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Abstract: An important challenge in statistical modeling is to balance how well our model explains
the phenomenon under investigation with the parsimony of this explanation. In structural equation
modeling (SEM), penalization approaches that add a penalty term to the estimation procedure have
been proposed to achieve this balance. An alternative to the classical penalization approach is
Bayesian regularized SEM in which the prior distribution serves as the penalty function. Many
different shrinkage priors exist, enabling great flexibility in terms of shrinkage behavior. As a result,
different types of shrinkage priors have been proposed for use in a wide variety of SEMs. However,
the lack of a general framework and the technical details of these shrinkage methods can make it
difficult for researchers outside the field of (Bayesian) regularized SEM to understand and apply these
methods in their own work. Therefore, the aim of this paper is to provide an overview of Bayesian
regularized SEM, with a focus on the types of SEMs in which Bayesian regularization has been applied
as well as available software implementations. Through an empirical example, various open-source
software packages for (Bayesian) regularized SEM are illustrated and all code is made available
online to aid researchers in applying these methods. Finally, reviewing the current capabilities and
constraints of Bayesian regularized SEM identifies several directions for future research.
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1. Introduction

“All models are wrong, but some are useful.” George Box

When we try to describe real-world phenomena using statistical models, we need to
strike a balance between how accurately we describe the phenomenon in question and how
parsimonious our description is. On the continuum from restrictive to free models, we wish
to find the sweet spot where our description captures the characteristics of the phenomenon
we try to describe in the most parsimonious way possible. For example, suppose we wish
to predict an outcome using a regression model. We might include hundreds or even
thousands of predictor variables to obtain the very best prediction possible but by doing so,
lose the advantage of a parsimonious explanation as to which factors are most important in
predicting the outcome. Our aim should therefore be to find the main predictors that have
a substantial influence on our outcome and ignore the rest. Within our statistical model,
the regression coefficients for those main predictors should be estimated, while all other
coefficients should be set to zero.

Similarly, in structural equation modeling (SEM), we want to balance freely estimating
all parameters in the model with restricting some of them in order to obtain a parsimonious
description of the phenomenon under investigation. If we freely estimated as many
parameters as we have observed covariances, we would obtain the saturated model. Despite
fitting perfectly to the data, this model would be useless since it does not provide a
parsimonious description. On the other end of the continuum would be the most restrictive
independence model that sets all parameters except the variable means and variances to
zero, which is also useless since it offers no description of the phenomenon at all. The
most parsimonious model that still provides a sufficiently accurate explanation for the
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phenomenon under investigation lies somewhere between the saturated and independence
model (see Figure 1). Note that what constitutes a “sufficiently accurate” explanation will
vary between studies and researchers.

The traditional confirmatory approach within SEM uses theory to guide which paths
are fixed and which are freely estimated. The resulting model will be somewhere on the
continuum from restrictive (i.e., the independence model) to free (i.e., the saturated model;
see Figure 1). Subsequently, the fit of the model is assessed through the likelihood-ratio
test and approximate fit indices. If the fit is not acceptable, the model can be adapted by
freeing parameters, for example, based on modification indices [1]. By doing so, the model
is shifted further from restrictive to free on the continuum.

Restrictive: 
- all parameters fixed to 0
- high bias/low variance

Free: 
- all parameters estimated
- low bias/high variance

SaturatedIndependence
Independence Saturated

Restrictive:
- Only variable means and 

variances estimated
- High bias/low variance

Free:
- Number of parameters = 

number of observed covariances
- Low bias/high variance

Figure 1. Models can be on a continuum from restrictive to free.

The main issue with this approach is that shifting the model towards the free end of the
continuum until model fit is acceptable focuses mainly on reducing the bias of the model.
However, there is a well-known tradeoff between the bias and the variance of a method.
As we continue freeing parameters in our model, we might reduce bias, but at the cost of
increased variance. In the end, using modification indices to guide the model-building
process might lead to a model that performs very well on the current sample (due to the low
bias) but does not generalize to other samples (due to the high variance). This is the problem
of chance capitalization well known when using modification indices [2]. A more practical
downside is that modification indices require a multi-step approach since the model needs
to be refitted after each restriction has been freed until the fit of the model is acceptable.

In order to obtain models that automatically balance bias and variance, we can turn to
methods that have been used with success to achieve this goal in the context of regression
models. These penalization or regularization methods add a penalty term to the estimation
procedure that serves as a failsafe to protect model parsimony and thereby avoid the
problem that a model becomes too complex and results in high variance. Within the context
of SEM, various regularization approaches have been proposed, for example by [3,4], with
general implementations in R available through the R-packages regsem [5] and lslx [6].

By applying regularization methods in structural equation models, convergence prob-
lems can be solved and inadequate performance of test statistics due to small samples
can be improved [7–10]. In exploratory factor models, regularized SEM has been used to
produce a sparse loading matrix [11–14], and in confirmatory factor models, regularization
can be used to achieve a simple structure in one step while allowing cross-loadings to be
estimated [3]. Regularization can help determine which covariates predict a latent vari-
able in multiple indicators multiple causes (MIMIC) models [3,15] and identify potential
mediators in mediation models [16–18]. It has been applied in discrete latent variable mod-
els (i.e., latent class models) to provide an alternative to purely exploratory or confirmatory
approaches that can provide interpretable and stable parameter estimates for relatively small
samples [19,20]. In the context of comparing groups, regularization methods have been ap-
plied to detect violations of measurement invariance or differential item functioning [21–23].
Furthermore, regularization enables the estimation of both undirected and directed contem-
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poraneous effects in vector autoregressive (VAR) models [24]. Finally, ref. [25] compared
various regularization approaches in SEMs where cross-loadings and/or latent interactions
were misspecified and found that these approaches resulted in less bias compared to stan-
dard maximum likelihood (ML) estimation. As a result, they argued that regularization
methods might even be used as a default estimator in the context of SEM.

Classical regularized SEM approaches rely on the frequentist framework and add the
penalty term to the traditional optimization problem, for example, the maximum likelihood
cost function. An alternative way to penalize model parameters in SEM would be through
the use of priors in a Bayesian SEM analysis. It is well known that results obtained with
various classical penalties, such as the ridge and lasso penalty, are equivalent to specific
posterior estimates given particular priors. Thus, instead of relying on a penalty func-
tion, Bayesian regularized SEM relies on the prior distribution to enforce regularization.
Ref. [26] presents a comparison between the classical and Bayesian regularized SEM frame-
works. The current work can be seen as an extension of [26] in which I focus primarily
on the Bayesian regularized SEM framework and, as such, can cover it in more depth
compared to [26].

