose as well as more specialized Bayesian
software for multilevel modeling—can be found in Mai and Zhang [11] (see also [30]).

By offering automated support for Bayesian analyses, our %automcmc macro serves
the purpose of facilitating the application of SAS and PROC MCMC in Bayesian modeling.
We hope that this macro will contribute to a widespread use of PROC MCMC, thereby
promoting the growth of Bayesian methodology in various fields.

Psych 2023, 5 979

Supplementary Materials: The %automcmc macro can be downloaded at: https://doi.org/10.17605
/OSF.IO/6YRJF, accessed on 6 July 2023.

Author Contributions: Conceptualization, W.W. and S.Z.; software, W.W.; validation, W.W.; investi-
gation, W.W.; writing—original draft preparation, W.W.; writing—review and editing, W.W., M.H.,
and S.Z.; visualization, W.W.; supervision, S.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The examples including the respective data sets are available in the
Appendix A.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The examples in Section 3 for illustrating the use of the %automcmc macro and the
simulated data were based on the following SAS job:

Listing A1: SAS Code for IRT Examples.

* Population model: 1 PL (a = 1, b_j = -0.9, -0.7, ... 0.9);
DATA IRTdat;

ARRAY item(10) item01-item10;
DO person=1 TO 250;

theta=NORMAL(12345);
DO j=1 TO 10;

item(j)=(LOGISTIC(1*(theta-(-0.9+(j-1)/5)))>RANUNI(12345));
END;
OUTPUT;

END;
DROP theta j;

RUN;

* Population model: 1 PL (a_j = 0.80, 0.85, ... 1.25, b_j = -0.9, -0.7, ... 0.9);
* guessing: c_j = .20;
DATA IRT3pldat;

ARRAY item(10) item01-item10;
DO person=1 TO 250;

theta=NORMAL(12345);
DO j=1 TO 10;

item(j)=(.20+.80*LOGISTIC((0.75+0.05*j)*
(theta-(-0.9+(j-1)/5)))>RANUNI(12345));

END;
OUTPUT;

END;
DROP theta j;

RUN;

**********************;
* Examples 1 + 2 *;
* informative priors *;
**********************;

https://doi.org/10.17605/OSF.IO/6YRJF
https://doi.org/10.17605/OSF.IO/6YRJF

Psych 2023, 5 980

Listing A1. Cont.

* Model parameterizing with intercepts d_j (instead of difficulties b_j) to improve mixing
(see Stone & Zhu, 2015);
%MACRO proc_mcmc;
PROC MCMC DATA=IRTdat NBI=5000 NMC=25000 OUTPOST=ex1_2_out SEED=1000
NTHREADS=-1 MONITOR=(a b);

ARRAY b[10]; ARRAY d[10]; ARRAY p[10];
PARMS a 1; PARMS d:0;
PRIOR a:~LOGNORMAL(0, VAR=1); PRIOR d:~NORMAL(0, VAR=1);
RANDOM theta~NORMAL(0, VAR=1) SUBJECT=person;
DO j=1 TO 10; p[j]=LOGISTIC(a*theta-d[j]); b[j]=d[j]/a; END;
MODEL item01~BINARY(p1);
MODEL item02~BINARY(p2);
MODEL item03~BINARY(p3);
MODEL item04~BINARY(p4);
MODEL item05~BINARY(p5);
MODEL item06~BINARY(p6);
MODEL item07~BINARY(p7);
MODEL item08~BINARY(p8);
MODEL item09~BINARY(p9);
MODEL item10~BINARY(p10);

%MEND;

* Example 1: informative priors, single chain;
%automcmc(ESSconv=1000, PSRconv=1.01, maxnmc=1E6, output=no,
PROCLOG=on);

* Example 2: informative priors, 3 chains;
%automcmc(ESSconv=1000, PSRconv=1.01, maxnmc=1E6, output=no, chains=3);

