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Abstract: The detection of differential item functioning is crucial for the psychometric evaluation of
multistage tests. This paper discusses five approaches presented in the literature: logistic regression,
SIBTEST, analytical score-based tests, bootstrap score-based tests, and permutation score-based tests.
First, using an simulation study inspired by a real-life large-scale educational assessment, we compare
the five approaches with respect to their type I error rate and their statistical power. Then, we present
an application to an empirical data set. We find that all approaches show type I error rates close
to the nominal alpha level. Furthermore, all approaches are shown to be sensitive to uniform and
non-uniform DIF effects, with the score-based tests showing the highest power.
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1. Introduction

Multistage tests (MSTs) are based on a testing approach that splits the assessment
into multiple stages [1]. At each stage, there can be different item sets, also referred
to as modules, which may have different psychometric properties, and test takers are
administered only one of these possible modules per stage, typically in an adaptive manner.
Multistage testing designs can be considered a compromise between linear tests, where all
test takers work on the same set of items, and computerized adaptive tests (CATs), where
items are sequentially selected after each response given by a test taker [2]. As is the case
of linear tests and CATs, it is necessary to evaluate the reliability, validity, and fairness of
MSTs. This paper addresses an important aspect of this evaluation, that is, the detection of
differential item functioning (DIF [3]) for individual items in an MST.

If DIF is present, test takers from different groups with the same ability level differ in
their probability of answering specific items correctly [4]. Failure to consider DIF can lead
to biased ability estimates and unfair assessments. Therefore, it is also of high practical
relevance to detect DIF in data from MSTs. Since in MSTs, the individual test takers typically
work on different items, tests designed for linear tests (for an overview, see [5]) typically
cannot be applied, as discussed later in this paper. Therefore, several methods for the
detection of DIF in MSTs have been proposed.

This paper offers the following contributions to the literature on the detection of DIF
in MSTs. First, we discuss five methods for detecting DIF in the context of MSTs, as well
as a score-based testing framework for item-wise DIF detection in MSTs. This framework
motivates three of the five DIF tests considered in this paper. Second, we compare these
five tests in a simulation study of MSTs by evaluating their power, type I error rate, and
overall agreement, in addition to illustrating their application to empirical data. Third, we
provide some practical suggestions for the application of item-wise DIF tests based on our
results. An R package named mstDIF that allows for the application of all statistical tests
described in this paper is publicly available. In contrast to previous work [6], the focus of
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this work is detecting DIF with respect to a categorical covariate and on settings that are
inspired by empirical large-scale educational assessments.

The remainder of this paper is structured as follows. In the next section, we in-
troduce the item response theory (IRT) framework, which is widely used in practical
applications of MSTs. Subsequently, we discuss the five DIF tests for MSTs, followed by
an evaluation of these tests using both simulated and real data in the fourth and fifth
sections, respectively. In the final section, we conclude our paper with a discussion of
our findings.

1.1. The Item Response Theory Framework

Throughout this paper, we assume that all items are dichotomously scored and that the
person–item interaction can be described by the two-parametric logistic model (2PL; [7]),
which is a widely used IRT model in educational testing (e.g., [8]). The 2PL models the
probability (P) of a correct response (Xij = 1) of person i on item j as follows:

P(Xij = 1|θi, aj, bj) =
exp(aj(θi − bj))

(1 + exp(aj(θi − bj)))

In this notation, the person-specific parameter θi is commonly referred to as the ability
parameter; aj and bj are two item-specific parameters, respectively referred to as the item
discrimination and the item difficulty parameter. Because the construction of the modules
in an MST, as well as the selection of the modules during the MST assessment, is based on
how the item is expected to function, the item parameters aj and bj are usually calibrated
using data from a calibration sample or from a previous test administration. With these
calibrated item parameters, it is possible to select modules that are optimal with regard to
their item information given the test takers’ responses to earlier modules in the test. Based
on the item calibrations and the observed responses, it is possible to estimate the ability
parameters of all test takers in an MST. For a more technical treatment of adaptive testing,
see [1,2].

1.2. The Role of Differential Item Functioning in Adaptive Testing

MSTs that use IRT models (e.g., the 2PL model) for ability estimation and module
selection can only be expected to provide valid and accurate results if the underlying IRT
model provides a sufficiently accurate description of the interaction of test takers and items.
In the presence of DIF, this assumption is violated. In the context of adaptive tests, this
model violation might not only affect the estimation of the person parameters but also
which modules are presented to the test takers.

In the literature, two types of DIF are commonly distinguished [9]. In the presence
of uniform DIF, there are consistent differences in the probability of providing a correct
response across different groups (despite equal ability) for all ability levels. Technically,
this difference is often considered a shift in the difficulty parameter for individual items
between various groups. In contrast, in the presence of non-uniform DIF, the differences
in probability change depending on the ability level. In the context of the 2PL model,
uniform DIF corresponds to a difference in the difficulty parameter, whereas non-uniform
DIF corresponds to a difference in the discrimination parameter (and possibly the difficulty
parameter) for one or more subgroups. Steinberg and Thissen [10] discuss several effect
sizes for both types of DIF.

DIF tests typically test the null hypothesis that all item parameters are invariant against
the alternative hypothesis that a specific item shows item parameters that systematically
differ for various subgroups. In cases in which multiple items are tested for DIF, it is usually
necessary to define a set of anchor items for which the item parameters can be assumed to
be invariant. Item purification procedures can be used to heuristically construct such an
item set if it is not available. We return to this point at the end of this paper.



Psych 2023, 5 463

If DIF is absent, the proportion of correct responses on a specific item should not
differ across test takers with equal abilities from different groups. Hence, classical DIF tests
compare the proportion of correct responses for a specific item across groups, conditional
on a measure of the ability of the respondents (cf. [11]). Such a measure could be the
number of correct responses on the other items in the test. In MSTs and CATs, where test
takers typically work on different sets of items, this reasoning is not valid anymore. This
motivated the adaptation of some classical DIF tests to account for the adaptive test design
of CATs and MSTs. We review two of these tests herein, namely MSTSIB and a logistic
regression test. These tests were adapted to MSTs by using ability parameter estimates
instead of raw scores as a proxy for the abilities of the test takers. Several authors [6,12–14]
also discuss several DIF tests for MSTs and CATs.

