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Abstract: This study investigates the performance of estimation methods for multidimensional IRT
models with dichotomous and polytomous data in two well-known IRT programs: SAS PROC IRT
and the mirt package in R. A simulation study was used to compare performance on a simple structure
Rasch model, complex structure 2PL model, and bifactor graded response model. Under RMSE
and bias criteria regarding item parameter recovery, PROC IRT and mirt showed nearly identical
performance in the simple structure condition. When a complex structure was used, mirt performed
better in terms of the recovery of intercept parameters, while the recovery of slope parameters
depended on the program and the sample sizes: PROC IRT tended to be better with small samples
(N = 500) according to RMSE, and mirt was better for larger samples (N = 1000 and 2500) according
to RMSE and bias for the slope parameter recovery. When a bifactor structure was used, mirt was
preferred in all cases; differences lessened as sample size increased.

Keywords: R; mirt; SAS; PROC IRT; MIRT estimation

1. Introduction

Recently, SAS/STAT® software introduced the IRT analysis module PROC IRT [1],
which complements existing software that specializes in item response theory (IRT) analysis
(e.g., IRTPRO [2], flexMIRT [3]). Additionally, IRT model estimation programs under the
freely available statistical computing environment, R [4], became available and widely used
in research. Both SAS/STAT software and R IRT programs offer multidimensional model
estimation capacity. The popularity of and demand for multidimensional IRT modeling
has increased because it is not uncommon to find a test which measures more than a single
construct, and it provides an effective means to handle user-defined multidimensional
structures (e.g., a simple structure with correlated subtests in a test battery).

In research and practice, one may consider either SAS/STAT PROC IRT or an IRT
package in R for the estimation of a multidimensional model. Some information on the
performance of the two IRT model programs are available in terms of unidimensional mod-
eling (e.g., [5–8]), but comparisons of estimating multidimensional models by SAS/STAT
PROC IRT and R package(s) are still scarce. The purpose of this study is to generate compar-
ative information on the performance of SAS/STAT PROC IRT and R IRT programs in terms
of multidimensional IRT model estimation. The package (or program) for the estimation
of multidimensional IRT models in R used in this study is mirt [9]. SAS/STAT software
is a licensed software, charging users a fee for use, and performs a comprehensive set of
statistical procedures, including PROC IRT for uni- and multidimensional IRT analyses.
The R software is a freely available, open-source software with the mirt package available
for performing uni- and multidimensional IRT analyses.

The next section introduces comparisons of the overall features in SAS/STAT PROC
IRT and the R mirt package, followed by a simulation study.
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Features

Both PROC IRT in SAS/STAT and the mirt package in R can perform Rasch mod-
els, one-, two-, three-, and four-parameter models, and graded response and generalized
partial credit models for unidimensional and multidimensional structures. The nom-
inal response model can be used for unidimensional data with PROC IRT or for uni-
and multidimensional data with mirt. Both assume person latent scores are from a nor-
mal distribution, utilizing the marginal maximum likelihood (MML) estimation with an
expectation-maximization (EM) or Newton-type algorithms for parameter estimations as
their default estimation approaches [1,10,11]. Mirt provides additional estimation options.
Both provide maximum likelihood (ML), maximum a posteriori (MAP), and expected a
posteriori (EAP) as person ability (or latent trait) score estimators.

SAS/STAT PROC IRT applies the logit link function when calibrating data, along
with the quasi-newton maximization method and adaptive quadrature approximation
method, by default. Mirt, by default, utilizes a standard expectation maximization with
fixed quadrature. Tables 1 and 2 below provide summaries of the features of the two
programs. Note that in Tables 1 and 2, we listed what we considered essential for beginners;
furthermore, the two programs have a much wider scope of options regarding the details of
model estimation specification and the directions of details of those option specifications are
not identical. Thus, we recommend that one should further study the currently available
information in “help” in R and the SAS/STAT documentation if they are interested in
knowing the details at a deeper level.

Table 1. Table of features for PROC IRT in SAS/STAT and mirt in R.