************************;
* Example 3 *;
* uninformative priors *;
************************;
* Generating starting values based on model with more informative priors (only 1 iteration
necessary);
%MACRO proc_mcmc;
PROC MCMC DATA=IRTdat NBI=0 NMC=1 OUTPOST=ex3_out SEED=1000 NTHREADS=-
1 MONITOR=(a b);

ARRAY b[10]; ARRAY d[10]; ARRAY p[10];
PARMS a 1; PARMS d:0;
PRIOR a:~LOGNORMAL(0, VAR=2); PRIOR d:~NORMAL(0, VAR=100);
RANDOM theta~NORMAL(0, VAR=1) SUBJECT=person;
DO j=1 TO 10; p[j]=LOGISTIC(a*theta-d[j]); b[j]=d[j]/a; END;
MODEL item01~BINARY(p1);
MODEL item02~BINARY(p2);
MODEL item03~BINARY(p3);
MODEL item04~BINARY(p4);
MODEL item05~BINARY(p5);
MODEL item06~BINARY(p6);
MODEL item07~BINARY(p7);

Psych 2023, 5 981

Listing A1. Cont.

MODEL item08~BINARY(p8);
MODEL item09~BINARY(p9);
MODEL item10~BINARY(p10);

%MEND;

* Example 3: generating starting values, 3 chains (no convergence criteria applied);
%automcmc(ESSconv=0, PSRconv=0, maxnmc=1E6, biratio=0, output=no, results=no,
chains=3);

* apply original target model with uninformative priors (based on generated starting
values);

%MACRO proc_mcmc;
PROC MCMC DATA=IRTdat NBI=5000 NMC=25000 OUTPOST=ex3_out SEED=1000
NTHREADS=-1 MONITOR=(a b);

ARRAY b[10]; ARRAY d[10]; ARRAY p[10];

PARMS a 1; PARMS d:0;
PRIOR a:~LOGNORMAL(0, VAR=5); PRIOR d:~NORMAL(0, VAR=10000);
RANDOM theta~NORMAL(0, VAR=1) SUBJECT=person;
DO j=1 TO 10; p[j]=LOGISTIC(a*theta-d[j]); b[j]=d[j]/a; END;
MODEL item01~BINARY(p1);
MODEL item02~BINARY(p2);
MODEL item03~BINARY(p3);
MODEL item04~BINARY(p4);
MODEL item05~BINARY(p5);
MODEL item06~BINARY(p6);
MODEL item07~BINARY(p7);
MODEL item08~BINARY(p8);
MODEL item09~BINARY(p9);
MODEL item10~BINARY(p10);

%MEND;

* 3 chains;
%automcmc(ESSconv=1000, PSRconv=1.01, maxnmc=1E6, output=no, chains=3,
svdat=yes);

References
1. van de Schoot, R.; Winter, S.D.; Ryan, O.; Zondervan-Zwijnenburg, M.; Depaoli, S. A systematic review of Bayesian articles in

psychology: The last 25 years. Psychol. Methods 2017, 22, 217–239. [CrossRef]
2. Muthén, B.; Asparouhov, T. Bayesian structural equation modeling: A more flexible representation of substantive theory. Psychol.

Methods 2012, 17, 313–335. [CrossRef]
3. Depaoli, S.; Clifton, J.P. A Bayesian approach to multilevel structural equation modeling with continuous and dichotomous

outcomes. Struct. Equ. Model. A Multidiscip. J. 2015, 22, 327–351. [CrossRef]
4. Zitzmann, S.; Lüdtke, O.; Robitzsch, A.; Hecht, M. On the performance of Bayesian approaches in small samples: A comment on