1.2.1. MSTSIB

The MSTSIB method was proposed in [15] and is based on the Simultaneous Item Bias
Test (SIBTEST) procedure proposed in [16]. It was developed for a scenario involving two
predefined groups of respondents: a focal group and a reference group. MSTSIB aims to
test whether the item parameters for both groups in a specific item are identical. If there
is no DIF, the expected raw score of respondents with the same latent ability (θ) must be
equal, regardless of which group they belong to. Let ESF(θ̂) denote the expected raw item
score of members of the focal group with ability estimate θ̂, which can be obtained from
the MST, and let ESR(θ̂) be the corresponding term for members of the reference group. If
there is no DIF present, it can be expected that ESF(θ̂)− ESR(θ̂) ≈ 0 for all values of θ.

As a test statistic, MSTSIB computes a weighted mean of ESF(θ̂)− ESR(θ̂) over differ-
ent intervals across the θ̂-range. The weights in this calculation correspond to the frequency
of different values of θ̂ within each interval in the tested sample. If there is no DIF, the
resulting test statistic is approximately normally distributed, which allows a test of the null
hypothesis that the difference in the expected raw item scores between both groups is 0.
Usually, a regression correction procedure is applied to correct for measurement bias in
the estimation of the expected item scores. For technical details on the MSTSIB procedure,
see [15] or [17].

1.2.2. Logistic Regression

The DIF test for MSTs that is based on logistic regression was also developed for
a scenario with a focal group and a reference group. This method assumes that the
relationship between the probability of a correct response on a specific item and the ability
parameter (θ) can be described by a logistic regression model, such as the one- and two-
parametric logistic test model [7]. The statistical test for detecting DIF effects is based
on the comparison of two logistic regression models using a likelihood ratio test. In the
first logistic regression model, the ability estimate (θ̂), which can be obtained from the
MST, is the only independent variable, while the observed response on a specific item
is the dependent variable. The second logistic regression model contains two additional
predictors, the first of which is a dummy variable that indicates the membership in the focal
or reference group and the second of which is an interaction effect of the ability parameter
and the group membership. If no DIF effect is present, both logistic regression models
should show a comparable fit to the data. If the second model provides a more accurate
description of the data than the more parsimonious first model, this indicates that DIF
effects are present. An evaluation of this method was provided by [17,18]. Technically,
the logistic regression test assumes that a logistic regression model provides an accurate
description of the empirical data. This assumption might be violated, for instance, in the
presence of guessing.

1.2.3. Asymptotic Score-Based Measurement Invariance Tests

The score-based test approach builds on the tradition of M-fluctuation tests
(e.g., [19,20]) and was introduced into the educational and psychological measurement
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literature as a method to check measurement invariance in linear tests along categorical,
ordinal, or metric covariates [4,21–24], which are closely related to DIF detection. This
approach is related to the Lagrange multiplier test, which has been proposed for the de-
tection of DIF in both linear [25] and adaptive tests [26]. By design, response data from
MSTs contain a lot of missing data (i.e., test takers only respond to a limited set of items).
However, because this pattern of missingness can be considered to be missing at random
(MAR) [27], likelihood-based inferences are allowed [28]. Score-based tests aim to check
the invariance of maximum likelihood estimators with regard to given person covariates.
In contrast to MSTSIB and logistic regression, it was not necessary to adapt these tests for
an application with MSTs.

The conceptual idea of score-based DIF tests can be summarized as follows. We
first estimate an IRT model, e.g., the 2PL model, which assumes that the item parameters
are stable over the focal and reference groups. If this IRT model provides an accurate
description of the interaction of test takers and items, the observed deviations between the
model predictions and the data are unsystematic and random. Technically, the deviations
are the contributions to the maximum-likelihood-based score function (e.g., [19,20]); hence,
the term: score-based tests. If, on the other hand, item parameters differ for the focal
and reference groups, this leads to systematic deviations from the model predictions. For
instance, if an item is easier for test takers from the focal group than for test takers from the
reference group of the same ability, more correct responses are provided by the focal group
than the model predicts. When summarized over the focal group, these model deviations
accumulate and allow for the detection of DIF. For an introduction to the technical details,
we refer the reader to [4,21–24,29–31].

Compared to logistic regression and MSTSIB, score-based DIF tests provide four
distinctive advantages. First, they can be used for the detection of DIF effects that are
related to ordinal and metric person covariates. In contrast, both MSTSIB and logistic
regression were proposed for unordered categorical covariates (traditionally with only
two categories), and extensions to ordinal or metric covariates are not straightforward.
Second, although we describe an item-wise approach, score-based tests can also be applied
to detect the presence of DIF on the level of individual item parameters, modules (i.e.,
item sets), or on the complete item set. Third, they are conceptually very flexible and
can be essentially applied with any model that can be estimated via maximum likelihood
estimation, including the three-parametric logistic test model and models for polytomous
items [30]. Finally, these tests are applied to the observed response matrix itself and do not
require ability or item parameter estimates.

A disadvantage could be that these score-based DIF tests check the invariance of maxi-
mum likelihood estimates of the item parameters. This implies that the item parameters
need to be estimated based on data collected with the MST before this DIF test can be car-
ried out. In some cases, however, estimating the item parameters may not be appropriate,
for instance, when the number of responses per item is too small. For these situations,
we consider two modifications of the score-based DIF test—permutation and bootstrap
score-based tests—in the next subsection. Hereafter, we refer to the original approach as
asymptotic score-based tests to discern it from these other approaches.