There are various advantages to using Bayesian regularized SEM instead of the clas-
sical framework (see Section 3). Because of the wide range of possibilities when using
Bayesian regularized SEM, for example, in terms of different models, priors, and estima-
tion methods, there is not a single user-friendly, all-purpose software package available
for Bayesian regularized SEM. Therefore, the goal of the current paper is to provide an
overview of the available software packages. The focus is on Bayesian regularized SEM, but
I include three open-source packages for classical regularized SEM as well. The illustration
of these packages on an empirical example serves three goals: (1) to provide a tutorial on
using the various existing software packages by making annotated R code available; (2) to
provide guidance on various general principles that are important when using Bayesian
regularized SEM such as choosing the shrinkage prior and scaling the data; and (3) to
highlight current limitations of Bayesian regularized SEM, which will hopefully prompt
other researchers to conduct future research in this area and make Bayesian regularized
SEM even more useful and practical.

The outline of this paper is as follows. Section 2 explains classical regularized SEM,
followed by a description of Bayesian regularized SEM in Section 3 including an extensive
review of theoretical developments in this area. Section 4 presents an overview of available
software packages for regularized SEM, with four open-source packages being illustrated
on a realistic example in Section 5. Finally, the paper is concluded with a discussion and
directions for future research in Section 6.

2. Regularized SEM

Regularization or penalization is a statistical technique that has gained popularity,
especially in the context of regression models, to automatically select predictors while
guarding against overfitting. Regularized regression approaches add a so-called “penalty
term” to the minimization of the sum of squared residuals. The goal of this penalty term
is to shrink small regression coefficients towards zero while leaving large coefficients
large. The manner in which this is achieved differs between various penalty terms that
can be used. For example, the least absolute shrinkage and selection operator (lasso; [27])
can result in small coefficients becoming exactly zero, whereas the ridge penalty [28] can
only shrink them to be close to zero. The third most well-known penalty function, the
elastic net [29] provides a combination of the lasso and ridge penalty functions. In addition,
many more advanced penalty functions have been developed in order to achieve specific
shrinkage behaviors (such as shrinking groups of coefficients simultaneously through the
group lasso; [30]). A comprehensive introduction to and overview of various regularized
regression methods in the classical framework is provided in [31].

Despite being developed within the regression framework, regularization approaches
can be applied in other statistical models as well. Indeed, as SEM can be seen as a general-
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ization of regression analysis, the application of regularization methods in SEM is similar
to their application in regression. Specifically, a penalty function is added to the fitting
function that is minimized, i.e.,

Fregsem(S, Σ(θ)) = F(S, Σ(θ)) + λP(θreg) (1)

Here, S is the observed sample covariance matrix and Σ(θ) is the model implied
covariance matrix. F(S, Σ(θ)) is the fitting function used, for example, the maximum
likelihood function, and P(θreg) is a penalty function that sums the values of the parameters
to be regularized (θreg). λ is the regularization parameter that decides the amount with
which parameters are shrunken towards zero: if λ = 0, regular SEM is performed with
no shrinkage and if λ = ∞, regularized SEM is performed with all parameters included
in the penalty function shrunken towards zero. See also [3] for a general overview of
regularized SEM.

3. Bayesian Regularized SEM

In classical regularized SEM, a penalty function is added to the fitting function that
is minimized. In Bayesian regularized SEM, a prior distribution is multiplied by the
likelihood of the data to obtain the posterior distribution. I do not discuss the basics of
Bayesian analysis or its differences with classical approaches here, but refer to introductory
text books on this topic, such as [32]. Of importance within the current context are that:
(1) the prior distribution can be seen as the Bayesian equivalent of the penalty function; and
(2) instead of obtaining point estimates as final results, Bayesian regularized SEM leads to
posterior distributions for each of the parameters.

Apart from uniform priors, all priors enforce some regularization of parameters,
and so the question arises as to how to define Bayesian regularization to distinguish it
from Bayesian estimation in general. For the purpose of this paper, I refer to Bayesian
regularization whenever a prior distribution is used with the explicit goal of shrinking
small parameters towards zero to avoid overfitting or to achieve model identification.
Priors that are used specifically to achieve this goal are called shrinkage priors.

Many different shrinkage priors exist. Although all shrinkage priors are peaked
around zero (to shrink small effects towards zero) and most shrinkage priors have heavy
tails (to allow substantial effects to remain large), the exact shapes of the shrinkage priors
differ, resulting in different shrinkage behaviors. Ref. [33] provides a comprehensive
overview of popular shrinkage priors. Figure 2 visualizes the shrinkage behavior of a
normal or ridge prior. The high peak at zero of the normal shrinkage prior pulls the
posterior towards zero. The amount of shrinkage towards zero in the normal prior is
determined by the variance or standard deviation of the distribution relative to the sample
size of the data. For a fixed sample size, a smaller prior variance leads to a more peaked
distribution and more shrinkage towards zero. Priors that have more prior mass on values
away from zero (heavy tails) allow substantial effects to escape this shrinkage. The normal
prior does not have heavy tails and therefore pulls all effects towards zero quite heavily,
including substantial effects. This can introduce more bias compared to heavier-tailed
shrinkage priors such as the horseshoe prior.

It is well known that the solutions obtained using various classical penalty functions
can also be obtained in a Bayesian framework by specifying a particular prior distribution
combined with a specific posterior point estimate. For example, ref. [28] mentions that
the ridge estimate can be obtained as the posterior mean when the parameters are given a
normal prior distribution and [27] points out how the lasso solution is equivalent to the
posterior mode estimate when the parameters are given double-exponential priors (see [33]
for more equivalencies between Bayesian and classical shrinkage methods). However, there
are various differences between classical and Bayesian regularized SEM, with some differ-
ences being advantageous for classical SEM, while others are advantageous for Bayesian
regularized SEM.
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Figure 2. Visualization shrinkage prior based on a normal prior distribution with varying prior
standard deviations. The dashed line indicates the prior, which is centered around zero. The dotted
line indicates the likelihood, which is centered around 0.15. The solid line indicates the posterior,
which is a compromise between the prior and the likelihood of the data. The smaller the prior
standard deviation, the higher its peak around zero and, as a result, the posterior is pulled more
towards zero.

3.1. Differences between Classical and Bayesian Regularized SEM

Aside from the general differences between the classical and Bayesian framework, for
example, in terms of the interpretation of confidence versus credible intervals and the possi-
bility to include prior information in the Bayesian framework, there are several differences
especially relevant in the context of regularization. First, whereas classical estimation relies
on optimization algorithms, the Bayesian framework generally uses Markov Chain Monte
Carlo (MCMC) sampling to obtain the posterior distribution. The advantage of MCMC
is that it results in a full posterior distribution, which also offers automatic uncertainty
estimates for functions of parameters (such as indirect effects). The disadvantage of MCMC
is that it can be slow, especially in high-dimensional models for which regularized SEM is
particularly useful. Alternative Bayesian estimation algorithms exist that rely on approxi-
mations of the posterior distribution and are therefore computationally more efficient. I
compare such an approximation to MCMC in the empirical illustration in Section 5.

