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Abstract: The latent space item response model (LSIRM) is a newly-developed approach to analyzing
and visualizing conditional dependencies in item response data, manifested as the interactions
between respondents and items, between respondents, and between items. This paper provides
a practical guide to the Bayesian estimation of LSIRM using three open-source software options,
JAGS, Stan, and NIMBLE in R. By means of an empirical example, we illustrate LSIRM estimation,
providing details on the model specification and implementation, convergence diagnostics, model fit
evaluations and interaction map visualizations.

Keywords: latentspace item response models; Bayesian estimation; item response data; conditional
dependencies; interaction map; JAGS; Stan; NIMBLE; R

1. Introduction

Item Response Theory (IRT) is widely used for item response analysis in various fields,
including education, psychology, medicine, and other social sciences, where assessments
measure unobserved constructs, such as cognitive ability, personality, and mental well
being. IRT provides a way to model the relationship between individuals’ responses to test
items and the underlying construct being measured by the test. Conventional IRT models
are based on a set of strong assumptions, such as conditional independence (i.e., responses
are independent of one another, given the latent trait). However, conditional independence
may not hold in real-life data analysis when unobserved interactions between respondents
and items exist and are conditional on the latent trait.

Recently, Jeon et al. [1] introduced a novel latent space item response modeling (LSIRM)
framework that relaxes the conditional independence assumption. LSIRM captures condi-
tional dependencies unaccounted for by conventional IRT models [2] in terms of respondent-
by-item interactions, where the interactions are modeled in the form of distances between
respondents and items in a low-dimensional geometric space, called an interaction map.
An estimated interaction shows conditional dependencies, or deviations from the Rasch
model, for items and respondents, helping in the identification of intended or unintended
response behaviors or in the evaluation of item grouping structures in comparison to the
intended test design. In summary, the LSIRM approach has substantial technical advan-
tages, due to its relaxing of the conditional independence assumption, and, by producing
a geometrical representation of unobserved item–respondent interactions, it may supply
important insights into the respondents and test items under investigation.

Jeon et al. [1] described a fully Bayesian approach with Markov chain Monte Carlo
(MCMC) for estimating the original LSIRM. To facilitate the wider adoption and application
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of LSIRM in research and practice, we aim to provide a practical guide to LSIRM estimation
using commonly used, free of charge, Bayesian software, such as JAGS [3–5], Stan [6,7], and
NIMBLE [8,9] in R.

This paper begins with a brief description of LSIRM for binary response data and
LSIRM parameter estimation with MCMC. We provide detailed R syntax for model specifi-
cation and implementation in JAGS, Stan, and NIMBLE with a real-life data example. We also
provide convergence and model fit diagnosis, run-time/sampling efficiency, and interaction
map visualization comparison across the three packages. We conclude the paper with a
summary and brief discussion.

2. Background
2.1. Latent Space Item Response Model

The original latent space item response model (LSIRM) [1] extended the Rasch model
by introducing a respondent-by-item distance term from a p-dimensional spaceRp. LSIRM
assumes that respondents and items have positions in the shared latent space Rp. The
distance between the respondent and item positions in the space indicates the interaction
between the respondent and the item unexplained by the person and item parameters of
the Rasch model. Specifically, LSIRM specifies the probability of giving a correct response
by respondent j to item i as

logit(P(Yji = 1|θj, βi, γ, zj, wi)) = θj + βi − γ d(zj, wi), (1)

where Y = {yji} is a N by I item response matrix, and yji is the response of respondent j to
item i (j = 1, 2, . . . , N and i = 1, 2, . . . , I). When Y are all binary responses, we use yji = 1
to denote an affirmative endorsement (e.g., correct, true, or yes) to the item, while yji = 0
denotes no endorsement (e.g., incorrect, false, or no). θj ∼ N(0, σ2) is the person intercept
or the main effect of respondent j that can be interpreted as respondent j’s latent trait being
measured by the test. The value βi is the item intercept or the main effect of item i that
can be interpreted as the item i’s easiness. The value γ > 0 is the weight of the distance
term that captures the overall degree of conditional dependencies in the item response
data; a larger γ indicates stronger evidence of conditional dependencies (i.e., violation of
the conditional independence assumption) in the item response data under investigation,
When γ = 0, the model reduces to the Rasch model. d(zj, wi) is the distance function that
measures pairwise distances between a respondent’s latent position zj and an item’s latent
position wi in the p-dimensional Euclidean spaceRp with known dimension p.

To facilitate visualization and interpretation, in this paper we use a two-dimensional
Euclidean space (p = 2) and Euclidean distance d(zj, wi) = d(zj, wi) = ‖zj −wi‖, where
a larger distance between zj and wi contributes to a lower probability of person j giving
a correct response to item i, given the person’s overall trait level and the item’s overall
easiness. As such, a distance between the respondent and item positions indicates a
respondent-by-item interaction. When there is little interaction between respondents and
items, all distances are near zero (i.e., all person and item positions are close to (0, 0) in
a R2 space), as shown in [1]. In the sense that the latent space represents unobserved
interactions, it is referred to as an interaction map [1]. Note that the interaction map is
not an ability space; i.e., the coordinates of the space do not represent ability dimensions.
Instead, the latent space is a tool to represent respondent-by-item interactions unexplainable
by the parameters of the Rasch model. Other additional details of the model specifications,
assumptions, and interpretations can be found in the original paper [1].