1.2.4. Permutation and Bootstrap Score-Based Tests

Permutation and bootstrap score-based tests can be used to detect DIF in MSTs when
accurate maximum likelihood estimates of the item parameters are not available for an
MST, for instance, because the collected dataset is too small. They use precalibrated
item parameters, which are usually available in MSTs, rather than maximum likelihood
estimates obtained from the data. The calibrated item parameters are combined with
the estimated ability parameters to estimate the individual contributions to the score
function. Similar to asymptotic score-based invariance tests, these contributions are used to
measure the accuracy of the response predictions. If the item parameters are stable and,
hence, if the true item parameters in the operational test are identical to the calibrated
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item parameters for all test takers, the individual contributions should fluctuate randomly
around 0. However, if the true item parameters in the operational test systematically
differ from the calibrated item parameters for specific groups of respondents (i.e., DIF), the
individual contributions systematically differ from 0, depending on the respondent’s group
membership. By summarizing the score contributions across the subgroups, the systematic
score deviations accumulate and allow for the detection of DIF.

Unlike the asymptotic score-based test, which relies on asymptotic theory, both per-
mutation and bootstrap score-based tests use different methods to check the statistical
significance of the observed differences between the assumed model and the data, i.e.,
the methods to obtain p values. On the one hand, bootstrap score-based tests use the
calibrated item parameters and the person parameter estimates to generate a large number
of bootstrap samples (i.e., artificial response data) for which the item parameters are stable.
Considering the observed differences from the assumed model and these data leads to
a reference distribution for deviations between the data and the model under the null
hypothesis that the item parameters are stable across the focal and reference groups. On
the other hand, permutation score-based tests obtain such a reference distribution from
permutation samples. In each permutation sample, the observed responses are identical to
those of the empirical dataset, but each respondent is randomly assigned to the focal or
reference group. These artificial focal and reference groups differ between the permutation
samples but are of the same size as in the original sample.

In general, the precision of the obtained p-value increases with the number of artifi-
cially generated permutation/bootstrap samples. To limit computing time, the following
strategy can be applied. First, an initial number of datasets (e.g., 1000) is sampled. Second,
only when the resulting p value is close to the predefined alpha level, a larger additional
number of datasets can be sampled in order to increase the precision.

Because permutation and bootstrap score-based tests use the calibrated item parame-
ters rather than maximum likelihood estimates for DIF detection, they may be especially
useful in cases in which (a) the calibrated item parameters and the estimated person param-
eters are sufficiently accurate and (b) the operational sample size is too small for an accurate
item parameter estimation. The authors of [32] presented the results of a small simulation
study, demonstrating that these tests show a type I error rate close to the nominal alpha
level when DIF is absent, even when the test takers are drawn from different ability groups,
and have power against uniform and non-uniform DIF. We extend these findings below.

Of the five methods outlined above, i.e., logistic regression, MSTSIB, and the fam-
ily of three score-based tests, the first two have already been applied with CATs [11,17],
but there have been limited evaluations with respect to MSTs. In addition, the score-
based test framework has been investigated for linear tests in a variety of simulation
studies [21], but they have not been considered for item-wise DIF detection in adaptive
testing designs such as MSTs under conditions that occur in empirical large-scale assess-
ments. This motivates their evaluation through a simulation study, which is reported in the
next section.

2. An Evaluation with a Simulation Study

To investigate the comparative type I error rates and the power of the five DIF tests
presented in the introduction, a simulation study was carried out that was inspired by the
CHECK assessments, an empirical large-scale assessment conducted in Switzerland (see
below). We first present the design of the simulation study, then summarize and discuss
the results. The data of the simulation study were generated using the software package
mstR [33] in the R framework for statistical computing [34].

2.1. Simulation Design

Each simulated dataset consisted of 21,873 test takers who were administered an MST.
The simulated MST had four stages and used a 4− 5− 5− 5 design. This notation indicates
the number of available modules at each stage. In the entry stage, the test takers were
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randomly assigned to one of four modules, each module consisting of seven items. The
second, third, and fourth stages consisted of five modules each. The five modules in the
second stage consisted of seven items, while the modules in the third and fourth stages
contained ten items. As a result, the complete item set consisted of 163 items, and each test
taker responded to 34 items.

From the second stage on, the modules were assigned to the test takers adaptively
using the maximum (Fisher) information criterion. After each module, the ability of the
test taker was estimated using warm likelihood estimation (WLE; [35]), and based on this
ability estimate, the test takers were assigned to the module in the next stage for which the
Fisher information was maximized.

Item responses were generated using the 2PL model. The item discrimination and
item difficulty parameters of the simulated items were the estimated parameter values
from 163 empirical items from the CHECK assessments (see below). In the simulation
study, these item parameter estimates were used as calibrated item parameters, which are
the parameter values used to estimate the person ability in the MST and to decide which
modules should be presented to the test takers. If DIF was absent, they were identical to
the true item parameters, which are the parameters used for generating the responses of
the test takers. In conditions with DIF, the calibrated item parameters differed from the
true item parameters for the focal group.

Figure 1 shows the conceptual setup of the simulated multistage test. For each stage,
all modules are given, together with the average difficulty parameters for each module
and the percentage of the sample that worked on each module when the ability parameter
was drawn from a normal distribution and DIF was absent. The modules in stage 1 were
all of comparable, medium difficulty, whereas the five modules in each of the other stages
systematically differed in their mean difficulty. For the modules in stage 2 to stage 4, all
possible paths in the multistage test are also presented. Every module in stage 2 could be
reached from each module in stage 1, and these paths are omitted in the Figure.

Figure 1. The modules of the simulated multistage tests ordered by stage. For each module, the
mean item difficulty parameter and the percentage of the overall sample working on this module
is presented if the ability parameters are drawn from a normal distribution. In the simulations, 1%
corresponds to about 200 test takers. For stages 2 to 4, paths through the multistage test are given.

Each simulated test taker belonged to either the focal group or the reference group.
The reference group consisted of 12,872 test takers, and the focal group consisted of 9043 test
takers based on the CHECK assessments (i.e., the first and the third cohort; see below). In
both groups, the ability was usually assumed to follow a normal distribution with a mean
of 0.02 and a standard deviation of 1.08, which, again, was inspired by the empirical results
found for the CHECK assessments. The only exception was the condition that considered
ability differences between the groups, which we describe below.