PROC IRT in SAS/STAT mirt in R

Models supported

Polytomous extensions Graded response, generalized partial credit Graded response, generalized partial credit

Dimensionality Unidimensional, multidimensional Unidimensional, multidimensional

Calibration

Link function Logit, Probit Logit

Model identification θ ∼ N(0, 1) or N
(
0, σ2) for Rasch modeling θ ∼ N(0, 1) or N

(
0, σ2) for Rasch modeling

Item calibration MML as default MML as default

Person ability ML, EAP, MAP EAP, MAP, ML, Weighted Likelihood Estimate
(WLE)

Output

Global/Model fit

Log likelihood, Akaike’s and Bayesian
information criterion, the likelihood ratio

Chi–Square G2 statistic, and Pearson’s
Chi–Square

Log likelihood, Akaike’s and Bayesian
information criterion, the likelihood ratio

Chi–Square G2 statistic, root mean square error
of approximation (RMSEA), and M2 test

Item fit Likelihood Ratio G2, Pearson’s Chi–Square
Statistics

S − X2 as default. Infit and outfit item fit
statistics possible for the Rasch model

Person fit None Infit and outfit measures, and lz

Plots Item Information Curve, Test Information
Curve, Item Characteristic Curve

Item Information Curve, Test Information
Curve, Item Characteristic Curve

Other

Mixed format data Yes Yes

Missing data code Blank, user-specified ‘NA’ used

Item parameter priors Yes for the slope, the guessing, and the ceiling
parameters for the 3PL and 4PL models only

Yes for the slope, the intercept, the guessing,
and the ceiling parameters

Multiple-group IRT Yes Yes

Mixture models No capability Yes

Note. Missing data in R are specified with ‘NA’ (not available).
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Table 2. Table of estimation features for PROC IRT in SAS/STAT and mirt in R.

PROC IRT in SAS/STAT mirt in R

Estimation Method Conjugate-gradient Block & Lieberman approach
Expectation-Maximization (EM) Expectation-Maximization (EM) *
Newton-Rhaphson with ridging Metropolis-Hastings Robbins-Monro (MHRM)

Quasi-Newton * Monte Carlo EM
Stochastic EM

Quasi-Monte Carlo EM
Quadrature Approximation Adaptive Gauss-Hermite (G-H) * Fixed quadratures *

Gauss-Hermite (G-H) Custom quadratures (or user-specified
quadratures)

Nonadaptive Gaussian Quatrature

* denotes the default setting.

The PROC IRT software and R mirt package have various algorithms for maximizing
the marginal likelihood to obtain the model parameter estimates.

2. Materials and Methods

This study utilized a simulation study of three different multidimensional data struc-
tures (simple, complex, and bifactor; see Table 3) to compare the model parameter esti-
mation procedures utilized by PROC IRT and mirt. The specifications of the estimation
methods were the defaults, when applicable, provided by the two programs because they
would be the most common types of choices when users in practice run a multidimensional
model estimation. The use of the default means for the person ability parameters, θ, is
assumed to follow a multivariate normal distribution and no distributional assumptions are
made for the item parameters, i.e., there is no prior for item parameters in either program.
PROC IRT does provide priors on the slope, guessing, and ceiling parameters when the
3PL and 4PL models are used.

Table 3. Simulated multidimensional structures and IRT models.

Model

Number of Dimensions Structure Rasch 2PL GR

3 Simple X
Complex X

4 Bifactor X
Note. 2PL = two parameter logistic; GR = graded response logistic.

The three structures have 30 items each. The multidimensional 2PL (M2PL) model
used for data generation has the form a’θ+ d, i.e., a compensatory MIRT model form,
where the slope and person ability parameters across dimensions are a’ and θ, respectively,
and the item intercept parameter is d. For the data simulation, the slope parameters were
from a log-normal distribution with the mean equal to zero and a standard deviation (SD)
of 0.2; this results in slope parameters which are always positive (common in IRT) and lie
approximately between 0.5 and 2.0. The intercept parameter was from the standard normal
distribution. Item specifications were taken from Cole and Paek [7]. For all conditions,
sample sizes of N = 500, 1000, and 2500 were used. The number of replications was 100.

In R, mirt uses the slope-plus-intercept form, a’θ+ d. SAS/STAT PROC IRT for the
2PL model and the GR model follow the slope-minus-intercept form, a’θ− d.