The likelihood function of the observed item response data y can be written as

L(Y = y|θ, β, γ, Z, W) =
N

∏
j=1

I

∏
i=1
P(Yji = yji|θj, βi, γ, zj, wi), (2)

where θ = {θj}, β = {βi}, Z = {zj} and W = {wi}, j = 1, 2, . . . , N and i = 1, 2, . . . , I. The
likelihood function assumes that the item responses are independent, given the person
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and item main effects and the distances (or interactions) between the respondent and item
latent positions. This is a relaxation of the conditional independence assumption required
by the Rasch model (that assumes no person-by-item interaction effects).

2.2. Bayesian Estimation of LSIRM

For estimating LSIRM, Jeon et al. [1] applied a fully Bayesian approach with MCMC
using Metropolis–Hasting and Gibbs sampling. The priors for the model parameters are
set as follows:

θj|σ2 ∼ N(0, σ2)

βi|τ2
β ∼ N(0, τ2

β)

logγ|µγ, τ2
γ ∼ N(µγ, τ2

γ)

σ2|aσ, bσ ∼ Inv-Gamma(aσ, bσ)

zj ∼ MVNp(0, Ip)

wi ∼ MVNp(0, Ip),

(3)

where 0 is a vector of zeros of length p and Ip is the p-dimensional identity matrix. The
priors of βi are set to be normal, and zj and wi are set to be multivariate normal with no
covariances. The prior for the weight parameter γ > 0 is set to be log-normal. The prior for
the variance parameter of the θj is set to be inverse-Gamma.

The posterior of the model parameters is proportional to

f (θj, σ2, βi, γ, zj, wi)|y) ∝

[
N

∏
j=1

f (θj|σ2)

]
f (σ2)

[
I

∏
i=1

f (βi)

]
f (γ)

[
N

∏
j=1

f (zj)

][
I

∏
i=1

f (wi)

]

×
[

N

∏
j=1

I

∏
i=1
P(Yji = yji|θj, σ2, βi, γ, zj, wi)

]
,

(4)

where f (·) denotes the prior and posterior probability density functions of the parameters
and latent positions of respondents and items. For additional details on the MCMC
sampling, we refer the reader to Jeon et al’s paper [1].

2.3. Interaction Map

A unique advantage of the LSIRM approach is that it produces a visualization of
item-by-person interactions in the form of distances in a low-dimensional geometric space,
or an interaction map. Items and respondents are positioned on the interaction map,
where the distances indicate the conditional dependencies unaccounted for by the Rasch
model. Of note, one can also interpret distances between items and distances between
respondents due to the triangular inequality property (even though the model does not
explicitly model the item–item and respondent–respondent distances). Therefore, distances
in an interaction map indicate unobserved similarities and dissimilarities between items,
between respondents, and between respondents and items.

Two remarks can be made here in terms of producing and interpreting an interaction
map. First, the distances are invariant to translations, reflections, and rotations of the latent
positions [10,11]. This means that the latent positions are not identifiable and there can be
many latent space configurations that produce identical distances; thus, one should make
interpretations of distances, but not particular positions of items or persons on the map.
Second, because of the unidentifiability issue of latent positions, the posterior draws of the
person and item positions (w and z) are not comparable across iterations. To match the
latent positions, we post-process the MCMC output by applying Procrustes matching [12]
to the posterior draws of the person and latent positions, by using the iteration that provides
the best likelihood as the reference point [1].
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3. General-Purpose Bayesian Estimation Packages

As a popular computing environment, R [13] provides many options for Bayesian
modeling and inferences [14]. This paper uses three options, JAGS [3,4,15], Stan [6,7], and
NIMBLE [8,9], as the Bayesian modeling and estimation packages, which can be run from R
through rjags [4], rstan [7], and nimble [9] packages, respectively.

3.1. JAGS

JAGS, short for Just Another Gibbs Sampler, is a software program developed by
Martyn Plummer for conducting Bayesian inference using the Gibbs Sampling algorithm
and BUGS language [5]. This program is one of the most widely-used Bayesian inference
software in the world, with over 200,000 downloads worldwide since its release [16]. The
jagsUI package is a set of wrappers around the rjags package to run Bayesian analyses
with JAGS (specifically, via libjags). A benefit of this package is that it can automatically
summarize posterior distributions and generate plots for assessing the model convergence
(e.g., predictive check plots and trace plots) [3]. Additionally, this package can output
posterior means, standard deviations, and percentile intervals for each parameter, which is
convenient for further output analysis and result interpretation.

Currently, JAGS is widely utilized for the estimation of latent variable models, such
as IRT models [17], cognitive diagnosis models [18], latent class models [19], structural
equation models [20,21], etc. In recent years, JAGS has also increasingly been applied for
social network model estimation [22]. However, JAGS has rarely been used for latent space
models [10], let alone LSIRM, to the best of our knowledge.

3.2. Stan

Stan, a software program for performing Bayesian inference, is named after Stanislaw
Ulam, a mathematician who helped develop the Monte Carlo method in the 1940s [23]. De-
veloped in 2012, Stan promises computational and algorithmic efficiency, which is mainly
thanks to the No-U-Turn Sampler (NUTS; [24]), an adaptive variant of Hamiltonian Monte
Carlo (HMC; [25]) used within the program. HMC is a generalization of the Metropolis
algorithm that allows for more efficient movement through the posterior distribution by
performing multiple steps per iteration. Stan is based on C++ and can be run from the
command line, R, Python, Matlab, or Julia. Although Stan performs similarly to other
Bayesian programs, such as JAGS, for simple models, it reportedly outperforms other soft-
ware as model complexity grows [26] and scales better for large data sets [6], although
JAGS seems to earn more MCMC efficiency from conjugate priors than Stan [27]. Stan
has been used for latent variable model estimation, but not often for latent space models.
Recently, ref. [28] used Stan for latent space model estimation, reporting that HMC retains
as much of the posterior dependency structure as possible compared to the variational
Bayes approach [29]. Taken together, Stan’s efficiency and flexibility in handling complex
models make it a useful tool for Bayesian inference for LSIRM.