In the simulation study, we analyzed two conditions without DIF effects:

1. A condition with identical ability distributions for the focal and reference groups;
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2. A condition in which the mean of the ability parameter distribution was increased by
0.5 for the reference group, resulting in groups of different mean abilities.

In these conditions without DIF, the tests should, for all items, show a rate of significant
results that is close to the nominal alpha error of 0.05. Importantly, the tests should not
confuse ability differences with DIF effects.

Furthermore, we analyzed eight conditions with DIF effects in a 2× 2× 2 design. First,
the number of DIF items was either 16 or 32 (corresponding to about 10 to 20 percent of
the items in the test). Second, the DIF was either uniform or non-uniform. Third, the DIF
effects were either balanced or unbalanced across the DIF items. In all conditions, the DIF
items were randomly chosen. In addition, the following settings were chosen:

• In the unbalanced uniform DIF condition, the true item difficulty parameter was
increased by 0.6 for the focal group for all DIF items;

• In the unbalanced non-uniform DIF condition, the true item discrimination parameter
was increased by 0.3 for the focal group for all DIF items;

• In the balanced uniform DIF condition, the true item difficulty parameter was in-
creased by 0.6 for half of the DIF items for the focal group but decreased by 0.6 for the
other half;

• In the balanced non-uniform DIF condition, the true item discrimination parameter
was increased by 0.3 for half of the DIF items for the focal group but decreased by 0.3
for the other half.

In these conditions, it is desirable that all tests show a high rate of significant results
for all DIF items but a rate of significant results that is close the type I error rate for non-DIF
items. Under each condition, 100 datasets were generated and analyzed with all five
DIF tests.

The five DIF tests (MSTSIB, logistic regression, asymptotic, permutation, and bootstrap
score-based tests) were used to test item-wise DIF between the focal and reference groups,
with an alpha level of 0.05. For the logistic regression approach, MSTSIB, as well as the
bootstrap and permutation score-based tests, the final ability parameters were estimated
using WLE. For the bootstrap and permutation score-based tests, the (known) true item
parameters were used as the calibrated item parameters. For the asymptotic score-based DIF
test, the item parameters were estimated using marginal maximum likelihood estimation
(MML). It was assumed that the item parameters were invariant for the focal and reference
groups.

2.2. Results

In the two conditions without DIF effects, all tests showed a type I error rate in the
range of 0.04 to 0.06 and thus close to 0.05. The only two exceptions were the permutation
and bootstrap score-based tests, which showed a slightly increased type I error rate of 0.07
and 0.08, respectively, in the condition with ability differences.

Tables 1–4 present the rate of significant results of all tests under conditions with DIF
effects, grouped according to whether or not and which type of DIF was present in the
items. For items with simulated DIF effects, the rate of significant results corresponds to
the power to detect DIF (cf. Tables 3 and 4); for non-DIF items, the rate corresponds to the
type I error rate (cf. Tables 1 and 2).

In the presence of DIF items, all methods showed a slightly increased type I error rate,
with the score-based test demonstrating the lowest type I error rate. With respect to power,
all methods were sensitive to DIF in both parameters. Under the simulated conditions, the
power to detect DIF in the difficulty parameter (bj) (i.e., uniform DIF) was generally higher
than the power to detect DIF in the discrimination parameter (aj) (i.e., non-uniform DIF).
All methods, with the exception of MSTSIB, reached satisfactory power levels between
about 0.65 and 0.85, depending on the type of DIF effect. The permutation and bootstrap
score-based tests had the highest power to detect DIF, regardless of the DIF type.
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Table 1. Type I error rate per method for the simulated data in conditions with 16 DIF items and
different types (balanced or unbalanced, uniform or non-uniform) of DIF effects.

Method bal., non-unif. unbal., non-unif. bal., unif. unbal., unif.

Asymptotic SC test 0.049 0.049 0.053 0.107
MSTSIB 0.055 0.056 0.063 0.079
Logistic regression 0.057 0.053 0.083 0.154
Bootstrap SC test 0.053 0.05 0.073 0.143
Permutation SC test 0.053 0.05 0.071 0.143

SC test = score-based test.

Table 2. Type I error rate per method for the simulated data in conditions with 32 DIF items and
different types (balanced or unbalanced, uniform or non-uniform) of DIF effects.

Method bal., non-unif. unbal., non-unif. bal., unif. unbal., unif.

Asymptotic SC test 0.046 0.052 0.059 0.253
MSTSIB 0.056 0.057 0.065 0.117
Logistic regression 0.055 0.061 0.116 0.326
Bootstrap SC test 0.053 0.057 0.095 0.315
Permutation SC test 0.052 0.057 0.095 0.314

SC test = score-based test.

Table 3. Power per method for the simulated data in conditions with 16 DIF items and different types
(balanced or unbalanced, uniform or non-uniform) of DIF effects.

Method bal., non-unif. unbal., non-unif. bal., unif. unbal., unif.

Asymptotic SC test 0.666 0.666 0.873 0.852
MSTSIB 0.141 0.131 0.284 0.292
Logistic regression 0.675 0.664 0.876 0.853
Bootstrap SC test 0.695 0.681 0.890 0.862
Permutation SC test 0.675 0.681 0.889 0.863

SC test = score-based test.

Table 4. Power per method for the simulated data in conditions with 32 DIF items and and different
types (balanced or unbalanced, uniform or non-uniform) of DIF effects.

Method bal., non-unif. unbal., non-unif. bal., unif. unbal., unif.

Asymptotic SC test 0.651 0.606 0.855 0.832
MSTSIB 0.132 0.125 0.273 0.273
Logistic regression 0.661 0.628 0.870 0.833
Bootstrap SC test 0.677 0.647 0.882 0.857
Permutation SC test 0.675 0.645 0.881 0.859

SC test = score-based test.

