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Abstract: The R packages Dire and EdSurvey allow analysts to make a conditioning model with new
variables and then draw new plausible values. This is important because results for a variable not in
the conditioning model are biased. For regression-type analyses, users can also use direct estimation
to estimate parameters without generating new plausible values. Dire is distinct from other available
software in R in that it requires fixed item parameters and simplifies calculation of high-dimensional
integrals necessary to calculate composite or subscales. When used with EdSurvey, it is very easy to
use published item parameters to estimate a new conditioning model. We show the theory behind the
methods in Dire and a coding example where we perform an analysis that includes simple process
data variables. Because the process data is not used in the conditioning model, the estimator is biased
if a new conditioning model is not added with Dire.

Keywords: large-scale assessment; conditioning model; plausible values; NAEP; TIMSS; marginal
maximum likelihood; direct estimation; multiple imputation

1. Introduction

Large-scale assessments (LSA), such as the U.S. National Assessment of Educa-
tional Progress (NAEP) and the Trends in International Mathematics and Science Study
(TIMSS), use plausible values to accurately estimate population estimates of respondent
performance [1]. Plausible values are used in LSA because traditional item response theory
models result in biased estimates of population parameters (Note that an LSA with a
high-reliability assessment would not need to use plausible values). Plausible values are
routinely generated by the statistical agency responsible for the data collection, and can be
used to generate unbiased population estimates (Conditional on the validity of the survey
sampling strategy and psychometric instrument. These are not minor issues, but they
are not the focus of this paper). These plausible values come from a conditioning model
that includes information from all background variables, generally through a dimension
reduction (i.e., principal component analysis) on the full set of covariates. However, when
the analyst brings in data not available to the statistical agency, or they incorporate data
on the file but not yet synthesized on the file—such as many results derived from process
data—they will need to generate new plausible values with a new conditioning model to
obtain unbiased regression parameters. (PISA includes some process data variables [2].
Though any such attempt only scratches the surface of process data variables [3]). In
addition, if the question of interest can be stated as a regression, direct estimation, where
the coefficients from the conditioning model itself are used, is an unbiased estimator of the
regression coefficients [4].

This paper describes the methods of the Dire package for direct estimation and
generation of new plausible values (Dire 2.1.1 CRAN: https://cran.r-project.org/web/
packages/Dire/index.html, GitHub: https://github.com/American-Institutes-for-Research/
Dire, Vignette: https://cran.r-project.org/web/packages/Dire/vignettes/MML.pdf (ac-
cessed on 16 August 2023)). The existing TAM software performs all of the necessary steps to
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go from item responses to estimate item parameters and produce new plausible values [5].
Dire, especially when paired with EdSurvey [6], instead focuses on estimating new latent
regression models and plausible values for LSA where the user wants to use the existing
item parameters published by the statistical agency sharing the results. In addition, Dire is
intended to be able to estimate high-dimensional models used in NAEP where the mathe-
matics scale is a composite of five correlated subscales, as well as TIMSS where four- (grade
4) or five- (grade 8) constructs are estimated in a multi-dimensional model to estimate
subscales [7].

We show the model used by Dire to estimate a conditioning model. We then show the
estimation strategy used by Dire to estimate high-dimensional models without suffering
from exponential-time costs, and how plausible values are generated. We provide a
simple example of using Dire to estimate a new conditioning model with EdSurvey; for
completeness we also show how to estimate a toy example (that is not an existing LSA) in
Dire without using EdSurvey.

2. Background

Typically, student ability is estimated by a factor score (e.g., EAP, WLE, or MLE) of a
corresponding IRT model. Those student abilities can then be used in subsequent analysis.
With a high-reliability test, this is a valid method of analysis because the measurement
error represents a small portion of the total test variance. As such, many existing methods
for IRT available in R [8] focus on estimation of a θ for each student, which can then be
used in subsequent analysis.

LSA are designed to estimate population characteristics directly and do not provide
estimates of individual scores. They instead provide random draws from distributions for
individual proficiencies in the form of plausible values.

It is possible to estimate plausible values using proprietary software such as Mplus [9].
For users who are interested in open source software, R [8] has become popular as a way to
share software and methods.

In the R psychometrics view [10], a few packages have capabilities for drawing plau-
sible values (the focus of the Dire package): TAM [5], mirt [11], and Dire. Additionally,
the NEPSscaling package may be used to draw plausible values focusing on data from
the German National Educational Panel Study (NEPS) [12]. The models shown in this
paper may be fit with TAM, mirt, or Dire. In contrast to mirt and TAM, Dire uses a different
method of calculating the multi-dimensional integral. Where TAM and mirt calculate a
multi-dimensional integral by calculating all of the dimensions at once, Dire does so one- or
two-dimensions at a time. When Dire estimates the conditioning model, it uses the existing
item parameters. The EdSurvey package will download and format them for NAEP and
TIMSS data for the user so that the process is seamless.

The methods in Dire, similar to other plausible value approaches, mirror those used
in the statistical package AM [13] and result in unbiased estimates of parameters included
in the conditioning model [1,4].

The Dire package is integrated into the EdSurvey package, which allows users to
download, read in, manipulate, and analyze U.S. NCES, IEA, and OECD LSA data. For a
detailed overview of the functionality of the EdSurvey package, see [6]. This paper synthe-
sizes portions of the methodology covered in the Dire vignette with worked examples to
provide an overview of the methods and application of Dire in analyzing LSA data.

3. Methodology in Dire

Generating plausible values requires first estimating a marginal maximum likelihood
(MML) model, (Note that we refer to the model as using a log-likelihood throughout this
paper, but the model is weighted by survey sample weights for each student and so it is
correctly a pseudo log-likelihood. One important implication of this is that likelihood ratio
tests are not valid, so the absolute values of the modeled likelihoods are not relevant) and
then estimating a posterior distribution for each test taker, conditional on the model and the
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test taker’s responses [14]. The regression coefficients in the marginal maximum likelihood
model can be used directly in a process known as direct estimation [4]. The methodology
described in the following sections allows for efficient and accurate recovery of model
parameters [4].