3.3. NIMBLE

NIMBLE [8], short for Numerical Inference of Statistical Models for Bayesian and Like-
lihood Estimation, is another software program for Bayesian inference. NIMBLE allows a
combination of high-level processing in R and low-level processing in compiled C++, which
helps write fast numerical functions with or without the involvement of BUGS models. Ad-
ditionally, NIMBLE adopts and extends the BUGS language for specifying models, allowing
users to easily transition from BUGS to NIMBLE. The efficiency of NIMBLE depends on the
specific model and priors being used. In some cases, NIMBLE may be faster and produce
better quality chains than JAGS and Stan, while in some other cases, packages such as Stan
may be more efficient [30]. NIMBLE has been used for semi-parametric and non-parametric
Bayesian IRT models [31,32] and other latent variable models [33]. NIMBLE has not been
used for estimating LSIRM or latent space models so far.
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4. Estimating LSIRM with JAGSJAGSJAGS, StanStanStan, and NIMBLENIMBLENIMBLE

Here we illustrate the Bayesian estimation of LSIRM with JAGS, Stan, and NIMBLE. We
applied the priors established in Section 2.2 in all data analysis, with the following values:
τ2

β = 4, aσ = 1, bσ = 1,µγ = 0.5, τ2
γ = 1. Users may consider a different set of priors based

on prior knowledge and specific assumptions about the data under investigation. Prior
choice is a critical task in Bayesian inference, and one may want to consider sensitivity
analysis to validate the appropriateness of the chosen priors [34–37] . We used 1000 thinned
MCMC iterations in all analyses. For Stan, we used a burn-in period of 10,000 and a
thinning interval of 5, resulting in a total number of iterations of 15,000. For comparable
results in effective sample sizes of model parameters, we used a burn-in period of 40,000
and a thinning period of 50 for NIMBLE and JAGS. Note that the optimal number of iterations,
burn-in period, and thinning intervals vary for different data sets. All of the analysis was
done within the R environment on the Hoffman2 Linux Compute Cluster hosted at UCLA
and each run was conducted within a node with two cores and 16GB RAM.

4.1. Example Data

We used the verbal aggression data [38] from the R package difR [39] for illustration.
The data are also available from several other R packages, such as FLIRT [40]. The data
set contains 316 persons’ responses to 24 items. The original response options include
‘No’, ‘Perhaps’ and ‘Yes’. We used dichotomized data that collapsed the ‘Perhaps’ and ‘Yes’
categories (thus, ‘No’ versus ‘Perhaps’ and ‘Yes’). The items consider two behavior modes,
Wanting (Items 1–12) and Doing (Items 13–24), two situations, Other-to-blame (Items 1–6,
and Items 13–18) and Self-to-blame (Items 7–12, and Items 19–24). The items also define
verbal aggression in terms of three behaviors, Cursing (Items 1, 4, 7, etc.), Scolding (Items
2, 5, 8, etc.), and Shouting (Items 3, 6, 9, etc.) The Cursing and Scolding items are defined as
blaming behaviors, and the Cursing and Shouting are defined as expressive behaviors.

In Listing 1, we provide the code for loading and the verbal data for analysis. The
input data is a N by I response matrix, where N is the number of respondents, and I is the
number of items.

Listing 1: Data loading.
1 library(difR)
2 data(verbal) #loading verbal aggression data
3 IRdata <- verbal[,-c(25 ,26)] #use only item responses
4

5 N <- nrow(IRdata) # number of respondents
6 I <- ncol(IRdata) # number of items
7 r <- IRdata # binary item response data

4.2. LSIRM Estimation in JAGS
Model Specification

Listing 2 presents JAGS code that can be used to fit LSIRM through a .bug file using the
BUGS language. The code is a realization of Equation (1) with the priors specified in Equation (3).

Listing 2: LSIRM model specification in JAGS.
1 model {
2 #model setting
3 for (i in 1:I) {
4 for (j in 1:N) {
5 r[j,i] ~ dbern(p[j,i])
6 logit(p[j,i]) <- theta[j] + beta[i] - gamma * sqrt((z[j,1] - w[i,1])^2 + (z[j

,2] - w[i,2]) ^2)
7 }
8 # priors for item parameters
9 beta[i] ~ dnorm(0, 1/tau_beta ^2)

10 w[i, 1:2] ~ dmnorm.vcov(pos_mu , pos_covmat)
11 }
12 # priors for person parameters
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13 for (j in 1:N) {
14 theta[j] ~ dnorm(0, 1/sigma2)
15 z[j, 1:2] ~ dmnorm.vcov(pos_mu , pos_covmat)
16 }
17 # priors for gamma and sigma2
18 gamma ~ dlnorm(mu_gamma , 1/tau_gamma ^2)
19 invsigma ~ dgamma(a_sigma , b_sigma)
20 sigma2 <- 1/invsigma
21 # set covariance matrix for w and z
22 pos_mu <- rep(0,2)
23 pos_covmat [1,1] <- 1
24 pos_covmat [1,2] <- 0
25 pos_covmat [2,1] <- 0
26 pos_covmat [2,2] <- 1
27 # set prior values
28 tau_beta <- 2
29 mu_gamma <- 0.5
30 tau_gamma <- 1
31 a_sigma <- 1
32 b_sigma <- 1
33 # log likelihood
34 for (i in 1:I) {
35 for (j in 1:N) {
36 log_ll[j,i] <- r[j,i] * log(p[j,i]) + (1-r[j,i])*log(1-p[j,i])
37 }
38 }
39 }

• Line 9 and line 14 specify normal priors for item intercept (βi) and person intercept (θj), re-
spectively. The BUGS language defines a normal density as dnorm(mean, precision) ,

where the precision is equal to 1/variance. In the code above, 1/tau_betaˆ2 indicates
the precision where tau_beta is the standard deviation of β. Similarly, 1/sigma2

indicates the precision where sigma2 is the variance of θ.
• Line 10 and line 15 specify bivariate normal priors for the person and item latent

positions, respectively, assuming a two-dimensional latent space. The specification
can be adjusted if the model specifies a higher-dimensional latent space.