Second, whereas classical regularization generally relies on cross-validation to deter-
mine the optimal value for the penalty parameter λ, the Bayesian framework offers multiple
possibilities for determination of the parameter(s) that determine the amount of shrinkage
(a notable exception is the work of [34] which proposes an automatic tuning procedure
that does not rely on cross-validation). Note that shrinkage in the Bayesian framework
will be influenced by one or more parameters of the prior distribution, depending on the
specific shrinkage prior. For example, in the case of the normal shrinkage prior illustrated
in Figure 2, there is only the prior variance that should be decided and that influences the
shrinkage behavior. There are four ways to do so: (1) fix the prior variance to a specific
value a priori; (2) determine the optimal value using cross-validation and consequently fix
this value in the prior; (3) use an empirical Bayes estimate that estimates the value from
the data and then fix this value in the prior (see, e.g., ref. [35]); or (4) estimate this value
simultaneously with the model in a full Bayesian approach. Reference [33] provides a
comparison of the empirical and full Bayesian approaches in the context of linear regres-
sion models. For the remainder of this article, the focus lies on options (1) and (4). The
main advantage of the full Bayesian approach is that the specification of a hyperprior can
result in a more robust marginal prior for the regularized effects. For example, when an
inverse Gamma distribution is specified for the variance of the normal shrinkage prior, the
resulting marginal prior distribution (after integrating out the variance) will be a Student’s
t-distribution. Compared to the normal distribution, Student’s t-distribution has heavier
tails and exerts less shrinkage on substantial effects.

3.2. Review of Developments in Bayesian Regularized SEM

The advantages of Bayesian regularized SEM have led various researchers to use
Bayesian regularization in a specific SEM. Below, I discuss these applications of Bayesian
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regularized SEM for different model types. An overview is provided in Table 1. As can
be seen in Table 1, most work has focused on ridge or lasso types of priors, with the lasso
extensions typically referring to adaptive or group lasso priors. A comprehensive overview
of these priors and embedding within the general literature on shrinkage priors can be
found in [33]. For a more practical tutorial on various shrinkage priors, the interested
reader is referred to [36].

Table 1. Overview of the literature on Bayesian regularized SEM for different model types and
shrinkage priors.

Ridge Lasso Lasso Extensions Spike-and-Slab Other

Exploratory factor
model

Carvalho
et al. (2008) [37];
Chen (2021) [38];
West (2003) [39]

Bhattacharya &
Dunson (2011) [40];

Conti et al. (2014) [41];
Legra-

manti et al. (2020) [42]

Confirmatory factor
model

Liang (2020) [43] *;
Lu et al. (2016) [44];

Muthén and As-
parouhov (2012) [45] *;

Vamvourel-
lis et al. (2021) [46]

Chen,
Guo et al. (2021) [47];
Pan et al. (2017) [48]

Chen,
Guo et al. (2021) [47] Lu et al. (2016) [44]

Neural drift diffusion
model Kang et al. (2022) [49]

Item response model Vamvourellis
et al. (2021) [46] Chen (2020) [50]

Multiple-group factor
model Shi et al. (2017) [51] * Chen,

Bauer et al. (2021) [52]
Chen,

Bauer et al. (2021) [52]

Non-linear SEM Guo et al. (2012) [53]
Brandt et al.

(2018) [54]; Feng,
Wang et al. (2015) [55]

Brandt et al. (2018) [54]

General SEM

Feng,
Wu et al. (2015) [56];

Feng,
Wu et al. (2017) [57]

Feng,
Wu et al. (2015) [56];

Feng,
Wu et al. (2017) [57]

Quantile SEM Feng,
Wang et al. (2017) [58]

Feng,
Wang et al. (2017) [58]

Latent growth curve
model

Jacobucci and
Grimm (2018) [26]

Boldfaced references include user-friendly software implementations. * The methods used in these papers are
available in Mplus.

3.2.1. Exploratory Factor Analysis

Refs. [37,39] considered a spike-and-slab prior to obtain sparse factor models with
the main goal of dimension reduction in high-dimensional settings, specifically in gene
expression studies. Based on [37], the software program BFRM was developed to run
these types of models. In a similar setting, ref. [40] proposed a multiplicative gamma
process prior, while [42] proposed a prior based on a sequence of spike-and-slab priors.
Both are increasing shrinkage priors, meaning that they induce more shrinkage as the
dimension grows, i.e., as the number of factors increases, the loadings are increasingly
shrunken towards zero. Ref. [41] focused on a slightly lower-dimensional setting and
explicitly incorporated identification criteria into their prior distribution, which is based on
a hierarchical prior with Beta and Dirichlet hyperpriors. Ref. [38] also focused on a slightly
lower-dimensional setting and proposed a spike-and-slab prior, which is implemented in
the R-package LAWBL.
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3.2.2. Confirmatory Factor Analysis

Bayesian regularized SEM has gained popularity among applied researchers through
the work of [45]. They proposed the use of small-variance normal priors for the estimation
of all cross-loadings or residual covariances simultaneously within a confirmatory factor
model (note that with shrinkage priors, confirmatory factor analysis is no longer strictly
confirmatory since we do not assume the simple structure as in traditional CFA. However,
I still use the term CFA to distinguish from a fully exploratory approach in which no
main loadings are specified). Although not the primary target of their article, they also
illustrated the use of small-variance normal priors for both structural and measurement
parameters in an SEM. Although they did not connect this approach to ridge regularization,
the normal prior is known to be equivalent to the ridge penalty [28]. Importantly, through
implementation of this approach in Mplus, their work has enabled applied researchers
to easily use the methodology. Ref. [44] placed the work by [45] in the regularization
framework by illustrating the connection between the small-variance normal prior and
ridge regularization. They expanded on this work by considering a spike-and-slab prior
as well and compared both approaches, illustrating how different prior distributions
lead to slightly different factor solutions. Ref. [43] investigated the influence of the prior
variance choice for the small-variance normal priors from [45] on cross-loadings on model
fit, population model recovery, true and false positive rates, and parameter estimation.
Ref. [46] extended the proposed approach by [45] to handle alternative distributions,
including for example, the logistic distribution to accommodate item response models, and
proposed an approach based on out-of-sample predictive performance to assess goodness
of fit. Another application to item response models was provided by [50] based on the
Bayesian lasso. In a continuous confirmatory factor analysis setting, ref. [47] presented a
lasso and covariance lasso approach to (potentially simultaneously) detect relevant cross-
loadings and residual covariances. This is related to the work by [48] who proposed a
covariance lasso prior for the inverse of the covariance matrix to automatically obtain
a sparse, yet positive, definite residual covariance matrix. Ref. [59] extended the work
of [47] by allowing for mixed data types and missing data. In addition to the lasso for
cross-loadings and the covariance lasso for residual covariances, ref. [59] proposed the
adaptive lasso. All methods are implemented in the R-package LAWBL.