2.1. Simulation 1: Simple Structure with Rasch Model

The first simulation utilized a simple structure dataset of 30 items with dichotomous
data, following a Rasch model. Three-dimensional data were composed of three 10-item
subsets as follows: items 1–10 loaded only on the first dimension, items 11–20 loaded only
on the second dimension, and items 21–30 loaded only on the third dimension. Correlation
of dimensions were in the moderate range (r12 = 0.5, r13 = 0.7, r23 = 0.6). For the model
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identification, the mean for each dimension was fixed to zero while the variances and the
covariances of dimensions were estimated freely.

The person ability parameters (θs) of the simulated data were drawn from the tri-
variate normal distributions with the mean equal to zero on all dimensions. The covariance
matrix fixed the diagonals to ones and the off-diagonals to the correlation values addressed
above. The intercept parameters were drawn from the standard normal distribution; these
are the difficulty parameters in the simple structure Rasch model.

2.2. Simulation 2: Complex Structure with 2PL Model

The second simulation utilized a structure dataset of 30 items with dichotomous
data following the 2PL model. Three-dimensional data were composed of three 10-item
subsets as follows: items 1–10 loaded only on the first dimension, items 11–20 loaded only
on the second dimension, and items 21–30 loaded on all three dimensions. Correlation
of dimensions were in the moderate range (r12 = 0.5, r13 = 0.7, r23 = 0.6). Model
identification specifications were similar to the first simulation.

The person ability parameters and intercept parameters of the simulated data were
drawn from the same tri-variate normal distribution used in the above Rasch model
condition. A log-normal distribution was utilized for the slope parameters, with its mean
equal to 0.25 and its standard deviation equal to 0.25.

2.3. Simulation 3: Bifactor Structure with Graded Response Model

The third and final simulation utilized a bifactor structure dataset of 30 items with
polytomous data with 3 categories, following the GR model. Four-dimensional data were
composed such that all 30 items loaded on a common general factor along with three
10-item subsets as follows: items 1–10 loaded only on the first specific dimension, items
11–20 loaded only on the second specific dimension, and items 21–30 loaded only on the
third specific dimension. Across factors, the mean and the variance were fixed to zero and
one, respectively. The dimensions were uncorrelated.

Person ability parameters were drawn from a multivariate normal distribution with
zero means across dimensions, and the covariance matrix corresponded to the identity
matrix with n = 4. Similar to the second simulation, the slope parameters were drawn from
the same lognormal distribution. The item intercept parameters for the three categories,
d1 and d2, were drawn from two uniform distributions ranging from (−2, 0) and (0, 2),
respectively.

2.4. Computer Specifications

The computer specifications were an Intel® CoreTM i5-6500 CPU at 3.20 GHz with
8 GB of physical RAM. The operating system was Microsoft Windows 10 Enterprise. For
IRT calibrations in SAS, 9.4 with the SAS/STAT® 14.1 component was used. In this study
the R version was 4.2.2. and the mirt version was 1.38.1.

2.5. Evaluation

Evaluation was conducted in terms of run time, bias and RMSE of item parameter
estimates, and the population parameter estimates (e.g., variances in the case of simple
Rasch models and covariances among dimensions in the case of the simple Rasch and
complex 2PL models). Regarding the item parameter recovery, the averages of bias and
RMSE across items for the slope and the intercept parameters, respectively, are reported
as summative evaluation measures for each data-simulation condition. In addition, we
report the convergence (or non-convergence) rates as a side for practical information. The
convergence criterion used in this study were the program defaults (when applicable),
while the default model parameter estimation methods were chosen as mentioned be-
fore. When calibrating the complex and bifactor models, the calibrations converged with
extremely incorrect parameter estimates in the SAS/STAT PROC IRT runs. The authors
communicated with SAS/STAT technical specialists, and it was recommended to loosen the
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convergence criterion, which yielded more practical estimates. (See note a under Table 4
for the convergence rules used in the study.) Within R, the default convergence was used.

Table 4. Average run time (in seconds) and convergence rates.