• Lines 19 and 20 set the variance parameter of respondents’ latent trait θj to follow an In-
verse Gamma distribution with the function invsigma ˜ dgamma(a_sigma, b_sigma) .

We then use the reciprocal of invsigma to obtain the desired Inverse Gamma distri-

bution for sigma2 .
• Lines 34 to 36 save the log-likelihood.

4.3. Run MCMC in JAGS

The following code in Listing 3 can be used to run the JAGS model specification in R.

Listing 3: Run MCMC in JAGS.
1 #load the required package
2 library(rjags)
3 #model definition in BUGS language
4 mymodel <- "modelfile.bug"
5 #data specification
6 mydata <- list(N=N,
7 r=r,
8 I=I)
9 #initial value setting

10 #seed for reproducibility
11 set.seed (1)
12 myinits <-function (){list(beta = rnorm(I, 0, 1),
13 theta = rnorm(N, 0, 1),
14 z = matrix(cbind(rnorm(N, 0, 1), rnorm(N, 0, 1)), ncol =2),
15 w = matrix(cbind(rnorm(I, 0, 1), rnorm(I, 0, 1)), ncol =2),



Psych 2023, 5 402

16 invsigma = 1/3,
17 gamma = 3)}
18 #parameters to save
19 myparams= c("beta", "theta", "sigma2","gamma", "z", "w", "log_ll")
20 #compilation
21 compiled_LSIRM <- rjags::jags.model(file = mymodel ,
22 #file containing the specified model
23 data = mydata , #list of data
24 inits = myinits , #list of initial values
25 n.chains = 2, #number of Markov chain
26 n.adapt = 1000) #number of iterations for adaptation
27 #sampling
28 fitted_LSIRM <- rjags::coda.samples(model = compiled_LSIRM ,
29 #use the compiled model
30 inits=myinits , #list of initial values
31 variable.names = myparams , #array of parameters of interest
32 n.iter =90000 , #total number of iterations
33 thin =50, #thinning interval
34 n.chains = 2) #number of Markov chain
35 fitted_LSIRM <- stats:: window(fitted_LSIRM , start = {41001})

• Line 4 reads the specified model from BUGS code (listed in Listing 2).
• Lines 6 to 8 integrate the item response data ( r ), respondent and item sample size

information ( N and I ) in a list format, which is used in the model specification.
• Lines 12 to 17 set the random numbers and initial values for MCMC estimation.
• Line 19 defines the parameters to monitor and, therefore, to be saved in the posterior samples.
• Lines 21 to 26 generate a compiled model for MCMC estimation in JAGS.
• Lines 28 to 34 execute MCMC and obtain the posterior samples of the parameters

specified in the monitor vector (parameters).
• Line 35 uses the window() function to save the posterior samples after completing

adaptation (1000 iterations) and the burn-in period (40,000 iterations). That is, the
posterior samples are saved starting with the 41,001-th iteration.

The jagsUI R package [3] provides a wrapper function, jags(), that allows users to
combine Lines 21 to 35 in one function jags (as shown in Listing 4). This package also
returns the model fit index, as well as the posterior means, standard deviations, and credible
intervals of the posterior sample, which is convenient for post-analysis. This function also
allows the parallelization of the code through the parallel=T and n.cores=2 options.

Listing 4: A Wrapper function for JAGS.
1 library(jagsUI)
2 fitted_LSIRM_p <-jagsUI ::jags(data=mydata , #list of data
3 inits=myinits , #list of initial values
4 parameters=myparams , #array of parameters of interest
5 model.file=mymodel , #file containing the specified model
6 n.chains=2, #burn - in period per chain
7 n.iter =90000 , #total number of iterations per chain
8 n.burnin =40000 , #burn - in period per chain
9 n.thin=50, #thinning interval

10 parallel=T, #run chains in parallel
11 n.cores =2) #number of CPU cores used

4.4. LSIRM Estimation in Stan
4.4.1. Model Specification

Listing 5 presents the LSIRM model specification written in Stan language.
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Listing 5: LSIRM model specification in Stan.
1 data{
2 int <lower=0> N; //respondents
3 int <lower=0> I; //items
4 int <lower=0,upper=1> r[N,I]; //responses
5 //hyperparameters
6 real <lower=0> tau_beta;
7 real mu_gamma;
8 real <lower=0> tau_gamma;
9 real a_sigma;

10 real b_sigma;
11 vector [2] mu;
12 cov_matrix [2] Sigma;
13 }
14 parameters {
15 vector[N] theta; //latent trait
16 vector[I] beta; //items easiness
17 real gamma;
18 real <lower=0> sigma2;
19 matrix [N,2] z;
20 matrix [I,2] w;
21 }
22 model{
23 //priors
24 theta ~ normal(0,sqrt(sigma2));
25 beta ~ normal(0,tau_beta);
26 gamma ~ lognormal(mu_gamma ,tau_gamma);
27 sigma2 ~ inv_gamma(a_sigma ,b_sigma);
28 for (j in 1:N){
29 z[j] ~ multi_normal(mu ,Sigma); //respondents position
30 }
31 for (i in 1:I){
32 w[i] ~ multi_normal(mu ,Sigma); //items position
33 }
34 //model specification
35 for (j in 1:N){
36 for (i in 1:I){
37 r[j,i] ~ bernoulli_logit(theta[j]+beta[i]-gamma*sqrt((z[j,1]-w[i,1]) ^2+(z[j