3.2.3. Non-Linear SEMs

Ref. [53] proposed a Bayesian lasso to model non-linear relations among latent vari-
ables in semiparametric SEMs. Ref. [55] improved upon the work by [53] by considering an
adaptive group lasso prior that can handle group effects introduced by the basis expansions
and adaptively penalize different groups of coefficients. Ref. [54] combined the adaptive
lasso with a spike-and-slab prior to obtain a more flexible approach to model non-linear
effects that outperformed a standard Bayesian lasso, especially in situations with high
multicollinearity or low reliability.

3.2.4. Other Models

Ref. [49] investigated the Bayesian lasso in the context of a factor analysis neural
drift diffusion model that is used to simultaneously analyze behavioral and neural data,
resulting in high-dimensional data for which regularization is especially useful. Ref. [51]
used the small-variance normal priors from [45] to identify non-invariant parameters in
the context of multiple-group factor analysis. They first focused on identifying a proper
reference indicator by considering which item has the highest likelihood to be invariant
across groups. Ref. [52] proposed and discussed the use of spike-and-slab priors to detect
measurement non-invariance, which offers the advantage of more theoretically coherent pa-
rameter selection based on posterior inclusion probabilities. Their specific implementation
combined the spike-and-slab prior with the double-exponential or lasso prior similar to [54].
Ref. [56] presented a lasso and adaptive lasso implementation for ordinal regression with
latent variables (where the latent variables are measured using continuous indicators).
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Ref. [57] implemented a Bayesian lasso and adaptive lasso in a generalized latent variable
model that can accommodate mixed data types. Note that this work is different from [59]
in that [57] considered regularization on the regression coefficients with the latent variables
as potential regressors, whereas [59] considered regularization in the measurement model
(i.e., on the cross-loadings or residual covariances). Ref. [58] proposed Bayesian lasso and
adaptive lasso priors for quantile regression coefficients in the structural part of SEMs. In
their comparison of classical and Bayesian regularized SEM, ref. [26] considered a latent
growth curve model in which the Bayesian adaptive lasso was used to shrink and identify
relevant covariates. The results from the Bayesian adaptive lasso were compared to those
from the classical lasso.

4. An Overview of Software Packages for Regularized SEM

I next present an overview of available software packages for regularized SEM and
their capabilities. Although the focus lies specifically on user-friendly packages for Bayesian
regularized SEM, I also discuss three popular user-friendly R-packages for classical regular-
ized SEM as well as general software packages that enable the user to specify regularized
structural equation models, but do not provide out-of-the-box implementations of these
models. An overview of all software packages is available in Table 2. Packages in italics are
included in the comparison in Section 5.

Table 2. Overview of software packages available for regularized SEM.

Package Open-Source Free User-Friendly 1 Model Flexibility Penalty/Prior
Flexibility

Classical regularized SEM
regsem + + + + +
lslx + + + + +
penfa + + + − +

lessSEM + + ~ + +
Bayesian regularized SEM

Mplus − − − + −
OpenBUGS/JAGS + + − + +

Stan + + − + +
PyMC3 + + − + +
Greta + + −/+ + +

TensorSEM + + − + +
blavaan + + + + −
LAWBL + + + − −
blcfa 2 ~ ~ ~ − −

infinitefactor + + + − +

1 “User-friendly” refers specifically to whether applied researchers with some knowledge of R are able to use the
software, i.e., whether models are implemented without the user needing to learn special syntax apart from R and
potentially lavaan syntax. 2 Although the R-package blcfa itself is free, open-source, and easy to use, it interacts
with Mplus, which does not have these properties.

4.1. General Purpose Software That Is Able to Perform Bayesian Regularized SEM

Arguably the most popular software program for SEM is Mplus [60] (although other
software programs for SEM such as Amos have implemented Bayesian estimation, these
packages rely on default, flat prior distributions and do not allow the user to specify
shrinkage priors for regularization). Mplus is a closed-source, paid software program that
allows the specification of a wide variety of SEMs, ranging from simple path models, to
(multilevel) factor models, as well as dynamic SEM. Various classical estimation algorithms
and Bayesian MCMC sampling are implemented, and it is through the latter that Bayesian
regularized SEM is possible in Mplus. One major drawback of Mplus is that it is limited in
terms of the types of prior distributions that can be considered. Specifically, in the context
of regularized SEM, only conjugate normal priors are available for location parameters
such as loadings or regression coefficients, and thus, only ridge-like shrinkage behavior can
be achieved. Moreover, it is not possible to estimate the variance of the normal prior within



Psych 2023, 5 822

the model so instead the value of this hyperparameter needs to be fixed to a specific value
by the researcher (generally a small value such as σ2

0 = 0.01 or σ2
0 = 0.001). As a result, all

regularized parameters will be shrunken heavily by the same amount.
There exist various Bayesian software packages that allow the user to specify a probabilistic

model, which is then estimated using some form of Markov Chain Monte Carlo (MCMC)
sampling. The oldest package is BUGS (Bayesian Inference using Gibbs Sampling; [61]), with
WinBUGS [62] being the Microsoft Windows version. Currently, WinBUGS is no longer being
actively developed, but the open-source version OpenBUGS [63] is.

OpenBUGS can be run from Microsoft Windows or Linux, or through R. A similar
package, JAGS (Just Another Gibbs Sampler; [64]), uses a very similar programming lan-
guage but is platform independent. As the names imply, the BUGS/JAGS family of software
packages relies on Gibbs sampling [65] to obtain the posterior distribution.

Stan [66] is a more recent software package for general probabilistic programming
that relies on the No-U-Turn sampler (NUTS; [67]), a variant of Hamiltonian Monte Carlo
(HMC; see e.g., ref. [68]) instead of Gibbs sampling. For an extensive comparison between
BUGS and Stan, see the Stan user’s guide [66]. For our purpose, it suffices to say that in
general, HMC is more efficient compared to Gibbs sampling, especially for complex models.
In addition, it provides a wider variety of convergence diagnostics. One drawback of Stan,
however, is that it currently does not allow the use of discrete parameters, making the
implementation of, for example, a spike-and-slab prior, difficult. Similar to Stan, PyMC3 [69]
also relies on NUTS but is specifically for Python, while Stan interfaces with multiple
languages, including Python.