3.1. Marginal Maximum Likelihood
3.1.1. Likelihood

MML estimation extends the methodology of standard maximum likelihood (ML)
estimation to situations where variables of interest are latent (not directly observable), such
as student math ability. The principal difference is that the latent variable is not assumed to
be known and is thus integrated out over a distribution of possible values—that this step is
analogous to multiple imputation is one of the key insights of [1].

In MML estimation, an individual student’s likelihood has two components: (1) the
probability of observing the student’s item responses, given their latent ability, and (2)
the probability that a student with a given set of covariate levels would have this student
ability, conditional on the regression coefficients and the residual variance. The product of
these two terms is then integrated out over all possible student ability levels—this is the
marginalization in MML.

The first component, the probability of observing the student’s item responses, is
captured by an item response theory (IRT) model dependent upon the item parameters,
and the student’s score on the item. The latter component is the latent regression model
and is modeled as a normal distribution with Xiβ, where Xi is student i’s (i = 1, . . . , N)
covariates in an m× 1 row vector, and β are the m regression parameters associated with
that vector. In the uni-dimensional case, we define the latent regression model as

θi = Xiβ + εi, εi ∼ N(0, σ) , (1)

where N(0, σ) is a normal distribution with mean zero and standard deviation σ. The
assumption follows that the conditional distribution of θi is f (θi|Xiβ, σ), where f represents
the normal density function. The full likelihood function for a single construct for student i
is then represented as

L(β, σ; Ri, Xi, P) =
∫ [

f (θi|Xiβ, σ) ·
H

∏
h=1

Pr(Rih|θi, Ph)

]wi

dθi , (2)

where Rih represents student i’s response to item h, θi is student i’s latent ability, wi is
the sampling weight for student i, Ph is the vector of item parameters for item h, and
the student sees H items [An added complication is that students do not take the same
assessment. TIMSS takes the full assessment pool and generates 14 different student
achievement booklets through matrix sampling, such that each item will appear in two
booklets. Students complete only one of these booklets and hence see only a fraction of
the total items [15]; NAEP similarly uses rotated forms [16]. However, this issue is not
discussed further because it represents only minor technical problems for MML that are
ignored because it primarily adds notational complexity—for example, the items become
student-specific, which would need to be indicated in the product over h]. Looking at the
left hand side of the equation, Ri is the vector of student i’s responses across the H items,
and P is a matrix whose rows are the vectors Ph, h = 1, . . . , H.

Here, θi is a random variable, while Rih, Xi, and Ph are fixed [In the context of LSA,
the IRT parameters are generally estimated first and then treated as fixed when estimating
the latent regression model [17,18]. These item parameter estimates are included on the
data file, so Dire treats them as fixed]. The parameters to estimate are β and σ.

In the composite scoring framework, where overall ability is measured as a weighted
sum of multiple potentially correlated subdimensions, things are considerably more com-
plicated [Given the focus on LSA, similar to NAEP and TIMSS, Dire fits a between-item
multidimensional model]. Now θi is a vector, with an element for each construct, and
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dependence between the constructs is allowed by modeling the residual as a multivari-
ate normal with residual Σ. We assume here that each item is associated with only one
construct. The target integral to evaluate is then:

L(β1, . . . , β J , Σ; Ri, Xi, P) =
∫

. . .
∫ 1

(2π)
J
2
√

det(Σ)
exp(−1

2
εT

i Σεi)

J

∏
j=1

Hj

∏
h=1

Pr(Rijh|θij, Phj)dθi1 . . . dθi J ,

(3)

where J is the number of constructs, and εi are the residuals θi − Xiβ for student i. The
terms here are analogous to those in Equation (2) but are now also indexed by the construct,
i.e., Rijh is student i’s response to item h within construct j, θij is student i’s latent ability in
construct j, and Phj is the vector of item parameters for item h (h = 1, . . . , Hj) in construct
j. For compactness, we have dropped the wi term here and in the next section, but the
weighting is still implied. The integral in Equation (2) (and consequently in Equation (3),
which generalizes Equation (2)) is intractable and thus requires numeric approximation.

3.1.2. Integral Approximation

Several methods have been proposed in the literature for high-dimensional integral
approximation, including stochastic expectation maximization (EM), Metropolis–Hastings
Robbins–Monro (MH-RM), and both fixed and adaptive quadrature [19]. Stochastic meth-
ods are considered more computationally efficient than numeric quadrature when the
number of latent dimensions (i.e., number of constructs) exceeds three, as the requisite
number of evaluations only increases linearly [20]. Adaptive quadrature tries to overcome
this limitation by decreasing the number of points needed for accurate approximation, but
is still subject to computational complexity that grows exponentially with the number of
dimensions [21,22]. For a recent review of related methods, see [19].

With a large number of test items, the dispersion of the likelihood given the response
patterns is small, and fixed point quadrature would inadequately approximate the like-
lihood [21,22]. However, in the context of LSA, relatively few items are administered to
each student in a given subject. This results in a more dispersed likelihood that fixed
point quadrature is suited to approximate. Additionally, in the uni-dimensional case, fixed
quadrature has been shown to be more efficient than, e.g., MH-RM, with comparable
accuracy [22]. Dire, following the methodology of [4], transforms the problem of approxi-
mating a multi-dimensional integral into one of estimating a uni-dimensional integral per
subscale. To do this, we make the observation that the multi-dimensional case is analogous
to a seemingly unrelated regression (SUR) model with identical regressors and normally
distributed errors that are correlated across equations. It is shown in [23] that for this
special case of a SUR model, estimates are no more efficient when regressors are estimated
simultaneously vs. separately. We begin by writing the joint density as a product of a
marginal and a conditional, as in Equation (4).