,2]-w[i,2]) ^2));
38 }}
39 }
40 //loglikelihood
41 generated quantities {
42 vector[I] log_ll[N];
43 for (j in 1:N){
44 for (i in 1:I){
45 log_ll[j,i] = bernoulli_logit_lpmf(r[j,i]|theta[j]+beta[i]-gamma*sqrt((z[j

,1]-w[i,1]) ^2+(z[j,2]-w[i,2]) ^2));
46 }}
47 }

Here we list some comments to clarify the code. Note that in Stan the codes are
defined in blocks, and, unlike BUGS, the declarations and statements are executed in order.

• Lines 1 to 13 display the data block, where data and hyperparameters are defined.
Note that it is mandatory to specify the data type, such as: int as an integer, real
as a real number, cov_matrix as a covariance matrix. This follows the convention of
programming languages like C++.

• Lines 14 to 21 contain the parameters block, where the parameters to estimate are
defined with the type and range of values.

• The range of values that each object can take can be defined inside the <> symbol.
For instance, we know that the number of respondents and items, tau_gamma and

tau_beta can only be positive, so the lower bound is set to 0, while, for responses,
the lower bound is set to 0 and the upper bound to 1.
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• Lines 22 to 39 define the model. Note that the normal distribution in Stan is parame-
terized with mean and standard deviation, while the inverse gamma distribution is
specified with shape and scale.

• Lines 41 to 47 present the generated quantity block that computes the log-likelihood.
• The code in Listing 5 can be used in different ways, depending on the choice of

MCMC sampling function. It can be written within brackets in the R script, saved
in a mymodel object, for Stan model compilation with the stan_model() function.

Users can also save it as mymodel.stan file, and directly call the model from stan()
(wrapper) function. We demonstrate the two procedures in Listings 6 and 7.

4.4.2. Run MCMC in Stan

The following code in Listing 6 can be used to run the Stan model specification in R.

Listing 6: Run MCMC in Stan.
1 #load the required package
2 library(rstan)
3 #model specification in Stan
4 mymodel <- "" #copy Stan model in Listing above
5 #data specification
6 mydata <-list(N=N,
7 I=I,
8 r=r,
9 mu=c(0,0),

10 Sigma=diag (2),
11 tau_beta=2,
12 mu_gamma =0.5,
13 tau_gamma=1,
14 a_sigma=1,
15 b_sigma =1)
16 #initial value setting
17 #seed for reproducibility
18 set.seed (1)
19 myinits <-function (){list(beta = rnorm(I, 0, 1),
20 theta = rnorm(N, 0, 1),
21 z = matrix(cbind(rnorm(N, 0, 1), rnorm(N, 0, 1)), ncol =2),
22 w = matrix(cbind(rnorm(I, 0, 1), rnorm(I, 0, 1)), ncol =2),
23 sigma2 = 3,
24 gamma = 3)}
25 #parameters to save
26 myparams= c("beta", "theta", "sigma2","gamma", "z", "w", "log_ll")
27 #compilation
28 compiled_LSIRM <- rstan::stan_model(model_code = mymodel)
29 #sampling
30 fitted_LSIRM <-rstan :: sampling(compiled_LSIRM ,
31 data = mydata , #list of data
32 pars = myparams , #array of parameters of interest
33 chains = 2, #number of Markov chains
34 warmup = 10000, #burn -in period per chain
35 iter = 15000 , #total number of iterations per chain
36 init = myinits , #list of initial values
37 thin=5, #thinning interval
38 save_warmup=F)

• In Line 4, inside the " " , the code for the model specification that we presented in
Listing 5 should be copied as text.

• From Lines 6 to 15 data and hyperparameters are set
• In Lines 19 to 24 the two chains of MCMC are initialized with the same set of values.
• In Lines 30 to 38 the MCMC algorithm is run to sample from the posterior distribution

of the model parameters, given the data. The samples are stored in an object of
class stanfit .

Stan also provides a wrapper that allows users to compile and estimate the model in
one step, as shown in Listing 7. In this function, it is possible to specify the number of cores
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( cores=2 ). This option sets the number of processors for executing the MCMC chains in
parallel. It is useful to set as many processors as the hardware and RAM allow (up to the
number of chains). Note that the option can be used in the sampling() function shown in
Listing 6, but this option is not used in this paper to ensure coherence across the packages.

Listing 7: A Wrapper function for Stan.
1 fitted_LSIRM_p<-rstan::stan(file = "modelfile.stan",
2 #file with the model specification in Stan file
3 data = mydata , #list of data
4 init =myinits , #list of initial values
5 pars = myparams , #list of parameters of interest
6 chains = 2, #number of Markov chains
7 warmup = 10000, #burn -in period per chain
8 iter = 15000 , #total number of iterations per chain
9 thin=5, #thinning interval

10 cores = 2, #number of cores
11 seed = 1, #seed for reproducibility
12 control = list(max_treedepth = 10)) #for algorithm NUTS

4.5. LSIRM Estimation in NIMBLE

Listing 8 presents NIMBLE code that can be used to fit LSIRM.