Both Stan and PyMC3 have approximate algorithms implemented based on variational
inference to more efficiently approximate the posterior distribution. Whereas MCMC
sampling draws directly from the posterior distribution, variational inference approximates
the posterior using a simpler distribution. It does so by searching over a family of simple
distributions and subsequently finding the distribution that is closest to the posterior
according to some criterion. The advantage over MCMC sampling is that variational
inference is typically faster and able to scale better to high-dimensional data sets. The
disadvantage is that the approximation might be far from the true posterior distribution.

Two R-packages that rely on machine learning libraries are greta [70] and TensorSEM [71].
Greta relies on TensorFlow, while TensorSEM relies on Torch. Greta is designed for
Bayesian modeling and offers a lot of flexibility in terms of models and priors that can be
considered. TensorSEM is more general and considers SEM as a computation graph that
enables a flexible way to extend traditional SEMs, for example, through the specification
of a penalty or shrinkage prior. Both packages require the user to specify the model in a
specific way, either through probabilistic statements directly in R (in the case of Greta) or
using lavaan syntax. In addition, TensorSEM requires the user to be familiar with Torch.
These packages, as well as Stan and the BUGS/JAGS programs, are extremely helpful in
advancing theoretical developments in Bayesian regularized SEM due to their flexibility,
but they are not user-friendly enough to be used generally by applied researchers.

4.2. Software Packages for Classical Regularized SEM

Ref. [3] implemented a classical approach to regularized SEM utilizing Reticular Ac-
tion Model (RAM) notation in the R-package regsem [5]. The syntax in the regsem package
relies on lavaan [72] and the models supported in regsem are therefore limited by the
models available in lavaan. Current exceptions are multiple-group models and models
with categorical variables that are not supported in regsem. In terms of penalty func-
tions, regsem has implemented a wide variety including the ridge [28], lasso [27], and
elastic net [29], and generalizations of the lasso such as the adaptive lasso [73]. Further-
more, the smooth clipped absolute deviation (SCAD; [74]) and minimax concave penalty
(MCP; [75]) can be used to obtain results that are sparser compared to the lasso. Ref. [4]
developed a penalized likelihood method for SEM and implemented this in the R-package
lsl, which is the predecessor of the more extensive and improved package lslx [6]. lslx
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also relies on lavaan syntax for model specification but improves upon regsem in terms
of convergence rates and speed. Note that in certain cases, for example, when there is
high multicollinearity present, lslx can also suffer from convergence issues [76]. lslx
allows the user to specify either a ridge, lasso, elastic net, or minimax concave penalty
(MCP). Whereas regsem relies on general non-linear optimization algorithms or coordinate
descent, lslx employs a modified quasi-Newton algorithm. Finally, ref. [34] implemented
a trust-region algorithm in which they locally approximated non-differentiable penalties
including the lasso, adaptive lasso, SCAD, and MCP. This algorithm has been implemented
in the R-package penfa. The advantage of their implementation is that it offers automatic
tuning of the penalty parameters, and as a result, the user does not need to manually
specify values for cross-validation. penfa only supports single- and multiple-group factor
analysis. Recently, the R-package lessSEM has been published [77]. This package has been
heavily influenced by regsem and lslx; however, its focus is more on method developers
to aid them in the development of new regularized SEMs rather than applied researchers
using regularized SEM. Therefore, the user-friendliness is denoted as in Table 2.

4.3. User-Friendly Software Packages for Bayesian Regularized SEM

There exist three user-friendly R-packages for Bayesian regularized SEM. First,
blavaan [78] offers Bayesian estimation of SEMs with syntax and functions similar to
lavaan. It can therefore handle the same types of models as lavaan, with the exception
of multilevel SEMs. The original versions of blavaan first generated JAGS and later also
Stan code at runtime based on the specified model. As of Version 0.3, blavaan relies
on a precompiled Stan model based on the marginal likelihood. Although computation-
ally more efficient, this approach is restricted in that distributional forms of priors are
generally fixed (only hyperparameters can be changed) and there are certain restrictions
with respect to equality constraints. For the application of Bayesian regularized SEM,
the first restriction implies that only normal ridge priors with a fixed standard deviation
can be used in blavaan. A workaround would be to utilize the previous, slower MCMC
implementations or to export the Stan file underlying blavaan and directly edit the priors.
Second, ref. [59] presented a general partially confirmatory approach to SEM relying on the
(adaptive) lasso for shrinkage of cross-loadings and the graphical or covariance lasso [79,80]
for relaxation of the local independence assumption (i.e., through shrinkage of residual co-
variances). An MCMC sampling algorithm is implemented in the R-package LAWBL (Latent
(variable) Analysis With Bayesian Learning; [81]) that currently supports factor models
and item response models. Note that the Bayesian covariance lasso is also implemented
in the R-package blcfa [82] which allows detection of significant residual covariances
and subsequently frees these covariance parameters and estimates the subsequent model
using Mplus. Thus, this package requires Mplus to be installed. Third, the infinitefactor
package [83] implements the multiplicative Gamma shrinkage prior proposed by [40] as
well as Dirichlet–Laplace priors [84]. This package is specifically designed for exploratory
factor analysis in high-dimensional settings.

5. Empirical Illustration: Regularizing Cross-Loadings in Factor Analysis

The goal of this empirical example is twofold: (1) to illustrate similarities and differ-
ences between implementations of Bayesian regularized SEM in existing software packages;
and (2) to aid applied researchers in using these software packages and applying Bayesian
regularized SEM in their own work. All code to run this example is available at the
author’s github (https://github.com/sara-vanerp/BRSsoftware). In addition, there is a
Markdown file (https://github.com/sara-vanerp/BRSsoftware/tree/main/appendix) that
summarizes the main functions needed to use each package (accessed on 1 July 2023).

To obtain a realistic data set that can be freely shared online, I generated a data set
based on the observed covariance matrix from a study on the adaptive ability performance
test (ADAPT; [85]). The ADAPT consists of 65 items intended to assess adaptive skills
in individuals with intellectual disabilities and borderline intellectual functioning across

https://github.com/sara-vanerp/BRSsoftware
https://github.com/sara-vanerp/BRSsoftware/tree/main/appendix
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three domains (conceptual, social, and practical). A data set with N = 1000 observations
was generated by drawing from a multivariate normal distribution with means zero and
covariance matrix equal to the complete observed covariance matrix and subsequently
splitting into a training (N = 748) and test (N = 252) set. For illustrative purposes, I
estimated a model with three factors (with 36 items) based on the full solution. This
resulted in some items being included with a main loading of only 0.30, which is not
ideal but does provide us with the type of realistic data one may encounter in practice.
A preliminary analysis including all items resulted in convergence problems for regsem
and long run times for blavaan (around 45 min per analysis). This illustrates a constraint
of the current implementations of regularized SEM in that, despite these methods being
especially useful in larger models, these larger models often have difficulties converging
without careful tuning of cross-validation parameters or prior hyperparameters, which is
impractical given the long run times. The model is shown in Figure 3.