L(β1, . . . , β J , Σ; Ri, Xi, P) =
∫

f1(εi1)

[
H1

∏
h=1

Pr(Rih1|θi1, Ph1)

]
dθi1·

∫
. . .
∫

f−1(εi,−1|εi1)
J

∏
j=2

Hj

∏
h=1

Pr(Rijh|θij, Phj)dθi2 . . . dθi J . (4)

By partitioning the likelihood this way, we obtain an additively separable likelihood
once logs are taken, allowing for maximization of each part of the likelihood independently.

In the context of SUR, one possible approach to estimation is the two-step procedure
of iterated feasible generalized least squares (FGLS) [23]. In the first step, weighted least
squares (WLS) is used to estimate regression coefficients. Residuals from these estimates are
then used to estimate the covariance matrix. In the second step, the estimated covariance
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matrix is used to update the estimated coefficient matrix. While the first step is able to be
decomposed for each latent variable, the second step cannot be when the latent variables
are correlated [24]. As an alternative, we can estimate the parameters through direct
maximization. To do so, we must approximate the uni-dimensional integral for each of
j subscales. In this new context of a uni-dimensional integral (with theoretically high
dispersion), fixed point quadrature is expected to perform well. Dire creates a fixed grid of
integration points that the integral is then evaluated over. Because latent ability is assumed
to follow a standard normal distribution when calibrating item difficulty, the default range
for this grid is chosen to be [−4, 4]. Within this range, 30 equidistant quadrature points are
chosen by default. The user may specify an alternative range and number of quadrature
points.

This quadrature representation is shown in Equation (5). Here, the integration nodes
tq stand in for student latent ability, and δ is the distance between any two subsequent
nodes. The term c is a constant that depends on the other dimensions (or constructs) that
are now not a function of β1 nor the residual variance σ2

1 = Σ1,1 term.

L(β1, . . . , β J , Σ; Ri, Xi, P) ≈
{

Q

∑
q=1

δ f1(tq − Xiβ1)

[
H1

∏
h=1

Pr(Ri1h|tq, Ph1)

]}
· c . (5)

Instead of needing to optimize a multi-dimensional integral over all subscales simulta-
neously, the process is simplified considerably to:

1. Estimate β j and σj for each subscale j by optimizing a univariate density (5) and
2. Hold the β j and σ2

j (the diagonal terms in Σ) estimates fixed and estimate the correla-

tions for each of the ( J
2) pairs of subscales (the non-diagonal elements of Σ).

The second step takes advantage of the fact that a multivariate normal is conditionally
a multivariate normal distribution, after conditioning on a subset of the variables. The
likelihood of the covariance between two subscales is defined as:

L(σ1,2) =
∫ ∫

f1,2(εi(1,2))

 2

∏
j=1

Hj

∏
h=1

Pr(Rijh|θij, Phj)

dθi1dθi2·

∫
. . .
∫

f(3,...,J)(εi(3,...,J)|εi(1,2))
J

∏
j=3

Hj

∏
h=1

Pr(Rijh|θij, Phj)dθi3 . . . dθi J (6)

=
∫ ∫

f1,2(εi(1,2))

 2

∏
j=1

Hj

∏
h=1

Pr(Rijh|θij, Phj)

dθi1dθi2 · c′ , (7)

where the left-hand side has been simplified to indicate the only parameter being estimated
is σ1,2, the covariance between subscales one and two. Here, f1,2(εi(1,2)) is the bivariate
normal distribution, evaluated at a mean of εi(1,2), with covariance matrix having diagonal
elements σ1, σ2 and off-diagonal elements both σ1,2. The second integral is the multivariate
normal distribution of all other variables, conditional on the first two values. Because this
second term is a constant, it can be replaced with the term c′ and ignored when maximizing
the integral.

3.2. Parameter Estimation
3.2.1. Estimating β and σ

To estimate the β and σ terms, we plug in the normal distribution for f and use
the univariate objective function in Equation (5) which can be maximized accordingly by
dropping the trailing c term (because it is irrelevant for maximization). We once again
make the survey sample weighting explicit and define the log-likelihood:
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`(β, σ; w, R, X, P) ≈
N

∑
i=1

wi log

[
δ

Q

∑
q=1

1
σ
√

2π
exp
−(tq − Xiβ)

2

2σ2

H

∏
h=1

Pr(Rih|tq, Ph)

]
, (8)

where as before the integration nodes tq stand in for the latent ability, previously labeled
θi, δ is the distance between any subsequent node pair, and wi is the sampling weight
for student i. As we are now summing across all students, we let w denote the vector of
student sample weights, while R is an N × H matrix of student item responses, and X is
the N ×m design matrix. The first component of this likelihood is the univariate normal of
the residuals, εi. The second component is the probability of student i’s responses, given
the item parameters and the node. Item scoring may be 3-PL, graded response, or partial
credit (see the Dire documentation for how to specify the parameters).

The full likelihood for a given student is comprised of the density of their latent
ability and the product of their response probabilities across all items, each respective to
the appropriate IRT model. To make this computation more efficient, Dire calculates the
item response likelihoods outside of the optimized function, since these do not depend
on β and σ. The optimization then only takes place over the univariate normal portion
of the likelihood. Dire takes a robust approach to optimization that begins with using
the memory-efficient L-BFGS-B algorithm to identify a maximum. Because the L-BFGS-B
implementation programmed in R does not have a convergence criterion based on the
gradient, Dire further refines these estimates with a series of Newton steps, using the
gradient as a convergence criterion—since a maximum has zero gradient, by definition.
Because the integration nodes and item parameters are fixed during optimization, the term
Pr(Rih|tq, Ph) will not change over the surface of β or σ, so it is only necessary to evaluate
it once per student over the grid.

To demonstrate this, we consider an example using the TIMSS 2019 8th-grade math
results for Singapore. Figure 1 shows a single student’s item responses for the items in the
Algebra construct. While the International Association for the Evaluation of Educational
Achievement (IEA) typically estimates TIMSS math and science scores as if it had an overall
score (where all items are in the math construct), for illustrative purposes we estimate it as
a composite score instead where the constructs are distinct and correlated. (IEA does fit the
subscales as correlated constructs, but we are focusing on the subjects [25]. Nevertheless, a
Dire user could fit the model we fit for NAEP for TIMSS data and recover the subscales
(throwing out the implied but never used composite score that would also have to be
calculated)).