2.3. Agreement between the Tests

To assess the agreement across the DIF detection methods, two methods were used.
First, we measured the similarity of the p values for all pairs of DIF tests by calculating
Spearman’s rank correlation between the p values obtained under each of the ten conditions.
Second, we measured to which extent the DIF tests agreed in labeling an item as showing
DIF by considering how often p values were above or below 0.05 for each DIF test. To
measure this type of agreement for each DIF test, Yule’s Q was computed for each pair of
tests (analogous to the correlation coefficient for continuous variables, Yule’s Q is equal
to 1 (or −1) when there is a perfect (dis)agreement, whereas a value of 0 corresponds to
no association.). This analysis was carried out separately for each of the ten conditions.
We report the main results for the conditions without DIF and with DIF in 16 items in six
separate Tables 5–10. In conditions with 32 DIF items, very similar results were found, so
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we omit them for brevity. In each table, the entries above the diagonal report Spearman’s
rank correlation, whereas the entries below the diagonal report Yule’s Q.

Table 5. Agreement between the dif tests in simulated data for conditions without DIF and groups of
equal mean ability.

Method As. SC test MSTSIB Log. regr. Boot. SC test Perm. SC test

As. SC test 1.000 0.199 0.938 0.821 0.821
MSTSIB 0.447 1.000 0.204 0.250 0.250
Log. regr. 0.994 0.486 1.000 0.835 0.836
Boot. SC test 0.969 0.527 0.973 1.000 0.998
Perm. SC test 0.969 0.503 0.973 0.999 1.000

Entries above the diagonal report Spearman’s rank correlation between the p values of two DIF tests. Entries
below the diagonal report Yule’s Q for the labeling of DIF items between two DIF tests. SC test = score-based test.

Table 6. Agreement between the DIF tests in simulated data for conditions without DIF and groups
of unequal mean ability.

Method As. SC test MSTSIB Log. regr. Boot. SC test Perm. SC test

As. SC test 1.000 0.099 0.885 0.630 0.630
MSTSIB 0.373 1.000 0.115 −0.047 −0.051
Log. regr 0.988 0.447 1.000 0.663 0.657
Boot. SC test 0.893 0.132 0.890 1.000 0.995
Perm. SC test 0.897 0.162 0.887 0.998 1.000

Entries above the diagonal report Spearman’s rank correlation between the p values of two DIF tests. Entries below
the diagonal report Yule’s Q for the labeling of DIF items between two DIF tests. SC test = score-based test.

Table 7. Agreement between the DIF tests in simulated data for conditions with balanced DIF in the
a parameter.

Method As. SC test MSTSIB Log. regr. Boot. SC test Perm. SC test

As. SC test 1.000 0.232 0.935 0.851 0.852
MSTSIB 0.529 1.000 0.250 0.278 0.278
Log. Regr 0.996 0.547 1.000 0.869 0.869
Boot. SC test 0.987 0.579 0.989 1.000 0.998
Perm. SC test 0.987 0.594 0.989 1.000 1.000

Entries above the diagonal report Spearman’s rank correlation between the p values of two DIF tests. Entries below
the diagonal report Yule’s Q for the labeling of DIF items between two DIF tests. SC test = score-based test.

Table 8. Agreement between the DIF Tests in simulated data for conditions with unbalanced DIF in
the a parameter.

Method As. SC test MSTSIB Log. regr. Boot. SC test Perm. SC test

As. SC test 1.000 0.246 0.936 0.850 0.850
MSTSIB 0.505 1.000 0.256 0.279 0.280
Log. regr 0.997 0.507 1.000 0.866 0.866
Boot. SC test 0.989 0.526 0.989 1.000 0.998
Perm. SC test 0.988 0.520 0.988 1.000 1.000

Entries above the diagonal report Spearman’s rank correlation between the p values of two DIF tests. Entries below
the diagonal report Yule’s Q for the labeling of DIF items between two DIF tests. SC test = score-based test.
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Table 9. Agreement between the dif tests in simulated data for conditions with balanced DIF in the b
parameter.

Method As. SC test MSTSIB Log. regr. Boot. SC test Perm. SC test

As. SC test 1.000 0.288 0.884 0.829 0.829
MSTSIB 0.661 1.000 0.311 0.333 0.333
Log. regr 0.992 0.616 1.000 0.873 0.873
Boot. SC test 0.986 0.636 0.989 1.000 0.998
Perm. SC test 0.987 0.644 0.989 1.000 1.000

Entries above the diagonal report Spearman’s rank correlation between the p values of two DIF tests. Entries below
the diagonal report Yule’s Q for the labeling of DIF items between two DIF tests. SC test = score-based test.

Table 10. Agreement between the DIF Tests in simulated data for conditions with unbalanced DIF in
the b Parameter.

Method As. SC test MSTSIB Log. regr. Boot. SC test Perm. SC test

As. SC test 1.000 0.299 0.920 0.871 0.871
MSTSIB 0.578 1.000 0.330 0.331 0.334
Log. regr 0.990 0.546 1.000 0.904 0.904
Boot. SC test 0.980 0.566 0.986 1.000 0.998
Perm. SC test 0.981 0.568 0.987 0.999 1.000

Entries above the diagonal report Spearman’s rank correlation between the p values of two DIF tests. Entries below
the diagonal report Yule’s Q for the labeling of DIF items between two DIF tests. SC test = score-based test.

We can conclude that under these simulation conditions, the type I error rates and
power were acceptable for all tests, with the exception of MSTSIB, which showed an
increased rate of false-positive and false-negative results. In addition, all tests (with the
exception of MSTSIB) displayed a strong agreement in their assessments.

3. An Empirical Application: Detection of Parameter Drift in the CHECK Assessments

We further illustrate the application of the five DIF tests for the investigation of item
parameter drift in an MST. The analyzed dataset was collected in Switzerland as part of an
educational assessment called CHECKS.

CHECKS is a series of standardized achievement tests carried out in four cantons
of northwestern Switzerland (i.e., Argovia, Basle-City, Basle-County, and Soleure, all of
which are German-speaking). CHECKS serves to measure the students’ achievements
across different school grades and visualize individual learning levels. Although the aim
of CHECKS is to support students by providing personalized feedback, it also includes
reporting of aggregated results at the level of school classes and entire schools, which are
used for teaching and school development.