Smid, McNeish, Miocevic, and van de Schoot (2020). Struct. Equ. Model. A Multidiscip. J. 2021, 28, 40–50. [CrossRef]
5. Geyer, C.J. Practical Markov chain Monte Carlo. Stat. Sci. 1992, 7, 473–483. [CrossRef]

https://doi.org/10.1037/met0000100
https://doi.org/10.1037/a0026802
https://doi.org/10.1080/10705511.2014.937849
https://doi.org/10.1080/10705511.2020.1752216
https://doi.org/10.1214/ss/1177011137

Psych 2023, 5 982

6. Zitzmann, S.; Hecht, M. Going beyond convergence in Bayesian estimation: Why precision matters too and how to assess it.
Struct. Equ. Model. 2019, 26, 646–661. [CrossRef]

7. Muthén, L.K.; Muthén, B.O. Mplus User’s Guide, 8th ed.; Muthén & Muthén: Los Angeles, CA, USA, 1998–2017.
8. Zitzmann, S.; Weirich, S.; Hecht, M. Using the effective sample size as the stopping criterion in Markov chain Monte Carlo with

the Bayes module in Mplus. Psych 2021, 3, 336–347. [CrossRef]
9. SAS Institute Inc. SAS/STAT®15.1 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2018.
10. Ames, A.J.; Samonte, K. Using SAS PROC MCMC for item response theory models. Educ. Psychol. Meas. 2015, 75, 585–609.

[CrossRef]
11. Mai, Y.; Zhang, Z. Software packages for Bayesian multilevel modeling. Struct. Equ. Model. A Multidiscip. J. 2018, 25, 650–658.

[CrossRef]
12. Moeyaert, M.; Rindskopf, D.; Onghena, P.; Van den Noortgate, W. Multilevel modeling of single-case data: A comparison of

maximum likelihood and Bayesian estimation. Psychol. Methods 2017, 22, 760–778. [CrossRef] [PubMed]
13. Miočević, M.; Gonzalez, O.; Valente, M.J.; MacKinnon, D.P. A tutorial in Bayesian potential outcomes mediation analysis. Struct.

Equ. Model. A Multidiscip. J. 2018, 25, 121–136. [CrossRef] [PubMed]
14. Wurpts, I.C.; Miočević, M.; MacKinnon, D.P. Sequential Bayesian data synthesis for mediation and regression analysis. Prev. Sci.

2022, 23, 378–389. [CrossRef] [PubMed]
15. Leventhal, B.C.; Stone, C.A. Bayesian analysis of multidimensional item response theory models: A discussion and illustration of

three response style models. Meas. Interdiscip. Res. Perspect. 2018, 16, 114–128. [CrossRef]
16. Stone, C.A.; Zhu, X. Bayesian Analysis of Item Response Theory Models Using SAS; SAS Institute Inc.: Cary, NC, USA, 2015.
17. Austin, P.C.; Lee, D.S.; Leckie, G. Comparing a multivariate response Bayesian random effects logistic regression model with a

latent variable item response theory model for provider profiling on multiple binary indicators simultaneously. Stat. Med. 2020,
39, 1390–1406. [CrossRef] [PubMed]

18. Zhang, Z. Modeling error distributions of growth curve models through Bayesian methods. Behav. Res. 2016, 48, 427–444.
[CrossRef]

19. McNeish, D. Fitting residual error structures for growth models in SAS PROC MCMC. Educ. Psychol. Meas. 2017, 77, 587–612.
[CrossRef]

20. Gelman, A.; Rubin, D.B. Inference from iterative simulation using multiple sequences. Stat. Sci. 1992, 7, 457–472. [CrossRef]
21. Asparouhov, T.; Muthén, B. Bayesian analysis using Mplus: Technical implementation (Version 4). 2023. Available online:

http://www.statmodel.com/download/Bayes2.pdf (accessed on 25 August 2023).
22. Link, W.A.; Eaton, M.J. On thinning of chains in MCMC. Methods Ecol. Evol. 2012, 3, 112–115. [CrossRef]
23. Kass, R.E.; Carlin, B.P.; Gelman, A.; Neal, R.M. Markov Chain Monte Carlo in practice: A roundtable discussion. Am. Stat. 1998,