Figure 1. Log-likelihood for each item in the algebra construct for a selected student.
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We aggregate their likelihood across all items in the construct through a summation
of their item-level likelihoods. We are then able to observe how a student’s likelihood
surface changes as we change the conditioning model by varying σ and β. Figure 2 shows
that as we increase σ, the surface becomes wider, and as we increase β, the distribution’s
peak moves to the right. The black line represents the base likelihood of the student’s item
responses without a conditioning model.

(a) (b)

Figure 2. Impact of model for θ on student likelihood, evaluated at fixed quadrature points [−4,4].
(a) Student likelihood at different values of σ, holding β fixed at 0. (b) Student likelihood at different
values of β, holding σ fixed at 1.

3.2.2. Estimating Covariance Terms, σij

Once the convergence criteria have been met, the second step is to estimate the
correlations between each pair of constructs. Each construct’s likelihood is evaluated at
the same fixed nodes, thus for each node pair we evaluate the bivariate normal likelihood
for the current value of σij. The summation of these evaluations shown in Equation (9)
becomes the objective function for the Newton optimization routine.

`
(

σjj′
∣∣∣β j, β j′ , σj, σj′ ; w, R, X, P

)
=

N

∑
i=1

wi log


∫ ∫ 1

2π

√∣∣∣Σ(jj′)

∣∣∣ exp
(

ε̂T
jj′Σ
−1
(jj′)ε̂jj′

)

×

 Hj

∏
h=1

Pr(Rijh|θj, Ph′)

 Hj′

∏
h′=1

Pr(Rij′h′ |θj′ , Ph′)

dθjdθj′ . (9)

For any fixed n, this corresponds to a single student’s likelihood. We take the same
student whose likelihood surface we examined previously on the Algebra subscale and
now consider their composite likelihood, comprised of the Algebra and Geometry subscales.
Figure 3 shows (a) the item response likelihood across the two constructs, (b) the likelihood
of the student’s latent trait, and (c) the product of (a) and (b), where (c) is the function we
seek to maximize, as a function of σi,j, holding βi, σ2

i , βj, σ2
j all fixed. The figure shows that

the student’s total likelihood, being the product of a normal distribution and an IRT model,
also appears approximately normal. This is the posterior distribution of the latent trait, θi,
and will be relevant later for estimating group statistics.
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(a) (b) (c)

(d) (e) (f)

Figure 3. 3D and 2D density plots of the components of a student’s likelihood, evaluated over a grid
of fixed quadrature points over θ1 (x-axis) and θ2 (y-axis). (a) 3D plot of item response likelihood.
(b) 3D plot of latent trait. (c) 3D plot of complete distribution. (d) Contour plot of item response
likelihood. (e) Contour plot of latent trait. (f) Contour plot of complete distribution.

Contrary to the procedure of the AM software [13], Dire optimizes σij by optimizing
the correlation, r, in the Fisher Z space [Since variance terms have already been estimated
at this stage, the covariance can be obtained by optimizing the correlation and calculating
σij = rσiiσjj]. This is a transformation defined by

z =
1
2

ln
(

1 + r
1− r

)
= arctanh(r), (10)

where r is the current value of the correlation. The benefit of optimizing in this space is that
it maps the (−1,1) interval of a correlation to the real number line and consequently does
not have to deal with proposed Newton steps outside of the allowable bounds. This allows
for better handling and estimation of correlations between highly correlated constructs.

Though this procedure circumvents scenarios that would impede the optimization
routine, it does not address the challenge of accurately estimating high correlations. When
constructs are highly correlated, we observe that evaluation at subsequent node pairs may
produce drastically different likelihoods. The true parameter value can “fall through the
cracks”, and we are left with a biased estimate of the correlation.

One solution would be to evaluate the likelihood surface over a finer grid (i.e., sig-
nificantly increase the number of nodes), but this quickly becomes computationally bur-
densome as the size of the data increases. Dire introduces a novel solution for accurately
estimating correlations that relies on spline interpolation of the likelihood surfaces. Con-
sider the Gaussian densities in Figure 3—the narrow, elongated shape suggests that the
algebra and geometry constructs are highly correlated for this student. In Figure 4, we
compare a student’s likelihood using the standard grid and the grid produced with a
cubic spline interpolation of the likelihood surface. The approximation of the likelihood
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surface using the standard grid is subject to discontinuities that are not real but the result
of discretization.

(a) (b)

Figure 4. Bivariate density plots for Algebra and Geometry subscales for a select student, evaluated
over a grid of fixed quadrature points over θ1 (x-axis) and θ2 (y-axis). (a) Density evaluated over the
standard grid. (b) Density evaluated over the spline interpolated grid.

Table 1 shows the estimated correlation, log-likelihood, and computing time for a
variety of methods. The inefficacy of the standard grid becomes apparent, as we see the
extent to which the estimated likelihood differs depending on the number of nodes. The
spline interpolated grid requires greater computation time than the standard grid for a set
value of q, but the relative improvement in estimation justifies its use. Spline interpolation
results in nearly the same estimated correlation as if we had used 4x the number of nodes,
at roughly a quarter of the computing time.

Table 1. Correlation estimates and computing times.

Method ρ̂ Log-Likelihood Computing Time

Standard grid, Q = 34 0.995 −250,553.4 44 s
Spline interpolated grid, Q = 34 0.962 −252,857.9 119 s
Standard grid, Q = 136 0.961 −252,829.1 381 s

3.3. Variance Estimation

Dire estimates the variances of β, as well as the residual variances (diagonal of the
covariance matrix), using the cluster-robust (CR-0) method in Binder [26]. This method is
also known as the Taylor Series Method, e.g., in Wolter’s survey sampling text [27]. These
methods account for the weights and are cluster-robust in the sense of estimating arbitrary
covariances between units within strata.