F1

y1 y18

F2

y19 y24

F3

y25 y36

Figure 3. The model used in the empirical application. Dashed lines between indicators reflect that
not all variables are visualized, but the subscripts indicate the number of items assumed to have a
main loading on each factor. All cross-loadings are estimated with regularization, as reflected by the
dashed arrows. In total, 72 cross-loadings were estimated in addition to the 36 main loadings.

I focus primarily on user-friendly and open-source software packages for Bayesian
regularized SEM, although results from lslx using the lasso, elastic net, and minimax
concave penalties are included for comparison. Of the available Bayesian software packages,
only blavaan and LAWBL are user-friendly, open-source options for regularization of cross-
loadings (infinitefactor focuses on completely exploratory settings in which all loadings
are regularized; here the aim is only to regularize the cross-loadings) so these two packages
are compared. For blavaan, prior variances equal to σ2

0 = 0.1, σ2
0 = 0.01, and σ2

0 = 0.001
were considered. Note that the normal prior in blavaan is parametrized such that the
standard deviation σ0 should be provided rather than the prior variance σ2

0 . In addition,
both the MCMC algorithm and the variational Bayes algorithm were compared. For
LAWBL, the lasso and adaptive lasso were compared. Finally, three more elaborate prior
distributions were included in the comparison: the ridge prior with the standard deviation
estimated instead of fixed, the regularized horseshoe prior with a default prior setting,
and the regularized horseshoe with a prior guess for the number of substantial cross-
loadings (based on estimated cross-loadings λ > 0.20 in the initial EFA). These priors are
not available in user-friendly software packages so they have been coded manually in Stan.
Code for these models is available online and can be adapted for other applications.

5.1. Before the Analysis

In any Bayesian analysis, it is considered good practice to understand the prior distri-
bution that you are using. In Bayesian regularized SEM, visualizing the shrinkage prior
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can provide the researcher with an idea of the shrinkage behavior that can be expected.
Figure 4 shows the densities of the prior distributions compared in the illustration. The
horseshoe prior goes to infinity at zero and will therefore heavily shrink small effects.
However, its heavy tails allow substantial effects to escape this shrinkage. The lasso, on
the other hand, has thinner tails and, as a result, will exert more shrinkage towards zero
on substantial effects. One way to avoid this is by using an adaptive lasso in which each
parameter has a local shrinkage parameter in addition to the global shrinkage parameter
that affects all cross-loadings. These parameter-specific local shrinkage parameters allow
more adaptive shrinkage behavior in which substantial effects are shrunken less towards
zero compared to small effects. For the ridge prior, the heaviness of the tails depends on
whether the standard deviation is estimated (resulting in heavy tails) or fixed to a specific
value (resulting in thin tails). The latter option, which is available in blavaan, results in
theoretically suboptimal shrinkage behavior because it shrinks all effects heavily towards
zero, including substantial ones.

Figure 4. Comparison of the shrinkage priors in the illustration. The ridge corresponds to a normal
prior in which the standard deviation is either estimated (“est SD”; grey line) or fixed to some
value (“fix SD”; black line). The vertical dashed grey line at zero reflects the asymptote of the
horseshoe prior.

In addition to the shrinkage priors on the cross-loadings, all other parameters in the
model should be given a prior distribution as well. Software packages generally implement
default prior distributions that are meant to be non-informative. Although in most situa-
tions these default priors are indeed non-informative, this might not always be the case [86],
and so it is good to be aware that prior distributions are specified for the nuisance parame-
ters and which distributions are being used. In blavaan, the default priors can be requested
through the function dpriors() and it is possible to change the hyperparameters for these
default priors, for example, to incorporate prior knowledge for certain parameters. For
LAWBL, only the distributional forms for the prior distributions are reported in [59], which
are conjugate priors. However, the exact values for the hyperparameters are unclear and it
is not possible to change these values.
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Note that regularization allows the estimation of parameters that would not be identi-
fied in traditional SEM. In this application, we estimate all cross-loadings in addition to
the main loadings and factor correlations. Including a penalty function or shrinkage prior
that pulls small estimates sufficiently towards zero ensures identification of the model.
However, we still need to impose additional identification constraints to identify the latent
variables by either setting one (main) loading for each latent variable to 1 (unit loading
identification) or each latent variable variance to 1 (unit variance identification). By default,
lslx and blavaan use unit loading identification by fixing the first main loading of each
factor, while LAWBL uses unit variance identification.

An important step when applying regularized SEM is to scale the data before analysis.
In particular, shrinkage priors with only a global shrinkage parameter such as the ridge
and lasso will penalize variables differently when they are measured on different scales.
This is a general feature of prior distributions: the amount of influence they exert on the
results depends on their scale in relation to the scale of the data. I therefore scaled the data
such that each item had a mean of zero and a variance of one before applying the (Bayesian)
regularization methods.

5.2. During the Analysis

Within the Bayesian framework, MCMC sampling is generally used to obtain the
posterior distribution on which inference is based. Although there exist many different
MCMC algorithms (e.g., Gibbs, Metropolis-Hastings, Hamiltonian Monte Carlo), they
all share the property that they draw samples from the posterior distribution. Enough
posterior draws need to be sampled to obtain a reliable representation of the posterior
distribution. Depending on the correlation between subsequent draws, this can take quite
some time. However, it differs between algorithms, and thus between software packages,
how efficient a sampler is, and thus how many draws are needed. Generally, the HMC
algorithm implemented in Stan is more efficient compared to Gibbs samplers in that the
posterior draws exhibit less autocorrelation. In addition, convergence needs to be assessed
to ensure that the sampler has converged to a stationary distribution. There are different
ways of assessing convergence and different software packages have different convergence
diagnostics implemented, see, for example [87], for a tutorial on different ways of assessing
convergence. Some general guidelines when assessing convergence are:

• Run multiple chains starting from different starting values. Traceplots can be used
to visually assess whether the different chains coincide at some point and mix well
(i.e., the traceplots should resemble “fat caterpillars”).

• Remove a specified number of initial iterations (“burn-in”) to avoid the final results
depending on the starting values. Traceplots based on the iterations without burn-in
should immediately indicate nice mixing.

• Consider numerical convergence diagnostics such as the potential scale reduction
factor [88], which should be close to 1 (EPSR in LAWBL and Rhat in blavaan).