Run Time: M(SD) Convergence (%)

Data Format Sample Size PROC IRT mirt PROC IRT a mirt

Simple 500 25.75 (1.55) 70.11 (14.69) 100 100
1000 39.25 (14.67) 95.39 (7.49) 100 100
2500 69.19 (44.43) 176.55 (6.41) 100 100

Complex 500 45.45 (20.97) 66.46 (32.88) 100 a 97
1000 103.36 (64.94) 67.61 (12.42) 100 a 99
2500 112.90 (74.07) 115.89 (7.31) 100 a 100

Bifactor 500 2318.46 (1232.00) 26.24 (1.50) 100 a 100
1000 1890.47 (1078.33) 39.74 (1.26) 100 a 100
2500 3115.67 (372.19) 76.58 (1.80) 100 a 100

a The PROC IRT convergence for the simple structure converged at the default 1 × 10−8. The complex and
bifactor models did converge but with extreme errors in item parameter estimations. Communication with
SAS/STAT technical specialists suggested loosening the convergence to 1 × 10−5. The complex and bifactor
models converged with a converge criterion of 1 × 10−5.

Appendix A provides the SAS/STAT PROC IRT and R syntax used for calibrating
datasets.

3. Results
3.1. Run Time and Convergence

Table 4 presents the mean and standard deviation of the run time for each simulation
using SAS/STAT PROC IRT and R mirt and the percentage of convergence (out of 100 repe-
titions). PROC IRT performed quicker when a simple structure was used at all levels of
sample size and when a complex structure was used with a sample size of N = 500 and
N = 2500. R performed quicker when a complex structure was used with a sample size
of N = 1000, and R performed considerably faster for the bifactor structure at all levels
of sample size. All simulations converged using R for the simple and bifactor structures;
when a complex structure was used, convergence rates were 97%, 99%, and 100% for the
sample sizes of N = 500, 1000, and 2500, respectively. All simulations converged using
PROC IRT at the default convergence criterion (1 × 10−8) for the simple structure, and at
the loosened criterion (1 × 10−5) for the complex and bifactor structures.

The faster run time of mirt is most likely due to the employment of the dimension
reduction technique for the bifactor model estimation using the mirt::bfactor() function,
which is not available in PROC IRT for the bifactor model estimation.

3.2. Recovery of Item Parameters
3.2.1. Simple Structure with Rasch Model

All cases met convergence in both mirt and PROC IRT. Table 5 reports the RMSE and
bias, and Figure 1a,b display the measures.

PROC IRT and mirt had nearly identical performance of RMSE and bias for the
intercept (d) parameter (RMSE ranged from 0.109 when N = 500 to 0.048 when N = 2500,
and bias ranged from 0.030 when N = 500 to 0.009 when N = 2500) and very similar
performance of the variance and covariances of factors (RMSE ranged from 0.090 when
N = 500 to 0.043 when N = 2500, and bias ranged from 0.040 when N = 500 to 0.019
when N = 2500). The RMSE and bias of the variance and covariances of the factors were
slightly higher in mirt as compared to PROC IRT. As sample size increased, measures of
error decreased.
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Table 5. RMSE and bias of item parameters for the simple structure with Rasch model.

Data Format Sample Size Par
PROC IRT mirt

RMSE Bias RMSE Bias

Simple 500 d 0.109 0.030 0.109 0.030
var/cov 0.082 0.037 0.090 0.040

1000 d 0.076 0.018 0.076 0.018
var/cov 0.056 0.023 0.059 0.023

2500 d 0.048 0.009 0.048 0.009
var/cov 0.039 0.019 0.043 0.022

Note. var/cov refers to the estimated variance and covariance of the factors.

Figure 1. RMSE (a) and bias (b) of item parameter estimates for the simple structure with Rasch
modeling.

3.2.2. Complex Structure with 2PL Model

In mirt, nearly all replications reached the default convergence check (97%, 99%, and
100% for the sample sizes of 500, 1000, and 2500, respectively). Table 6 reports the RMSE
and bias for PROC IRT and mirt for replications reaching convergence; these are displayed
in Figure 2a,b. In PROC IRT, replications reached convergence at the default 1 × 10−8

convergence criterion; however, parameters were estimated with extreme errors (i.e., values
greater than 10.0). SAS/STAT technical specialists recommended a loosened convergence
criterion of 1 × 10−5, in which all cases reached convergence with reasonable estimates.