The Taylor series method involves estimating the variance for the set of parameters
θ using

Var(θ) = d′Σ̂d , (11)

where d is the vector of first derivatives of the score function with respect to the elements
of θ (and so has the same dimensions as θ), and Σ̂ is the estimated covariance term for θ. Σ̂

is obtained using survey sample methods for a two-stage sample, i.e.,:

Σ̂ = ∑
s

Ps

Ps − 1

Ps

∑
p
(gsp − ḡs)(gsp − ḡs)

′ , (12)
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where s indexes the strata, and p indexes the PSUs in the strata, of which there are Ps in the
sth stratum. Here, the g terms are defined by

gsp =
∂lsp(θ)

∂θ
, (13)

ḡs =
1
Ps

Ps

∑
p
(gsp) , (14)

where lsp is the log-likelihood function for only those units in stratum s in PSU p, evaluated
at the estimated value for θ (based on the full data).

The derivative vector (d) can be calculated as the inverse Hessian of the likelihood
function, or (assuming information equality [23]), as the sum of the stratum-level Jacobians
of θ. The latter option is provided because it allows for replication of results from the AM
software [13], but the former is recommended and is the default.

3.4. Plausible Values

Having estimated the model through MML as described in the preceding sections,
we are able to draw plausible values for each student’s latent ability in these constructs
through the following procedure:

1. Holding Σ fixed, draw β̃ from a normal approximation to the posterior of β

2. Using the same Σ and β̃, compute the posterior distribution of θi for each student
using the same quadrature nodes as in the initial optimization routine. Compute the
mean and variance of each student’s posterior distribution as:

θ̄i ≈
∑Q

q=1 tqli
(
tq
)

f
(

tq; Xi β̃, Σ
)

∑Q
q=1 li

(
tq
)

f
(

tq; Xi β̃, Σ
) , (15)

var
(

θi

∣∣∣ R, X, P, β̃, Σ
)
≈

∑Q
q=1
(
tq − θ̄i

)2li
(
tq
)

f
(

tq; Xi β̃, Σ
)

∑Q
q=1 li

(
tq
)

f
(

tq; Xi β̃, Σ
) , (16)

where li(tq) is the product of item response probabilities for individual i evaluated at
node tq.

3. Using the mean and standard deviation from Step 2, randomly draw from a normal
approximation to the posterior distribution.

This is straightforward in the case of a single construct. When there are multiple
constructs, in addition to the posterior mean and variance for each individual construct,
we compute posterior correlations between each pair of constructs in order to form the
posterior covariance matrix, Σ̄i. Plausible values are then drawn from a multivariate normal
approximation to the posterior with mean θ̄i and covariance matrix Σ̄i.

The normal approximation to the posterior distribution seems reasonable given
Figures 3c,f and 4b, each of which show approximately normally distributed looking sur-
faces, and both of which are based on published student data. More importantly, given
Dire’s focus on LSA, this follows the methodology of NAEP and TIMSS [16,17].

Contrary to a standard Empirical Bayes (EB) approach, step (1) treats the population
regression coefficients as random variables. EB does not fully account for the uncertainty
in the modeled component and may result in biased statistics. By having a stochastic β we
can integrate out this source of uncertainty. Once plausible values have been drawn, group
level statistics may be calculated by first calculating the statistic for each of m plausible
values. The average of these m estimates becomes the final estimate [28].

Plausible values are included in the data files provided by NCES, IEA, and OECD. As
such, it only becomes necessary to draw new plausible values when there is a desire to
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estimate regression coefficients for variables that were not part of the conditioning model fit
by these agencies. For a detailed discussion on the motivation and use of plausible values,
see [1].

Having drawn plausible values, the user should use them according to Rubin’s
rule [28], as explained in [29].

4. Examples

To analyze assessment data using the Dire package, the minimum necessary compo-
nents are:

• Student data, including covariates (and weights, if applicable)
• Student item responses
• Item parameters
• Scaling information

These components are readily accessible and appropriately formatted for Dire out of
the box when reading in data using the EdSurvey package. For users wishing to simulate
some or all of this information, the lsasim R package provides a set of functions for
simulating LSA data [30].

The following examples show (1) a general workflow of using Dire to estimate regres-
sion parameters and draw new plausible values using simulated data, and (2) how to use
Dire with existing LSA data to address a particular research question.

4.1. Simulated Data

Using lsasim, we simulated background variables for 2000 students divided into
40 strata and 2 sampling units, as well as their responses to 20 dichotomous items divided
into two subscales and the parameters for those items (see Appendix A).

To fit a latent regression model by marginal maximum likelihood, we call the function
‘Dire::mml‘. The parameters to be specified are:

• formula: the model to be fit, expressed as Y X1 + . . . + XK
• stuItems: student item responses
• stuDat: student background variables, weights, and other sampling information
• idVar: student identifier variable in stuDat
• dichotParamTab: item parameters for dichotomous items
• polyParamTab: item parameters for polytomous items
• testScale: location, scale, and weights for each (sub)test
• strataVar: a variable in stuDat, indicating the stratum for each row
• PSUVar: a variable in stuDat, the primary sampling unit (PSU)

The general workflow is then straightforward. Once all necessary components are
defined, the user need only determine the model they wish to fit. The outcome can
be a single subscale (e.g., if one wished to estimate population parameters for Algebra
proficiency), or it can be a composite of multiple subscales, such as in NAEP. Our simulated
data contain two subscales, A and B, which we may fit a composite of.
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# We specify a composite outcome and use background variables q2 and q3
as predictors↪→

mmlcomp <- Dire::mml(comp ~ q2 + q3, stuItems=stuItems,stuDat=stuDat,
idVar="subject",dichotParamTab = parTab,
testScale=testDat,strataVar = "stratum",
PSUVar="jkunit")

# Creating a summary object and examining estimates and standard errors
mmlsummary <- summary(mmlcomp)
mmlsummary$coefficients

Estimate StdErr t.value dof Pr(>|t|)
(Intercept) 245.953991 1.366685 179.963933 40 0.0000000000
q2 6.248822 1.496731 4.174979 40 0.0001564003
q3 -29.530000 1.315935 -22.440317 40 0.0000000000
Population SD 52.276213 NA NA 40 NA

If one wished to make their simulated data available for secondary analyses, they
may also wish to provide plausible values. This can be achieved using the ‘Dire::drawPVs‘
function, which requires only a MML model object and a desired number of PVs to generate.