Listing 8: LSIRM model specification in NIMBLE.
1 library(nimble) #call nimble library to use the nimbleCode () function
2 mymodel <- nimble :: nimbleCode ({
3 #model setting
4 for (i in 1:I) {
5 for (j in 1:N) {
6 r[j,i] ~ dbern(prob=p[j,i])
7 logit(p[j,i]) <- theta[j] + beta[i] - gamma * sqrt((z[j,1] - w[i,1])^2 + (z[j

,2] - w[i,2]) ^2)
8 }
9 #priors on item parameters

10 beta[i] ~ dnorm(0, sd = tau_beta)
11 w[i,] ~ dmnorm(pos_mu[1:2], pos_covmat [1:2 ,1:2])
12 }
13 #priors on person parameters
14 for (j in 1:N) {
15 theta[j] ~ dnorm(0, var = sigma2)
16 z[j,] ~ dmnorm(pos_mu[1:2], pos_covmat [1:2 ,1:2])
17 }
18 #priors on gamma and sigma2
19 log(gamma) ~ dlnorm(mu_gamma , sd = tau_gamma)
20 sigma2 ~ dinvgamma(shape=a_sigma ,scale = b_sigma)
21 #loglikelihood
22 for (i in 1:I) {
23 for (j in 1:N) {
24 log_ll[j,i] <- r[j,i] * log(p[j,i]) + (1-r[j,i])*log(1-p[j,i])}
25 }
26 })

4.5.1. Model Specification

• Lines 11 and 17 specify bivariate normal priors for the person and item latent positions
in a two-dimensional latent space.

• Line 15 specifies dnorm(mean, var) parameterization for the normal prior for θj.

NIMBLE uses dnorm(mean, sd) . Here, we use the var parameterization to be consis-
tent with the original specification used by Jeon et al. in [1].

• Line 19 uses a normal prior for log(gamma) . One can also directly use dlnorm() in
NIMBLE, as shown in Listing 2 with JAGS.

• Lines 22 to 26 save the log-likelihood.
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4.5.2. Run MCMC in NIMBLE

The following code, shown in Listing 9, can be used to run the NIMBLE model specifi-
cation in R.

Listing 9: Run MCMC in NIMBLE.
1 #load the required package
2 library(nimble)
3 #data specification
4 mydata <- list(r=r)
5 #constant specification
6 myconst <- list(N=N,
7 I=I,
8 pos_mu = rep(0,2),
9 pos_covmat = diag (2),

10 tau_beta = 2,
11 mu_gamma = 0.5,
12 tau_gamma = 1,
13 a_sigma = 1,
14 b_sigma = 1)
15 #initial value setting
16 #seed for reproducibility
17 set.seed (1)
18 myinits <- list(beta = rnorm(I, 0, 1),
19 theta = rnorm(N, 0, 1),
20 z = matrix(cbind(rnorm(N, 0, 1), rnorm(N, 0, 1)), ncol =2),
21 w = matrix(cbind(rnorm(I, 0, 1), rnorm(I, 0, 1)), ncol =2),
22 sigma2 = 3,
23 gamma = 3,
24 log_gamma = log(3))
25 #parameters to save
26 myparams = c("beta", "theta", "sigma2","gamma", "z", "w","log_ll")
27 #compilation
28 model <- nimble :: nimbleModel(code = mymodel ,
29 data = mydata ,
30 constants = myconst ,
31 inits = myinits)
32 cmymodel <- nimble :: compileNimble(model)
33 confMCMC <- nimble :: configureMCMC(model ,
34 monitors = myparams)
35 myMCMC <- nimble :: buildMCMC(confMCMC)
36 cmyMCMC <- nimble :: compileNimble(myMCMC , project = model)
37 #sampling
38 fitted_LSIRM <- nimble :: runMCMC(cmyMCMC ,
39 niter = 90000,
40 nburnin = 40000 ,
41 thin = 50,
42 nchains = 2,
43 setSeed = 1,
44 samplesAsCodaMCMC = T)

• Lines 6 to 14 define the constants used in the model specification and pos_mu and
pos_covmat define the two-dimensional identity matrix.

• Lines 18 to 24 provide the initial values for the MCMC estimation. In NIMBLE,
log(gamma) is treated as an independent parameter log_gamma . Therefore, an

initial value is provided for log_gamma .
• Line 26 defines an array of parameters of interest to be saved in the posterior samples.
• In Lines 28 to 31, the nimbleModel() function processes the model code, constants,

data, and initial values and returns a NIMBLE model. NIMBLE checks the model specifi-
cation, model sizes, and dimensions at this step.

• Line 32 compileNimble() compiles the specified model.
• Lines 33 to 35 create and return an uncompiled executable MCMC function.
• Line 36 compiles the executable MCMC function regarding the complied specified model.
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• Lines 38 to 44 run MCMC, and save the posterior samples of the parameters specified
in myparams vector.

NIMBLE also provides a wrapper that allows users to combine Lines 27 to 44 in one
function as shown in Listing 10.

Listing 10: A Wrapper function for NIMBLE.
1 fitted_LSIRM_w <- nimble :: nimbleMCMC(
2 code = mymodel , # code specifies the model
3 data = mydata , # list of data
4 constants = myconst , # list of constants used in the model
5 inits = myinits , # list of initial values
6 monitors = myparams , # an array of parameters of interest to be saved
7 niter = 90000, # number of total iterations
8 nburnin = 40000 , # number of burn -in periods
9 thin = 50, # size of thinning interval

10 nchains = 2, # number of Markov chains
11 progressBar = TRUE , # show the progress while sampling
12 samplesAsCodaMCMC = T) # save the samples as an mcmc.list object

The parallelization of the MCMC chain sampling can be easily accomplished with a
base package parallel in R [13]. The code for parallelizing NIMBLE code can be found at
https://anonymous.4open.science/r/LSIRM_Estimation-14EE (accessed on 8 May 2023).