For mirt, the RMSE of the slope parameters, a1 and a2, were less than 0.30, but the
RMSE of a3 was higher (0.569). PROC IRT estimated all slope parameters less than 0.240
when a small sample size (N = 500) was used. At larger sample sizes (N = 1000 and 2500),
the RMSE of mirt tended to be low (less than 0.08) and less than that of PROC IRT (which
ranged from 0.214 for a1 and N = 1000 to 0.105 for a3 and N = 2500).

At all levels of sample size, mirt had smaller RMSEs (less than 0.02) than PROC IRT
(ranged from 0.103 to 0.083) when estimating the intercept and factor covariances.

Lastly, for all parameters and at all sample sizes, mirt estimated with low (less than
0.5) and smaller bias than PROC IRT (ranging from 0.165 to 0.015).

For all item parameters, when the complex structure using the 2PL model was applied,
measures of error decreased as sample size increased (except for the case of estimating the
bias of a3 when N = 2500, which increased slightly as sample size increased). Measures of
error for the covariances were not affected by sample size.
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Table 6. RMSE and bias of item parameters for the complex structure with 2PL model.

Data
Format

Sample
Size

Par
PROC IRT mirt

RMSE Bias RMSE Bias

Complex 500 a1 0.234 0.138 0.292 0.069
a2 0.214 0.125 0.181 0.031
a3 0.173 0.065 0.569 0.017
d 0.227 0.170 0.082 0.049

cov 0.087 0.078 0.007 0.007
1000 a1 0.214 0.165 0.075 0.050

a2 0.187 0.134 0.050 0.029
a3 0.127 0.052 0.050 0.011
d 0.103 0.015 0.013 0.001

cov 0.087 0.080 0.007 0.007
2500 a1 0.153 0.126 0.038 0.031

a2 0.113 0.074 0.014 0.008
a3 0.105 0.081 0.030 0.018
d 0.066 0.021 0.005 0.001

cov 0.083 0.075 0.007 0.007
Note. cov refers to the estimated covariance among factors. All PROC IRT replications reached convergence at a
loosened 1 × 10−5 convergence criterion.

Figure 2. RMSE (a) and (b) bias of item parameters for the complex model.

3.2.3. Bifactor Structure with Graded Response Model

In mirt, all replications reached the default convergence check. In PROC IRT, replica-
tions reached convergence at the default 1 × 10−8 convergence criterion; however, parame-
ters were estimated with extreme errors. As with the complex structure cases, SAS/STAT
technical specialists recommended a loosened convergence criterion of 1 × 10−5, in which
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all cases reached convergence. Table 7 reports the RMSE and bias, and these are displayed
in Figure 3a,b, respectively.

Table 7. RMSE and bias of item parameters for the bifactor structure with GRM model.

Data
Format

Sample
Size

Par
PROC IRT mirt

RMSE Bias RMSE Bias

Complex 500 a1 0.224 0.145 0.032 0.006
a2 0.130 0.100 0.014 0.000
a3 0.111 0.083 0.012 0.002
a4 0.120 0.096 0.017 0.006
d1 0.155 0.057 0.022 0.004
d2 0.135 0.036 0.018 0.003

1000 a1 0.124 0.052 0.016 0.005
a2 0.045 0.003 0.006 0.000
a3 0.046 0.017 0.005 0.000
a4 0.045 0.007 0.007 0.001
d1 0.099 0.037 0.010 0.002
d2 0.101 0.045 0.010 0.002

2500 a1 0.091 0.048 0.008 0.003
a2 0.042 0.031 0.003 0.001
a3 0.032 0.018 0.002 0.000
a4 0.031 0.014 0.002 0.000
d1 0.075 0.044 0.006 0.002
d2 0.072 0.041 0.005 0.002

Note. All mirt replications met the default convergence check. All PROC IRT replications reached convergence at
a loosened 1 × 10−5 convergence criterion.