Consistent with IEA’s procedures in 2019 TIMSS, we draw five plausible values in this
example [7]. Drawing more plausible values slows computation but always increases the
accuracy of the estimates and variance estimates (Lou and Dimitrov [31] conclude, “The
results indicate that 20 is the minimum number of plausible values required to obtain point
estimates of the IRT ability parameter that are comparable to marginal maximum likelihood
estimation(MMLE)/expected a posteriori (EAP) estimates”).

# We draw 5 plausible values using the MML model fit above
datPVs <- Dire::drawPVs(mmlcomp, npv=5L)$data

# We see that we have 5 plausible values each for the individual
subscales and their composite↪→

colnames(datPVs)
[1] "id" "A_dire1" "B_dire1" "comp_dire1" "A_dire2"

"B_dire2"↪→

[7] "comp_dire2" "A_dire3" "B_dire3" "comp_dire3" "A_dire4"
"B_dire4"↪→

[13] "comp_dire4" "A_dire5" "B_dire5" "comp_dire5"

4.2. TIMSS Data

We used the international 2019 TIMSS U.S. Grade 8 data for this analysis, read in
with the EdSurvey R package [(EdSurvey 4.0.1 CRAN: https://cran.r-project.org/web/
packages/EdSurvey/index.html, GitHub: https://github.com/American-Institutes-for-
Research/EdSurvey (accessed on 16 August 2023)]. These data bear information about how
much screen time test takers spend on each item in the assessment, and these variables are
not included in the conditioning model.

We first calculate each student’s total time (screen time, summed across all items) on
math and science in minutes. Then we Z-scored these values. For TIMSS 2019 Grade 8
USA, with math achievement as our outcome, we consider a conditioning model with
predictors of total time on the math blocks, total time on the science blocks, and which
block students were exposed to first (math or science). Students are randomly assigned to
one of 14 booklets, half of which present the science blocks first, and half of which present
math first. Using this information, we created a binary variable equal to “M” if a student

https://cran.r-project.org/web/packages/
https://cran.r-project.org/web/packages/
EdSurvey/index.html
https://github.com/American-Institutes-for-Research/EdSurvey
https://github.com/American-Institutes-for-Research/EdSurvey
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sees math first and “S” if they see science first, with “M” serving as the reference level. We
additionally consider the two-way interactions of these predictors.

# Reading TIMSS 2019 USA grade 8 data with EdSurvey; t19 will be an
object of class edsurvey.data.frame, which compactly contains all
information necessary for MML in a list

↪→

↪→

t19 <- EdSurvey::readTIMSS("~/TIMSS/2019/", countries="usa", grade=8)

# Searching the survey data frame for variables related to time on screen
vn <- EdSurvey::searchSDF(data=t19, c("time", "on",

"screen"))$variableName↪→

# Splitting time on screen variables by subject (math and science)
vnm <- vn[substr(vn,1,2) == "me"]
vns <- vn[substr(vn,1,2) == "se"]

# Summing time spent on items in math and science, converting it from
seconds to minutes, and standardizing↪→

t19$totalTimeMat <- scale(pmax(5, apply(t19[,vnm], 1, sum,
na.rm=TRUE)/60))↪→

t19$totalTimeSci <- scale(pmax(5, apply(t19[,vns], 1, sum,
na.rm=TRUE)/60))↪→

# Defining which booklets present science first and which present math
first↪→

s_first <- c("BOOKLET 02","BOOKLET 04","BOOKLET 06","BOOKLET 08",
"BOOKLET 10","BOOKLET 12","BOOKLET 14")

m_first <- c("BOOKLET 01","BOOKLET 03","BOOKLET 05","BOOKLET 07",
"BOOKLET 09","BOOKLET 11","BOOKLET 13")

# Defining 'first_subject' as an indicator of the subject a student's
booklet presents first↪→

t19$first_subject <- ifelse(t19$idbook %in% m_first,"M","S")

Notice that this is not intended to be a sophisticated look at mathematics screen time. A
few issues arise, one being that students who see harder items may take longer to complete
the items. For a more sophisticated approach to analyzing process data in this context,
see [32,33]. However, the same criticism is not true of the time spent on science, since these
items have no loading onto the mathematics test scores.

Having created the Z-scored time on assessment and first assessment (math or science)
variables, we fit a new conditioning model using only the variables in our regression. We
then drew plausible values from this conditioning model and fit a linear regression with
these covariates to both the original and new plausible values. These plausible values
could be used to fit models nested inside of the conditioning model, so if there are multiple
regressions, the conditioning model could incorporate every covariate in them and then
the plausible values could be used many times—as is typical of the plausible values that
are provided on the original data [1].
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# Using 'EdSurvey::mml.sdf' to fit model by MML; this extracts all needed
information from the edsurvey.data.frame and then calls 'Dire::mml'↪→

mmlC <- EdSurvey::mml.sdf(mmat ~ totalTimeMat + totalTimeSci +
first_subject +↪→

totalTimeMat:first_subject + totalTimeMat:totalTimeSci +
totalTimeSci:first_subject, data=t19, weightVar="totwgt",
composite = FALSE)

# Drawing 5 plausible values from the model fit above; we call 'summary'
in order to generate a variance estimate of the model coefficients so
that we can treat them as a random variable (i.e., the beta terms are
stochastic)