52, 93–100. [CrossRef]
24. Vehtari, A.; Gelman, A.; Simpson, D.; Carpenter, B.; Bürkner, P.-C. Rank-normalization, folding, and localization: An improved R

for assessing convergence of MCMC (with discussion). Bayesian Anal. 2021, 16, 667–718. [CrossRef]
25. de Ayala, R.J. The Theory and Practice of Item Response Theory; The Guilford Press: New York, NY, USA, 2009.
26. Zitzmann, S. A computationally more efficient and more accurate stepwise approach for correcting for sampling error and

measurement error. Multivar. Behav. Res. 2018, 53, 612–632. [CrossRef] [PubMed]
27. Hecht, M.; Zitzmann, S. A computationally more efficient Bayesian approach for estimating continuous-time models. Struct. Equ.

Model. A Multidiscip. J. 2020, 27, 829–840. [CrossRef]
28. Hecht, M.; Gische, C.; Vogel, D.; Zitzmann, S. Integrating out nuisance parameters for computationally more efficient Bayesian

estimation—An illustration and tutorial. Struct. Equ. Model. A Multidiscip. J. 2020, 27, 483–493. [CrossRef]
29. Plummer, M. JAGS: Just another Gibbs SAMPLER (Version 4.3.1). Available online: https://sourceforge.net/projects/mcmc-jags/

(accessed on 16 May 2023).
30. Hecht, M.; Weirich, S.; Zitzmann, S. Comparing the MCMC efficiency of JAGS and Stan for the multi-level intercept-only model

in the covariance- and mean-based and classic parametrization. Psych 2021, 3, 751–779. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/10705511.2018.1545232
https://doi.org/10.3390/psych3030025
https://doi.org/10.1177/0013164414551411
https://doi.org/10.1080/10705511.2018.1431545
https://doi.org/10.1037/met0000136
https://www.ncbi.nlm.nih.gov/pubmed/28358542
https://doi.org/10.1080/10705511.2017.1342541
https://www.ncbi.nlm.nih.gov/pubmed/29910595
https://doi.org/10.1007/s11121-021-01256-1
https://www.ncbi.nlm.nih.gov/pubmed/34287732
https://doi.org/10.1080/15366367.2018.1437306
https://doi.org/10.1002/sim.8484
https://www.ncbi.nlm.nih.gov/pubmed/32043653
https://doi.org/10.3758/s13428-015-0589-9
https://doi.org/10.1177/0013164416652441
https://doi.org/10.1214/ss/1177011136
http://www.statmodel.com/download/Bayes2.pdf
https://doi.org/10.1111/j.2041-210X.2011.00131.x
https://doi.org/10.2307/2685466
https://doi.org/10.1214/20-BA1221
https://doi.org/10.1080/00273171.2018.1469086
https://www.ncbi.nlm.nih.gov/pubmed/29781710
https://doi.org/10.1080/10705511.2020.1719107
https://doi.org/10.1080/10705511.2019.1647432
https://sourceforge.net/projects/mcmc-jags/
https://doi.org/10.3390/psych3040048

	Introduction
	Automatic Monitoring of Stopping Criteria in Markov Chain Monte Carlo Estimation
	Convergence and Stopping Criteria in Markov Chain Monte Carlo
	The %automcmc Macro
	Macro Parameters for Model Estimation
	Output Customization

	Examples: Applying the %Automcmc Macro
	Example 1: 1PL Model with Informative Priors (Single Chain)
	Example 2: 1PL Model with Informative Priors (Multiple Chains)
	Example 3: 1PL Model with Uninformative Priors (Multiple Chains)
	Example 4: 3PL Model with Informative Priors (Single Chain)
	Example 5: 1PL Model with Hierarchical Priors Using Arrays

	Automated Stopping in Related Software
	Discussion
	Appendix A
	References