For all cases at all levels of sample size, mirt performed better in terms of RMSE and
bias than PROC IRT. RMSE of mirt ranged from 0.032 (for a1 when N = 500) to 0.002 (for
a3 when N = 2500). Bias of mirt ranged from 0.006 (for a1 when N = 500) to less than 0.001
for many cases. For all parameters in mirt, RMSE and bias were only slightly affected by
sample size, decreasing as sample sizes increased.

PROC IRT had higher effects of sample size. When sample sizes were small (N = 500),
RMSE was very high (maximum of 0.224 for a1), as was bias (maximum of 0.145 for a1). At
N = 2500, RMSE decreased as low as 0.032 (for a3 when N = 2500) and bias decreased as
low as 0.017 (a3, N = 1000).

Figure 3. Cont.
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Figure 3. RMSE (a) and bias (b) of item parameters for the bifactor model.

4. Discussion and Conclusions

This study investigated performance of two IRT programs using their default esti-
mation methods, given that practitioners or end-users are highly likely to employ the
default setting. Although both programs use the MML estimation by default, some aspects
of the estimation details are not the same. For example, stopping rules for the iterative
process in the model estimation are different and SAS/STAT PROC IRT uses an adaptive
quadrature (by default), while mirt does not. The adaptive quadrature approach attempts
to optimally choose the number of quadratures and their locations, while mirt uses a fixed
set of quadratures (e.g., 61 quadratures at [–6, 6] on theta). Thus, our comparison here
necessarily involves these differences across the two programs.

The comparisons of both programs were made for multidimensional dichotomous
and polytomous response data. Below are major observations from the simulations.

When dichotomous data followed the three-dimensional Rasch model with a simple
structure, both PROC IRT and mirt produced virtually the same performance in terms of
recovering model parameters (specifically, bias and RMSE) with the sample size greater
than or equal to 500. In large scale assessment programs, the Rasch model is a popular
choice and typically a sample size of a few thousand or greater is used for model calibration.
Research-wise, smaller sample sizes (a few hundred) are sometimes used. Though the
results should be cautiously interpreted, our current findings are encouraging in that when
the sample size is at least 500 or greater, the preferences of PROC IRT and mirt are equal.

When dichotomous data followed a three-dimensional complex structure with the 2PL
model, where some items were cross-loaded, PROC IRT and mirt showed some differences.
When the results from the mirt’s default convergence rule were examined, except for the
recovery of one of the slope parameters with N = 500, mirt performed better than PROC
IRT regarding RMSE and bias. Overall, when sample sizes are large (i.e., greater than or
equal to 1000), mirt (using the first default convergence) performs better than PROC IRT.

When polytomous data followed a four-dimensional bifactor GR model, mirt recov-
ered model parameters better than PROC IRT across all sample size conditions, though the
difference of performance decreased as sample size increased and the difference between
both programs was small, in particular when sample sizes were 500 or higher.

The use of an adaptive quadrature is an approach that can boost the estimation speed
in multidimensional model estimation. However, as the number of dimensions increases
(say, four or greater), the adaptive quadrature approach should compromise between the
model parameter estimation speed and the accuracy of model parameter estimation when
reducing the number of quadratures for the multidimensional run. We conjecture that, in
the cases of the complex and bifactor model estimation, this compromise is a part of the
reason why PROC IRT tended to underperform for these conditions. In addition, the lack of
the dimensional reduction technique [12–14] in PROC IRT seems to be another contributing
factor in the lesser performance of PROC IRT compared to mirt for the bifactor structure
condition. (Note again, mirt::bfactor() uses the dimension reduction technique.) Based on
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the orthogonal structure of a bifactor model, the dimension reduction technique essentially
reduces the number of dimensions to two, regardless of the total number of dimensions in
a bifactor model, so that it lessens the workload of the multidimensional model estimation.
The use of the dimension reduction technique made dramatic differences in the run time as
well (see Table 4).

We chose popular multidimensional structures such as a simple structure, a cross-
loading (i.e., complex) structure, and a bifactor structure. In reality, data could be even more
complex than what is covered in this study for their dimensional structures. Therefore, the
exploratory multidimensional model estimation approach may be of interest and could
be investigated further. Exploratory multidimensional modeling could entail a very high
dimensional modeling for which the current default MML estimation in mirt and PROC
IRT becomes less attractive due to the increasing workload for the model estimation as the
number of dimension increases. Thus, a different model estimation approach such as the
Metropolis–Hastings Robbins–Monro (MHRM) method [9,12,15] may be considered for
more complex, high-dimensional modeling.