↪→

↪→

↪→

mmlC_pvs <- Dire::drawPVs(summary(mmlC),5,data=t19,stochasticBeta=TRUE)

# We use the newly generated plausible values (denoted by mmat_dire) as
dependent variables in a linear regression↪→

lm_dire <- EdSurvey::lm.sdf(mmat_dire ~ totalTimeMat + totalTimeSci +
first_subject +↪→

totalTimeMat:first_subject + totalTimeMat:totalTimeSci
+↪→

totalTimeSci:first_subject, data=mmlC_pvs,
weightVar = "totwgt")

# For comparison, we fit the same model using the original TIMSS
plausible values↪→

lm_og <- EdSurvey::lm.sdf(mmat ~ totalTimeMat + totalTimeSci +
first_subject +↪→

totalTimeMat:first_subject + totalTimeMat:totalTimeSci +
totalTimeSci:first_subject,
data=mmlC_pvs)

We note that these models use “treatment coding”, so first_subject is 1 when the
student takes science first and zero otherwise.

5. Results

Table 2 shows the summary results from fitting the MML model described above,
i.e., with regression parameters obtained through direct estimation and standard errors
obtained via the CR-0 method described in Section 3.3.

Table 2. Summary of model; math achievement regressed on time spent on math, time spent on
science, first subject seen, and their two-way interactions. *** p < 0.0001, ** p < 0.001.

Estimate SE t-Value dof Pr(>|t|)

intercept 523.01 4.60 113.62 65.0 <2.2× 10−16 ***
TimeM 13.95 3.79 3.68 23.3 0.0012 **
TimeS −2.84 4.35 −0.65 7.4 0.53
FirstS 16.73 2.72 6.16 22.1 3.29× 10−6 ***
FirstS × TimeM 41.83 5.3 7.97 28.0 1.13× 10−8 ***
FirstS × TimeS −38.31 6.0 −6.42 14.1 1.55× 10−5 ***
TimeM × TimeS −13.30 2.2 −5.97 11.8 7.03× 10−5 ***

The estimated coefficient of 13.95 is the simple slope for time spent on math; that
is, for a one standard deviation increase in time spent on math, the predicted scale score
will increase by 13.95, assuming the student sees the math block first (i.e., Firsts = 0) and
spends an average amount of time on the science block (i.e., Times = 0, since the times
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are standardized). These assumptions (Firsts = 0, Times = 0) are necessary because of the
interaction terms—described below.

The estimated coefficient of −2.84 is the simple slope for time spent on science, imply-
ing that for a one standard deviation increase in time spent on science, the predicted scale
score will decrease by −2.84. Here again, because of the interactions, we assume the math
block is seen first, and that the student spends an average amount of time on the math
block (i.e., Timem = 0).

The estimated coefficient of 16.73 for the first block seen implies that if a student
spends an average amount of time on both the math and science blocks, seeing the science
block first is associated with a predicted scale score increase of 16.73 points.

The estimated coefficient of 41.83 for the interaction of first block seen and time spent
on math represents the change in slope of Timem when students see the science block first;
that is, when a student sees science first, each one standard deviation increase in Timem is
associated with an increase in predicted scale score of 13.95 + 41.83.

Similarly, the estimated coefficient of −38.31 for the interaction of first block seen and
time spent on science represents the change in slope of Times when students see the science
block first. When a student sees science first, each one standard deviation increase in Times
is associated with a decrease in predicted scale score of −2.84–38.31.

Lastly, the estimated coefficient of −13.3 for the interaction of time spent on math and
time spent on science represents the change in slope of Timem for a one standard deviation
increase in time spent on science, and vice versa.

To aid the reader in understanding the net result of these interactions, Figure 5 shows
predicted score as a function of time spent on math vs. time spent on science for students
who saw math vs. science items first. Results are color-coded by predicted math achieve-
ment to demonstrate the association between time spent on the test and modeled score.

Figure 5. Predicted U.S. 2019 Grade 8 TIMSS Math scale score (color coded) as a function of screen
time on math items (x-axis), screen time on science items (y-axis), for students who were administered
math items first (left panel) and science items first (right panel).

Taking all of the above into consideration, we expect the highest math achievement
from a student who sees science first, spends a below average amount of time on science,
and spends an above average amount of time on math. Likewise, we expect the lowest math
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achievement from a student who either sees math first and spends a below average amount
of time on math and science items, or sees science first and spends an above average amount
of time on science and a below average amount of time on math. A possible explanation
could be that students seeing science first were better primed for the math items.

We draw five plausible values with this conditioning model, and then fit two linear
regressions with the same variables used in the conditioning model: one using the original
plausible values, and one using the newly generated ones. Table 3 shows the results of
these two models, and Figure 6 compares the estimates and standard errors.

Table 3. Linear regression models for math achievement using the original PVs (R2 = 0.112) and new
PVs (R2 = 0.141). *** p < 0.0001, ** p < 0.001.

Estimate SE t-Value dof Pr(>|t|)

Original PVs
intercept 518.68 4.98 104.17 60.9 <2.2× 10−16 ***
TimeM 15.36 4.90 3.14 14.5 0.007 **
TimeS −2.54 4.49 −0.57 15.3 0.58
FirstS 22.19 3.38 6.57 18.0 3.58× 10−6 ***
FirstS × TimeM 31.93 5.60 5.70 36.0 1.76× 10−6 ***
FirstS × TimeS −34.89 5.97 −5.84 25.2 4.17× 10−6 ***
TimeM × TimeS −12.15 2.07 −5.87 16.7 2.01× 10−5 ***

New PVs
intercept 523.06 4.19 124.71 93.8 <2.2× 10−16 ***
TimeM 13.85 3.84 3.61 22.3 0.002 **
TimeS −3.20 3.14 −1.02 32.0 0.32
FirstS 16.63 2.86 5.81 24.8 4.85× 10−6 ***
FirstS × TimeM 42.07 4.57 9.21 63.6 2.59× 10−13 ***
FirstS × TimeS −38.07 4.99 −7.63 48.6 7.45× 10−10 ***
TimeM × TimeS −13.36 2.41 −5.54 15.0 5.60× 10−5 ***

Figure 6. Plot of regression coefficients (excluding the intercept) for the model shown in Table 3,
including 95% confidence intervals for the original plausible values (top, orange) and the plausible
values that were generated after fitting our new conditioning model (bottom, blue).
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6. Discussion and Conclusions

Understanding the population characteristics of student achievement is a complex
task—especially when trying to augment existing surveys with additional data. Because the
tests are designed to minimize response burden, they can only be used with a conditioning
model (e.g., plausible values) to achieve an unbiased estimate. Further, a conditioning
model must be fit that includes all variables of interest for the study. In our case, that
is a new conditioning model because the process data variables are not included in the
conditioning model.