5. Model Evaluation
5.1. MCMC Convergence Diagnostics

There are many options for MCMC diagnostics after fitting a Bayesian model through
JAGS, Stan, and NIMBLE within the R environment. For example, JAGS users can directly
use jagsUI [3] or rjags [4] packages, while Stan users can either work directly within
the rstan package [7] or load the bayesplot package [41] that allows visualizing unique
diagnostics permitted by HMC and the NUTS algorithm [42,43]. Of note, the recently
developed shinystan package[44] is a useful option for analyzing posterior samples. It
provides a graphical user interface for interactive plots and tables powered by the Shiny
web application framework by R Studio [45]. It works with the output of MCMC programs
written in any programming language, and it has extended functionality for the rstan
package and the No-U-Turn sampler.

Here, we provide the steps for convergence checking through the ggmcmc [46] package,
using γ as an example, as shown in Listing 11. The ggmcmc [46] package can be used with
any Bayesian software output and provides flexible visualization, bringing the design and
implementation of ggplot2 [47] to MCMC diagnostics.

Listing 11: Convergence checking with ggmcmc.
1 library(ggmcmc)
2 postsamples <-ggmcmc ::ggs(fitted_LSIRM)
3

4 #density plots
5 ggmcmc ::ggs_density(postsamples , family="gamma", greek = T)
6 #traceplots
7 ggmcmc ::ggs_traceplot(postsamples , original_thin = F, original_burnin =F,

family="gamma", greek = T)
8 #autocorrelation plots
9 ggmcmc ::ggs_autocorrelation(postsamples ,family="gamma", greek = T)

The ggs() function transforms MCMC samples into a data frame tibble object,
ready for ggmcmc to use. Note that the ggs() is easily applicable to the Bayesian packages
analyzed in this paper. It can take rjags and NIMBLE output (if samplesAsCodaMCMC=T
is specified in the sampling function). It can also take the rstan output (after being
transformed into mcmc.list through the As.mcmc.list() function in rstan).

We evaluated posterior samples of the model parameters with some visual diagnostics
to assess the convergence of each chain. Figure 1 presents the density plots, traceplots, and

https://anonymous.4open.science/r/LSIRM_Estimation-14EE
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autocorrelation plots for γ using the MCMC samples from JAGS, Stan and NIMBLE. The
same sets of diagnostics were run for β and σ2, and all diagnostics agreed that the model
showed good convergence.

JAGS Stan NIMBLE

Density plots

Trace plots

Autocorrelation plots

Figure 1. Visual diagnostics of γ from the three packages. The first, second, and third rows show
density plots, trace plots, and autocorrelation plots, respectively. The three columns indicate JAGS,
Stan, and NIMBLE results, respectively. Note that the first MCMC chain is displayed in red and the
second MCMC chain in light blue.

5.2. Model Fit Indices: WAIC and LPPD

In the current paper, we worked with a single model specification; hence model
comparisons may be unnecessary. For illustration purposes, here we show how model
fit indices can be produced, such as Watanabe–Akaike or Widely Applicable Information
Criterion (WAIC) [48] and Log Pointwise Predictive Density (LPPD) [49] (Listing 12).
WAIC is reportedly preferred over conventional statistics, such as BIC [50] and DIC [51],
because of its desirable property of averaging over the posterior distribution, rather than
conditioning on a point [49]. An additional advantage is that WAIC produces a stable
and positive effective number of parameters (p̂waic) to evaluate the complexity of the
model [52]. LPPD estimates the expected log predictive density for each data point directly,
providing a comprehensive evaluation of the model fit to the data regardless of the model’s
complexity [49]. These indices are available from rstan and NIMBLE. One can also calculate
them using R packages such as loo [53], as used in this paper. Table 1 shows WAIC, p̂waic
and LPPD from all three packages, which suggests that all these packages produce similar
model fit information for the specified LSIRM.

Listing 12: Model fit indices from loo.
1 # transform the fitted MCMC object to matrix
2 fitted_samples <- as.matrix(fitted_LSIRM)
3 # extract columns for log likelihood
4 llCols <- grep("log_ll", colnames(fitted_samples))
5 log_ll.samples <- fitted_samples[,llCols]
6 # calculate the model fit indices
7 library(loo)
8 waic_result <- loo::waic(log_ll.samples)
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9 lppd_result <- loo::elpd(log_ll.samples)

Table 1. WAIC and LPPD for LSIRM model from the three packages.

Index JAGSJAGSJAGS StanStanStan NIMBLENIMBLENIMBLE

WAIC 7166.86 7168.14 7168.63
(p̂waic) (672.42) (674.19) (675.24)
LPPD −2911.01 −2909.88 −2909.07

5.3. Effective Sample Size, Run Time, and Sampling Efficiency

We evaluated the effective sample size and run time, and, hence, sampling efficiency,
of the three packages for LSIRM estimation. All three packages were run on the UCLA
hoffman2 cluster computing node that was run on the Intel Xeon Gold 6240 CPU processor,
which had a base clock speed of 2.60 GHz and could reach a maximum turbo frequency of
3.90 GHz. The RAM requested for the computing task was fixed at 16 GB.

Table 2 displays the run time for compiling and sampling stages under the chosen
iteration/burn-in/thinning conditions of the three packages. All three packages showed
satisfactory sampling quality, with Stan performing well with smaller thinning intervals
and fewer iterations, while NIMBLE was faster in the sampling stage than the other packages.
Note that the compilation time of JAGS included both the model compilation and 1,000 iter-
ations of model adaptation time. As can be seen, parallelization significantly reduced the
sampling time for all three packages, compared to the case where a single core was used
for sampling the two chains.