• Make sure you have a sufficient number of effective samples (Neff in blavaan).
Although there are no theoretically derived guidelines, a useful heuristic that has
been proposed would be to worry whenever the ratio of effective sample size to full
sample size drops below 0.1 [89].

• When in doubt, or when not all diagnostics are (easily) available, you can rerun the
analysis with double the number of iterations to ensure stability of the results.

However, the extent to which these guidelines can be (easily) followed depends on
the packages used. Of the packages compared in this illustration, blavaan offers many
convergence diagnostics as well as warnings when convergence appears problematic. LAWBL
requires the user to manually assess convergence, for example, by running multiple MCMC
chains from random starting values, creating traceplots, and computing convergence
diagnostics. Please see the code and Markdown file available online for functions to
assess convergence.



Psych 2023, 5 827

Given the computational cost of MCMC, alternative algorithms have been devel-
oped to obtain approximations of the posterior distribution. Specifically, Stan (and thus
blavaan) has the Automatic Differentiation Variational Inference (ADVI; [90]) algorithm
implemented, which uses a flexible approximating distribution and subsequently mini-
mizes the difference between this approximation and the true distribution. An important
quantity in this algorithm is the ELBO (Evidence Lower Bound), which is optimized to find
the best possible approximation to the posterior distribution using Monte Carlo integra-
tion. Thus, variational Bayes in Stan also requires the user to specify a number of draws
(elbo_samples), but this is not the number of draws sampled from the posterior but rather
the number of draws used to approximate the ELBO. See Stan’s User Manual [66] for more
information on this algorithm. It is important to note that the variational Bayes algorithm
in Stan is still considered an experimental feature and thus not recommended for final
inference. The ADVI algorithm was included in the comparison to assess the quality of this
approximation for the empirical application.

5.3. After the Analysis

In this section, I discuss a selection of results from the empirical example to illustrate
various features of the Bayesian regularized SEM methods that were compared. All results
are available online (https://github.com/sara-vanerp/BRSsoftware, (accessed on 1 July 2023)).

5.3.1. Comparison Variational Bayes and MCMC

A comparison of the variational Bayes algorithm versus the MCMC NUTS algorithm
in Stan illustrates the experimental character of this feature. For the normal ridge priors
with fixed standard deviations as implemented in blavaan, in particular, the setting where
the prior variance equals 0.1 led to much larger estimates overall for the cross-loadings
compared to the MCMC algorithm and the other prior specifications. This difference
became even more pronounced for the manual ridge implementation in Stan where the
standard deviation is estimated. For this prior, all cross-loadings were extremely large with
many being estimated to be around 3. The regularized horseshoe also showed differences
between the two algorithms, with the extent of the differences depending on the exact prior
specification. See Figure 5 for an example.

Figure 5. Estimates and 95% confidence or credible intervals for selected shrinkage methods and
selected cross-loadings. “Reg. hs” stands for the regularized horseshoe prior, “VB” stands for the vari-
ational Bayes algorithm, and “MCMC” stands for Markov Chain Monte Carlo. The ridge corresponds
to a normal prior with its variance fixed to a specific small value or estimated (“var = est.”).

https://github.com/sara-vanerp/BRSsoftware
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5.3.2. Posterior Estimates Cross-Loadings

Overall, plots of the posterior estimates and credible intervals show immediately
which cross-loadings are probably substantial and which cross-loadings seem irrelevant.
For example, in Figure 6, it is clear that cross-loadings

F1 =∼ y28 and F1 =∼ y30 were estimated to be substantial, whereas loadings F1 =∼ y29,
F1 =∼ y31, and F1 =∼ y32 were shrunken completely towards zero and thus can be seen
as irrelevant. However, for cross-loadings F1 =∼ y27 and F1 =∼ y33, it is unclear. The
posterior mean estimates were slightly away from zero, but the 95% credible intervals did
contain zero. If we wish to decide which cross-loadings can be put to zero, we need some
cutoff to do so based on these results. Different cutoffs have been proposed, for example,
using a threshold for the point estimate, or the 95% credible interval, but as shown by [91],
it depends on the condition as to which specific threshold or cutoff performs best, making it
difficult to apply these cutoffs in practice. Classical regularization approaches do have the
potential to estimate parameters to be exactly zero, thereby forgoing the need for arbitrary
cutoffs. However, this leaves the issue of post-selection inference. Specifically, after selecting
relevant parameters through regularization, subsequent inference is conditional on the model
selection, which affects sampling distributions of the resulting parameter estimates. As a result,
traditional naive inference methods can be invalid and more advanced alternatives are needed
(see e.g., [92,93]).

Figure 6. Estimates and 95% confidence or credible intervals for selected shrinkage methods and
selected cross-loadings. “EFA” is traditional exploratory factor analysis. “Reg. hs MCMC” stands
for the regularized horseshoe prior using Markov Chain Monte Carlo sampling. “Ridge var = est.”
stands for the normal prior with the variance estimated.

As we would expect based on the different distributional forms of the priors, the
resulting shrinkage behavior on the cross-loading estimates varied. This is seen most
clearly for the normal ridge priors with fixed variances (see Figure 5). The results shown
in Figure 5 for selected cross-loadings are exemplary for all cross-loadings: as the prior
variance decreases and the prior becomes more peaked around zero, it exerts more influence,
thus shrinking the estimates more heavily towards zero. The estimates based on the ridge
prior with estimated variance tended to lie between the estimates from the ridge prior with
variances equal to 0.01 and 0.1. This is not surprising given that the posterior mean of the
estimated variance parameter for the ridge prior was equal to 0.028. Note that this estimate
is informed by the data, which is an advantage of this implementation. Interestingly,
the posterior mean estimates did not differ substantially between the lasso and adaptive
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lasso implementations in LAWBL, although the adaptive lasso resulted in slightly larger
95% credible intervals (defined as the highest density interval; see Figure 5). Notably,
for the regularized horseshoe, results were exactly the same regardless of whether the
default specification was used (global scale = 1) or whether a prior guess for the number of
substantial cross-loadings was provided (leading to a global scale of 0.007).

Similarly, different classical penalty functions led to different shrinkage behaviors.
Generally, if a cross-loading was estimated to be zero, this conclusion was reached across
the lasso, elastic net, and minimax concave penalties. However, relevant cross-loadings
tended to be estimated at a larger value for the minimax concave penalty compared to the
lasso and elastic net. Thus, similar to the horseshoe and other heavy-tailed shrinkage prior
distributions, the minimax concave penalty seems to allow substantial effects to be larger
compared to other penalties that correspond to thinner-tailed shrinkage priors. Finally, it
is worth noting that the classical lasso and the Bayesian lasso did not necessarily lead to
similar results and can even lead to quite different estimates, as shown in Figure 5. This is
because, even though the double-exponential or Laplace prior distribution can be shown
theoretically to correspond to a lasso penalty, this equivalence only holds in practice when
the value of the hyperparameter in the shrinkage prior equals the value of the penalty
parameter in the penalty function and when the posterior mode is used [94].