CHECKS is currently conducted at the beginning of the third (CHECK P3) and sixth
grades (CHECK P6) of elementary school, as well as in the middle of the second grade
(CHECK S2) and at the end of the third grade (CHECK S3) of secondary school. Depending
on the school grade, the assessed domains are “mathematics” (including the sub-domains
“algebra”, “geometry”, and “functions”), “German reading comprehension”, “German
grammar”, “English reading comprehension”, “English listening comprehension”, “French
reading comprehension”, “French listening comprehension”, and “science and technology”.
In elementary school, CHECKS is administered by paper and pencil, whereas in secondary
school, there are computer-based online assessments that allow for more complex assess-
ment designs. In our real-world application, we focus on the "German grammar" subtest
that was part of the CHECK S2 and S3. Items in this subtest could, for example, ask the
student to correctly apply rules for using commas in a sentence.

To allow for comparison of a student’s performance with that of other student cohorts,
it is necessary to check for the presence of parameter drift (i.e., a possible instability of the
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psychometric characteristics of the test items across student cohorts). In this illustration,
the DIF tests described above are used to detect parameter drift across three cohorts.

3.1. Sample

The analyzed dataset comprised 25,671 students from three cohorts that participated
in the CHECK S2 and S3 assessments. The first cohort consisted of 9043 students assessed in
2016 (51.3% male; 74.4% native speakers; 4.9% with “individual learning goals”), the second
cohort consisted of 3756 students assessed in 2016 (52.0% male; 74.0% native speakers;
3.2% with “individual learning goals”), and the third cohort consisted of 12,872 S2 students
assessed in 2017 (51.0% male; 70.7% native speakers; 3.6% with “individual learning goals”).
The samples represent the full population of public school students in the respective canton
(in 2016, only from Argovia and Soleure; in 2017, from Argovia, Basle-City, Basle-County,
and Soleuere) enrolled in eighth or ninth grade. Students partaking in the S2 assessment
were, on average, 14.5 years old, and those partaking in S3 were one year older. In the
following section, we refer to the three cohorts as cohort 1, cohort 2, and cohort 3.

3.2. Item Pool and Adaptive Algorithm

In each of the three cohorts, a multistage testing design was used for item presentation.
The item pool and the adaptive testing design were different in each cohort, with the
largest differences found between cohort 3 and the two other cohorts. Across all cohorts,
the interaction of items and students is modeled by the 2PL model. In the following, we
provide an overview of the item pool and the adaptive testing designs in each of the three
cohorts. Note that the three cohorts shared the characteristic that students were assigned
randomly to one of the modules of the entry stage.

In cohorts 1 and 2, a four-stage 4− 3− 3− 3 MST design was employed, with 109 items
in total. This means that there were four modules in the first stage and three modules in
each of the remaining stages. Students were randomly assigned to one of the four modules
at the entry stage. After the end of each module, the next module was selected based on
raw score cutoff values. While the modules of the first and second stage had a length of
seven items, the modules in the third and fourth stage had a length of ten items. Overall,
each student worked on 34 items. All modules were designed to meet specific criteria with
regard to item content. Furthermore, the modules in stages 2 to 4 systematically differed
with regard to their item difficulty so that in each of these stages, an easy module, a difficult
module, and a module of medium difficulty were available.

In cohort 3, a four-stage 4 − 5 − 5 − 5 MST design was employed. In contrast
to the other cohorts, the ability parameter of every test taker was estimated by using
WLE [35] at the end of each module. The next module was selected based on cutoff scores
for this estimation. The total size of the item pool was 163 items. The setup of this MST
was identical to that of the assessment used in the simulation study. Table 11 displays the
overlap between the administered items per cohort.

Table 11. Administered number of items per cohort in the empirical application.

Number Administered in... Possible DIFCohort 1 Cohort 2 Cohort 3

7 Yes
40 Yes Yes 1 vs. 2
48 Yes Yes Yes 1 vs. 2 vs. 3
10 Yes Yes 1 vs. 3
5 Yes Yes 2 vs. 3
10 Yes
99 Yes

219 105 103 162
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We further report the exposure of the individual items per cohort, that is, the rela-
tive frequency with which they have been presented. In the first cohort, all items were
responded to by between 1776 and 5102 students, which corresponds to 19.64% to 56.42%
of the sample. In the second cohort, all items were worked on by between 607 (16.16% of
this cohort) and 2022 (53.83% of this cohort) students. In the third cohort, all items were
worked on by between 1450 (11.26%) and 3398 (26.40%) students.

3.3. Method

The empirical dataset differed from the datasets used in the simulation study with
regard to several points. First, three groups instead of two groups were compared. Second,
the multistage design and the item sets differed across the three groups. To illustrate the
five DIF tests investigated in the simulation study with this empirical item set, the following
steps were taken. First, we estimated the item parameters of all 219 items for the 2PL model
using MML estimation via the mirt package [36] in the statistical software program R [34].
This estimation was based on a model that took possible ability differences between the
cohorts into account by assuming separate normal distributions as priors across the cohorts
with different means and variances but assumed that all item parameters were invariant
across the cohorts. We note that this model demonstrated a better fit to the data according
to a likelihood ratio test (χ2(4) = 131.089, p < 0.0001) than a model that did not account for
possible ability differences. Second, based on the estimated item parameters (cf. above) and
the response patterns, the ability of each test taker was estimated using WLE [35] utilizing
the PP R package [37]. It should be noted that we estimated the person parameters based
on the maximum likelihood estimates, in contrast to the simulation study, in which the
item parameters were assumed to stem from previous calibration studies, which were not
available for this dataset.

The resulting item and person parameter estimates were used to apply all five DIF
tests for three DIF situations: (a) DIF between cohort 1 and cohort 2, (b) DIF between
cohort 1 and cohort 3, and (c) DIF between cohort 2 and cohort 3. In the following section,
we report the rate of items showing DIF (i.e., a p value below the nominal alpha level of
0.05) for each DIF test, as well as the agreement between the five tests as measured by
Spearman’s rank correlation and Yule’s Q for each of these situations.