NAEP and TIMSS each have plausible values made available to researchers for their
analyses, but this places limitations on including external data or process data in the
conditioning model. Dire enables users to use direct estimation, or simply fit a large
conditioning model that includes external or process data variables. Once the conditioning
model is fit, the user can draw new plausible values in order to have unbiased estimators
of conditional statistics. Dire estimates the conditioning model efficiently by maximizing
one subtest at a time (in the case of composite scores such as in NAEP or for TIMSS
subtests). In addition, when the correlations are high it is often neceessary to use a higher
density grid. To quickly calculate that, spline interpolation is applied, for accurate and fast
estimation of correlations between subscales—this is novel in Dire and was used because
the approximation was observed to be fast and accurate.

In our example, we fit a conditioning model with process data variables. We used
direct estimation to estimate regression coefficients from an unbiased estimator. We then
generated plausible values from that conditioning model and compared the results of a
linear regression on the new plausible values that do include these variables to the original
plausible values that do not. Setting aside the intercept, the estimated coefficients were
further from zero (four of six cases), had smaller standard errors (five of six cases), larger
degrees of freedom (five of six cases), and smaller p-values (four of six cases).

The model showed a surprisingly intricate association between time on tests and
which test was first, with all interactions showing statistical significance and Figure 5
showing increases in total time (movement along the 45-degree line) being either non-linear
(left plot: math first) or nearly unassociated with math score (right plot: science first).

We do not intend for these results on time spent on the exam to be a final word on
the topic—they are merely presented as an example. In addition, screen time is not very
informative, and does not add insight into what the student was doing. For example, a
student who spends more time checking previous items is undertaking a very different
activity than one who has the screen on one item with no clicks for an extended period.
One hint is that there could be a “warm-up” effect, but this does not clarify why students
who take more time on science after completing their math assessment have lower scores.
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Appendix A. Data Simulation Code

library(lsasim)
library(dplyr)

set.seed(555)
n <- 2000

stuDat <- lsasim::questionnaire_gen(n,n_X = 3,n_W=2)

nperstratum <- 50
nstrata <- n/nperstratum
stuDat$stratum <- rep(1:nstrata, each=nperstratum)
stuDat$jkunit <- rep(rep(1:2, each=nperstratum/2), nstrata)
stuDat$subject <- factor(rownames(stuDat), levels=rownames(stuDat))

head(stuDat)

subject q1 q2 q3 q4 q5 stratum jkunit
1 1 0.2606158 0.96672320 0.08836696 2 1 1 1
2 2 -0.7694350 -0.60054920 2.07640818 3 1 1 1
3 3 -1.4439145 1.58447832 0.75268454 2 1 1 1
4 4 0.5107890 0.32113114 0.56695879 2 2 1 1
5 5 0.6968691 -0.23618113 -0.29148594 2 1 1 1
6 6 0.4600055 0.05979955 -0.07633213 2 1 1 1

item_params <- lsasim::item_gen(b_bounds = c(-3,3), a_bounds = c(.75,
1.25),↪→

c_bounds = c(0,0.25), n_3pl = 20)
block <- lsasim::block_design(n_blocks = 4, item_parameters =

item_params)↪→

booklet <- lsasim::booklet_design(block$block_assignment)
book_stu <- lsasim::booklet_sample(n_subj = n, book_item_design =

booklet)↪→

cog_dat <- lsasim::response_gen(subject = book_stu$subject,
item = book_stu$item,
theta = stuDat$q1,
a_par = item_params$a,
b_par = item_params$b,
c_par = item_params$c)

itemNames <- colnames(cog_dat)[1:20]
stuItems <- reshape(data=cog_dat, varying=itemNames, idvar="subject",

direction="long", v.names="score",
times=itemNames, timevar="key")

new_itemNames <- c(paste0("itemA",1:10),paste0("itemB",1:10))
stuItems$key <- rep(new_itemNames,each=n)

head(stuItems)
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subject key score
1.i001 1 itemA1 1
2.i001 2 itemA1 NA
3.i001 3 itemA1 1
4.i001 4 itemA1 1
5.i001 5 itemA1 1
6.i001 6 itemA1 1

testDat <- data.frame(test=c("comp", "comp"),
subtest=c("A","B"),
location=c(250,250),
scale=c(50,50),
subtestWeight=c(0.3,0.7))

testDat

test subtest location scale subtestWeight
1 comp A 250 50 0.3
2 comp B 250 50 0.7

parTab <- item_params %>%
mutate(ItemID = new_itemNames,

test = "comp",
subtest = rep(c("A","B"),each=10),
slope = a,
difficulty = b,
guessing = c,
D = 1.7) %>%

select(ItemID,test,subtest,slope,difficulty,guessing,D)

ItemID test subtest slope difficulty guessing D
1 itemA1 comp A 1.17 -2.11 0.14 1.7
2 itemA2 comp A 0.78 -2.52 0.24 1.7
3 itemA3 comp A 1.12 -0.07 0.24 1.7
4 itemA4 comp A 1.12 -1.58 0.03 1.7
5 itemA5 comp A 0.88 1.24 0.15 1.7
6 itemA6 comp A 0.97 -2.34 0.05 1.7
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