5.3.3. Nuisance Parameters

Although the main interest in this application lies in the estimation and selection of
relevant cross-loadings, it is important to note that due to the interconnectedness of the
parameters in SEM, the shrinkage priors will affect estimates for the other parameters in
the model as well. This is shown in Figure 7 for the factor correlations, with differences
between estimated correlations being as large as 0.43 between certain priors. Note that
these differences can arise indirectly, from differences in estimated cross-loadings due to
the shrinkage priors, as well as directly, from differences in priors on the factor correlations
themselves. In this application, default priors were used for the nuisance parameters,
which are meant to be non-informative.

Figure 7. Estimates and 95% confidence or credible intervals for selected shrinkage methods and
factor correlations. “Reg. hs MCMC” stands for the regularized horseshoe prior using Markov Chain
Monte Carlo sampling. “Ridge var = est.” stands for the normal prior with the variance estimated.
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6. Discussion

This paper presented an overview of the current state of research on Bayesian regu-
larized SEM. Compared to the traditional divide between exploratory and confirmatory
research, regularized SEM can be seen as bridging these two extremes (see also the com-
parisons by [95,96] of Bayesian SEM and exploratory SEM). Depending on the specific
penalty or shrinkage prior used, it lies closer to one or the other end of the continuum.
In general, researchers might consider using regularized SEM whenever their model has
many parameters, of which they expect a subset to be equal to zero. Depending on the
desired shrinkage behavior, different shrinkage priors can be used. For example, if a large
number of substantial parameters is to be expected, it might be needed to use a shrinkage
prior that offers non-negligible shrinkage to zero for relevant effects to avoid identification
issues. The empirical application considered in this paper has been kept, for illustrative
purposes, relatively simple. More advanced applications are possible, although software
implementations might be limited.

The literature review indicated that theoretical work on Bayesian regularized SEM has
focused mainly on ridge, lasso-type, and spike-and-slab priors. These priors have been
proposed for a wide variety of different types of models, with most work focusing on factor
analysis. However, a review of available software packages showed that the applicability
of Bayesian regularized SEM remains limited by the available (user-friendly) software
implementations, which are restricted to relatively simple models and shrinkage priors.
An empirical example provided an illustration of using various (Bayesian) regularization
methods to identify substantial cross-loadings in factor analysis to aid researchers in
applying Bayesian regularized SEM in their own work and to highlight various similarities
and differences in Bayesian shrinkage methods.

The empirical example illustrated some differences between the currently available
simple shrinkage priors such as the ridge with fixed variance and lasso and more advanced
options such as the regularized horseshoe and ridge with estimated variance. An overview
of these and other popular shrinkage priors in the context of linear regression models
showed differences in shrinkage behavior as well as predictive and selection performance
across priors [33] and so differences can be expected in the context of SEM as well. Future
work should investigate which priors perform best in which models and under which
conditions. It is important to note that blavaan also provides fit indices and posterior
predictive p-values to assess model fit. However, ref. [97] showed that the posterior
predictive p-value is not suited for the evaluation of models based on small-variance priors
as it performs inconsistently as the sample size increases. Ref. [98] developed Bayesian
alternatives for commonly used fit indices that are reported by blavaan. However, their
illustrative examples provided some preliminary support for informative priors influencing
fit indices. Although more extensive simulations are needed in this area, it is to be expected
that the shrinkage priors considered in this paper will also influence the fit indices, which
raises the question as to what these indices assess: they are no longer an evaluation of the
fit of strictly the model to the data, but they become an evaluation of the fit of the posterior,
which includes the prior, to the data. An open question is therefore how researchers should
evaluate the fit of Bayesian regularized SEMs, especially because shrinkage priors are
by design introducing bias in the estimation procedure to obtain a more generalizable
model. This aim of balancing the bias and variance that is inherent in regularized SEM
should be taken into account when assessing the final model, for example, using model
assessment approaches that monitor out-of-sample predictive performance such as the
method proposed by [46].

Future Directions

Given the findings presented here, I identify three important areas for future research.
First, the ultimate selection of relevant parameters requires attention. Current methods,
such as the use of thresholds for the posterior estimates or credible intervals lead to
relatively arbitrary cutoffs with the optimal cutoff depending on the specific data-generating
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conditions [91]. In addition, current methods rely on the marginal posterior distribution, which
can behave differently compared to the joint posterior. Thus, future research should develop
and investigate alternative methods of variable selection that jointly select parameters (such as
projection predictive variable selection [99], or decoupled shrinkage and selection [100]).

Second, the development of user-friendly software that incorporates various different
shrinkage priors and models would enable more flexible shrinkage behavior for a wider
variety of SEMs. Ideally, such a software package builds upon existing packages, such
as blavaan, so that users can rely on familiar syntax. One difficulty with such a general
purpose software implementation is that the shrinkage priors should be implemented using
reasonable default values for the hyperparameters. A difficulty is that the resulting prior
specification should be restrictive enough such that the model is identified in a classical
sense, but not so restrictive as to inadvertently exert too much influence on the results.
Although it is always a good idea to assess the sensitivity of the results to the specific choice
of the prior [86], reasonable default values will aid applied researchers in using Bayesian
regularized SEM. In addition, guidelines should be developed for applied researchers to
translate their prior beliefs into reasonable specifications of the shrinkage prior. Ref. [44]
notes that “different prior choices represent different beliefs about the data at hand and
no single prior distribution should be considered superior in all situations. Substantive
researchers are advised to pick prior distributions that fit their prior beliefs concerning the
data analytic problem at hand”, but does not provide further guidelines on how to do so.

Third, the use of (Bayesian) regularized SEM is especially advantageous in high-
dimensional models. Apart from some of the work on exploratory factor analysis, most
research on Bayesian regularized SEM focuses on lower-dimensional settings. This focus
is most likely due to the computational cost of MCMC, so to fully unlock the potential of
Bayesian regularized SEM, scalable algorithms need to be available. The ADVI algorithm
in Stan offers one such example; however, a preliminary investigation of this experimental
algorithm in the empirical illustration showed that it can lead to results that differ greatly
from the results obtained using MCMC. Future work should look into the quality of
approximations of the posterior distributions obtained using variational Bayes algorithms
in high-dimensional SEMs or develop more scalable full MCMC algorithms (for example,
based on the spike-and-slab prior; [101]).
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