3.4. Results and Discussion

We report the results separately for each pair of cohorts that served as the focal
and reference groups. When testing for DIF across cohort 1 and cohort 2, the logistic
regression test flagged 24 items (26.13%) as showing DIF, whereas MSTSIB did so for
11 items (12.50%), and all three score-based tests detected DIF in 25 items (28.41%). As was
the case in the simulation study, the agreement between the bootstrap and the permutation
score-based tests was highest overall (Spearman’s rank correlation > 0.99, Yule’s Q = 1.00),
while the agreement between these two tests and the asymptotic score-based test was
lower (Spearman’s rank correlation = 0.60, Yule’s Q = 0.869 for both test pairs). The
logistic regression test showed an overall good agreement with the three score-based tests
(Spearman’s rank correlations between 0.71 and 0.73, Yule’s Q between 0.94 and 0.96 for all
three test pairs). The overall lowest agreement was found between MSTSIB and the four
other tests (Spearman’s rank correlations between 0.14 and 0.30, Yule’s Q between 0.27 and
0.41 for all test pairs). This corresponds with the findings of the simulation study.

When testing for DIF across cohort 1 and cohort 3, the five DIF tests showed a com-
paratively low agreement. The logistic regression test detected DIF in 38 items (65.52%),
whereas MSTSIB did so for only one item (1.72%). The asymptotic score-based test labeled
42 items (72.42%) as DIF items, whereas the Bootstrap and permutation score-based tests
detected DIF in 31 items (53.45%). As in the simulation studies, the agreement between
the bootstrap and the permutation score-based tests was highest overall (Spearman’s rank
correlation = 0.98, Yule’s Q = 1.00), while the agreement between these two tests and the
asymptotic score-based test was much lower (Spearman’s rank correlation between 0.19
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and 0.21, Yule’s Q = 0.095 for both test pairs). The logistic regression test agreed well with
the bootstrap and permutation score-based tests (Spearman’s rank correlations between
0.82 and 0.83, Yule’s Q = 0.933 for both test pairs) but much lower with the asymptotic
score-based test (Spearman’s rank correlation = 0.15, Yule’s Q = −0.1), indicating that these
tests flagged mostly different items as showing DIF. Again, the overall lowest agreement
was found between MSTSIB and the four other tests. MSTSIB and the asymptotic score-
based tests flagged different item sets as showing DIF (Spearman’s rank correlation = 0.04,
Yule’s Q = −1.00). The correspondence between MSTSIB and the three other tests was
slightly higher overall (Spearman’s rank correlations between 0.46 and 0.53, Yule’s Q = 1.0).
This last result for Yule’s Q indicates that the item flagged as showing DIF by MSTSIB was
among the DIF items labeled by these three other tests.

The results of testing DIF between cohort 2 and cohort 3 were comparable to those
for cohorts 1 and 3. The logistic regression test detected DIF effects in 35 items (66.03%),
whereas MSTSIB, again, found DIF in only one item (1.89%). The asymptotic score-based
test detected DIF in 39 items (73.58%), whereas the bootstrap and permutation score-based
tests found DIF in 24 (45.28%) and 25 (47.17%) items, respectively. The asymptotic score-
based test showed an overall low agreement with the other DIF tests, with the lowest
agreement found for MSTSIB (Spearman’s rank correlation = −0.05, Yule’s Q = −1.00).
For the other three DIF tests, the agreement with the asymptotic score-based test was
slightly higher (Spearman’s rank correlations between 0.11 and 0.12, Yule’s Q between
−0.266 and 0.256). The one item flagged as a DIF item by MSTSIB was not among the
items found by the logistic regression test or the permutation or bootstrap score-based
tests, leading to an overall low agreement for these three pairs of DIF tests (Spearman’s
rank correlations between 0.30 and 0.51, Yule’s Q = −1.00). The logistic regression test
agreed overall well with the permutation and bootstrap score-based tests (Spearman’s
rank correlations between 0.68 and 0.70, Yule’s Q between 0.79 and 0.86). As before, the
highest agreement was found between the permutation and the bootstrap score-based tests
(Spearman’s rank correlation > 0.99, Yule’s Q = 1.00).

Overall, the results for all DIF tests when comparing cohort 1 and 2 were in line with
the simulation study, although the multistage design, as well as the application of the DIF
test, differed between the simulation study and this empirical illustration. In particular,
the person parameter estimates used in four DIF tests (logistic regression, MSTSIB, and the
permutation/bootstrap score-based tests) were calculated based on maximum-likelihood
estimates of the item parameters in the empirical example, whereas they were estimated
based on the calibrated item parameters in the simulation study.

For the other two DIF scenarios (DIF between cohort 1 and cohort 3 and DIF between
cohort 2 and cohort 3), we found a much higher rate of positive results for most DIF tests
compared to the simulation study. These high rates might have been caused by real DIF
effects but may also have been caused by the obvious differences in the multistage design
between cohort 3 and the other two cohorts, which may have affected the psychometric
characteristics of the items. It is plausible that these differences in psychometric characteris-
tics led to a bias in the person parameter estimation, which, in turn, may explain the lower
agreement between the five DIF tests in these scenarios compared to the simulation study.

In contrast to the simulation study, we also found that MSTSIB showed extremely
conservative behavior in these scenarios, i.e. it detected very few DIF items. The contrast
between this finding and the results of our simulation study and other studies (e.g., [15])
could be partly explained by the differences in the adaptive design in the focal and reference
group and the presence of many DIF items. We feel that this finding should be further
investigated in future research. However, since the person parameter estimates must be
regarded as biased in the presence of many DIF items, this test cannot be recommended for
such applications. A similar point applies to the logistic regression test, the permutation
score-based test, and the bootstrap score-based test, all of which make use of the person
parameter estimates. Instead, the asymptotic score-based test, which does not rely on
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person parameter estimates, is recommended as the most robust method for DIF detection
in the presence of many DIF items.