In addition to the coverage of the types of multidimensional structures and estimation
approaches used in this study, more limitations exist in this study, and they could be
addressed in future research. For example, the Rasch model is a popular choice, especially
for its applications with small sample sizes. In a research setting, it may not be uncommon
to observe a sample size of 500 or less. Therefore, a study that investigates performance
of these IRT programs under smaller sample sizes (e.g., 150, 200, or 300) would be a
worthwhile endeavor as well.

Author Contributions: Conceptualization, I.P.; methodology, I.P.; software, K.C.; formal analysis,
K.C.; data curation, I.P.; writing—original draft preparation, K.C.; writing—review and editing, I.P.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.
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dimensions in a bifactor model, so that it lessens the workload of the multidimensional 
model estimation. The use of the dimension reduction technique made dramatic differ-
ences in the run time as well (see Table 4). 

We chose popular multidimensional structures such as a simple structure, a cross-
loading (i.e., complex) structure, and a bifactor structure. In reality, data could be even 
more complex than what is covered in this study for their dimensional structures. There-
fore, the exploratory multidimensional model estimation approach may be of interest and 
could be investigated further. Exploratory multidimensional modeling could entail a very 
high dimensional modeling for which the current default MML estimation in mirt and 
PROC IRT becomes less attractive due to the increasing workload for the model estimation 
as the number of dimension increases. Thus, a different model estimation approach such 
as the Metropolis–Hastings Robbins–Monro (MHRM) method [9,12,15] may be consid-
ered for more complex, high-dimensional modeling. 

Appendix A 
mirt code for Simple Structure Rasch Model 

mod <- ‘ 
F1 = 1–10 
F2 = 11–20 
F3 = 21–30 
COV = F1*F2, F1*F3, F2*F3’ 
mirtmod <- mirt::mirt(data, mod, itemtype=c(“Rasch”), SE=T) 

mirt code for Complex Structure 2PL Model 
mod <- ‘ 
F1 = 1–10, 21–30 
F2 = 11–20, 21–30 
F3 = 21–30 
COV = F1*F2, F1*F3, F2*F3’ 
mirtmod <- mirt::mirt(data, mod, itemtype=c(“2PL”), SE=T) 

mirt code for Bifactor Structure Graded Response Model 
spec <- c(1,1,1,1,1,1,1,1,1,1, 2,2,2,2,2,2,2,2,2,2, 

3,3,3,3,3,3,3,3,3,3) 
bfmod <- mirt::bfactor(data, spec, SE=T) 

PROC IRT code for Simple Structure Rasch Model 
PROC IRT data=data; 
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 MODEL  Item_1-Item_30/resfunc=TWOP; 
 FACTOR Factor1->Item_1-Item_10 = 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
1.0 1.0, 

   Factor2->Item_11-Item_20 = 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
1.0 1.0, 
   Factor3->Item_21-Item_30 = 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
1.0 1.0; 
 COV  Factor1 Factor2, 
   Factor1 Factor3, 
   Factor2 Factor3; 
 VARIANCE Factor1=fvar1, Factor2=fvar2, Factor3=fvar3; 
RUN; 

PROC IRT code for Complex Structure 2PL Model 
PROC IRT data=data gconv=0.00001; 
 VAR   Item_11-Item_30 Item_1-Item_10; 
 FACTOR Factor2->Item_11-Item_30, 
   Factor3->Item_21-Item_30, 
   Factor1->Item_1-Item_10 Item_21-Item_30; 
 COV  Factor1-Factor3; 
RUN; 

PROC IRT code for Bifactor Structure Graded Response Model 
PROC IRT data=data gconv=0.00001; 
 VAR  Item_1-Item_30; 
 FACTOR Factor1->Item_1-Item_30, 
   Factor2->Item_1-Item_10, 
   Factor3->Item_11-Item_20, 
   Factor4->Item_21-Item_30; 
RUN; 
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