4. General Discussion

The detection of DIF effects is an important part of the evaluation of MSTs, and this
study evaluated five different statistical tests for this purpose. Using a simulation study,
we found that all tests showed a type I error rate close to the nominal alpha level if DIF is
absent. Importantly, the tests were not sensitive to a difference in the mean abilities of the
focal and reference groups.

All tests were sensitive to uniform and non-uniform DIF effects, with MSTSIB being
the least sensitive. These results are in line with [38], which reported that DIF tests based on
logistic regression are more powerful than the SIBTEST in linear tests; contrasting results
were reported in [39] for a different set of conditions. In addition, three of the five tests
were applied to an empirical dataset from the Swiss CHECKS assessment.

Among our five tests, the bootstrap and permutation score-based tests are based on
very similar concepts and were found to be essentially equivalent with regard to their type
I error rates and power; therefore, we refer to these tests as the permutation/bootstrap
score-based test in the remainder of this section. Because we also found an overall lower
power of MSTSIB in the simulation study compared to the other tests, we limit our dis-
cussion to three methods: logistic regression, the asymptotic score-based test, and the
permutation/bootstrap score-based test.

An important finding in our simulation study is that all of these tests showed an
increased type I error rate if a large number of DIF items was present in the data, that is,
items were incorrectly flagged as showing DIF. This finding is particularly important for
interpreting the results in the empirical application, where very high rates of positive results
were found under some scenarios. The reason for this might differ between the individual
DIF tests. In the case of logistic regression and the permutation/bootstrap score-based test,
the presence of a large amount of DIF items might lead to a bias in the person parameter
estimates. As a consequence of this bias, there will be a systematic deviation between the
observed responses and the response pattern that is expected based on the biased ability
estimates, which can be expected to lead to this increased rate of false-positive results. The
asymptotic score-based test, on the other hand, does not make use of the ability parameter
estimates but only shows an increased type I error when a large portion of the items was
affected by unbalanced DIF effects in the difficulty parameters. Conceptually, these tests
are based on checking the stability of maximum likelihood estimates of the item parameters
while accounting for differences in the ability levels of the focal and reference groups. We
provide the following conceptual explanation for this increased type I error rate in this test.
An unbalanced DIF effect in the difficulty parameter of a large portion of items is equivalent
to a difference in the ability distribution for some items, and as a result, a portion of this
DIF effect might be modeled as an ability difference between the focal and reference groups.
However, this approach leads to a mismatch between the observed and expected data for
DIF and non-DIF items alike, which could explain the high power and the increased type I
error for this test.

On an abstract level, logistic regression, the asymptotic score-based test, and the
permutation/bootstrap score-based test can be categorized based on several criteria. First,
asymptotic and permutation/bootstrap score-based tests are based on the item parameters
of IRT models, whereas logistic regression does not directly rely on the item parameters of
an IRT model. Second, permutation/bootstrap score-based tests use the calibrated item
parameters and can therefore be used in small samples if the person parameter estimates are
sufficiently accurate. Asymptotic score-based tests do not use person parameter estimates
but require the estimation of item parameters and therefore a sufficiently large sample. The
logistic regression approach does not make use of item parameter estimates but uses person
parameter estimates. Based on these conceptual differences and the reported simulation
results, the following recommendations for practical applications seem to be in order:
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If the sample is sufficiently large, asymptotic score-based tests can be used to test
for DIF. Simulation studies (e.g., [21]) indicate that the sample size required by these
tests depends on the used IRT model and the required power. While 200 respondents
may be sufficient to apply these tests with the 2PL model in linear tests, larger samples
usually increase their power. Similar results were reported in previous studies for linear
tests [21], as well as for DIF tests, with respect to continuous covariates [6,32]. As shown
in the simulation study that was inspired by an empirical large-scale study in education,
responses may be unevenly distributed across the modules based on the psychometric
characteristics of the items, so the power of these tests might depend on the chosen adaptive
design. For specific adaptive designs, additional simulation studies may help to determine
whether these tests have a type I error rate close to the alpha level and sufficiently large
power. Of all tests considered here, asymptotic score-based tests also showed a type I error
rate close to 0.05 in most conditions, which is another desirable result.

In small samples that do not allow for a sufficiently accurate estimation of item
parameters, score-based permutation and bootstrap tests can be useful, in particular when
few items are affected by DIF. Both tests are based on IRT models. Their application to other
IRT models such as the three-parametric logistic model (3PL; [7]), models for polytomous
items, and multidimensional IRT models [40] seem straightforward, but this is a topic for
future research. Other interesting topics for future research include the evaluation of these
DIF tests for other designs of multistage tests, other ratios of the focal and reference groups,
or assessments with complex DIF patterns.

Our simulation study indicated that the logistic regression test is useful for the de-
tection of DIF in the 2PL model. Since this test was proposed for DIF detection in 2PL
models and the related, simpler one-parametric logistic (1PL) models, its usefulness can be
expected to decrease when the items follow a more general IRT model; an explanation and
further discussion are provided in [41]. For instance, Finch and French [39] reported an
increased type I error rate in the 3PL model for logistic regression DIF tests.

As stated in the Introduction, item-wise DIF tests, such as the tests presented here,
typically assume that the parameters of all items that are not investigated for DIF remain
invariant. If more than one item shows a DIF effect, this assumption is violated, as pointed
out in [42] and others. As shown in the simulation study, as well as the empirical application,
a violation of this assumption can lead to an increased rate of false-positive results and a
reduced agreement between the individual DIF tests. To address this problem, at least two
approaches can be considered, of which the first is based on item anchoring and the second
is based on purification strategies for the anchor. For score-based tests, the authors of [24]
proposed a sequential item purification approach, where items that were found to shown
DIF are iteratively removed from the item pool until no remaining item is found to show
DIF. This approach can be applied with all five tests evaluated here and can be expected to
reduce the rate of false-positive results reported in the presence of many DIF items.
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