Table 2. The compilation time and sampling time of the three packages.

Time JAGSJAGSJAGS StanStanStan NIMBLENIMBLENIMBLE

Compilation (min) 6.99 0.67 4.28
Sampling: one core (h) 4.52 3.16 0.87
Sampling: parallel on two cores (h) 1.85 1.04 0.29

Note: ‘one core’ and ‘parallel on two cores’ indicate the cases where the two chains were run separately and
simultaneously (using parallel computing), respectively. The time was based on 15,000 iterations and 10,000
burn-in periods, with a thinning interval of 5 for Stan, and 90,000 iterations and 40,000 burn-in periods, with a
thinning interval of 50 for JAGS and NIMBLE

The effective sample size (ESS) was a measure of the number of independent draws
from the posterior distribution that were equivalent to the actual MCMC draws [54,55].
ESS can be computed with the coda package [15] using the posterior samples of parameters
as an input, as shown in Listing 13.

Listing 13: Effective sample size from coda.
1 # transform the fitted MCMC object to matrix
2 fitted_samples <- as.matrix(fitted_LSIRM)
3 # extract columns for beta
4 betaCols <- grep("beta", colnames(fitted_samples))
5 beta.samples <- fitted_samples[,betaCols]
6 # calculate effective sample size for beta
7 library(coda)
8 ess_b <- coda:: effectiveSize(beta.samples)
9 ess_mean_b <- mean(ess_b)

Table 3 lists the ESS of the LSIRM model parameters from the three packages. While
we observed comparable ESS, posterior samples from Stan showed the highest overall
ESS, particularly for β and γ parameters. We further assessed the efficiency of the MCMC
estimation in the three packages by calculating the ratio of the ESS to the run time for
sampling (ESS/time in seconds) [26,56]. As Table 3 shows, NIMBLE and Stan showed pretty
high sampling efficiency. Note that the sample size, model complexity, and choice of priors
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can significantly impact the run time and sampling efficiency. Users can use the provided
tools to evaluate the sampling efficiency for the model of interest with the software of their choice.

Table 3. The ESS and sampling efficiency, ESS/time (s), of the three packages.

JAGSJAGSJAGS StanStanStan NIMBLENIMBLENIMBLE

ESS ESS/Time ESS ESS/Time ESS ESS/Time

β 808.81 1.19 1521.01 9.78 688.38 5.26
θ 1944.10 37.75 1970.61 166.78 1920.58 193.21
σ 1842.28 0.11 1560.23 0.42 1480.57 0.47
γ 633.11 0.04 1105.40 0.30 336.79 0.11

Note: For β and θ, the mean of ESS is reported.

6. Estimated Results
6.1. Model Parameters

After convergence and model fit checking, posterior samples can be extracted and
further analyzed using various options for post-processing packages in R. Here we demon-
strate a universal procedure with coda to summarize the parameters of interest. Listing 14
presents the code for this step.

Listing 14: Extracting information from MCMC chains.
1 # transform the fitted MCMC object to matrix
2 # use As.mcmc.list() to convert Stan output before transformation
3 fitted_samples <- as.matrix(fitted_LSIRM)
4 # extract columns of parameters
5 gammaCol <- grep("gamma", colnames(fitted_samples)) # column for gamma
6 betaCols <- grep("beta", colnames(fitted_samples)) # columns for beta
7 thCols <- grep("theta", colnames(fitted_samples)) # columns for theta
8 sigmaCol <- grep("sigma2", colnames(fitted_samples))# column for sigma2
9 library(coda) # load ‘coda ’ package

10 # select the MCMC sample for summary
11 selected_params.samples <- fitted_LSIRM[,c(betaCols , thCols , sigmaCol ,

gammaCol)]
12 # parameter estimates
13 summary(selected_params.samples)

Table 4 lists the posterior means and the lower and upper bounds of 95% credible
intervals of the posterior samples of the model parameters. As can be observed, the
estimates from the three packages showed high consistency for all investigated parameters.

Table 4. The posterior means (Post.m) and 95% credible intervals (CI) of the model parameters of the
three packages.

JAGSJAGSJAGS StanStanStan NIMBLENIMBLENIMBLE

Post.m 95 %CI Post.m 95 %CI Post.m 95 %CI

β1 4.01 3.17 5.20 4.05 3.22 5.15 4.03 3.21 5.17
β2 2.54 2.08 3.11 2.55 2.08 3.17 2.56 2.09 3.14
β3 2.33 1.75 3.19 2.34 1.79 3.19 2.36 1.78 3.23
β4 4.00 3.36 4.96 4.03 3.38 4.97 4.06 3.41 4.94
β5 2.55 2.13 3.01 2.57 2.15 3.03 2.58 2.15 3.03
β6 2.59 1.87 3.67 2.59 1.89 3.65 2.60 1.87 3.63
β7 3.67 2.72 4.86 3.67 2.72 4.93 3.61 2.70 4.84
β8 1.60 0.94 2.49 1.60 0.95 2.55 1.57 0.94 2.57
β9 1.27 0.32 2.59 1.30 0.33 2.59 1.28 0.33 2.62
β10 3.85 2.89 4.99 3.93 2.97 5.22 3.96 2.98 5.11
β11 1.76 1.18 2.63 1.79 1.22 2.60 1.79 1.20 2.70
β12 2.02 1.10 3.43 2.03 1.05 3.37 2.01 1.03 3.27
β13 3.75 3.00 4.85 3.70 2.96 4.80 3.71 3.00 4.74
β14 2.28 1.84 2.84 2.27 1.83 2.77 2.28 1.82 2.81
β15 1.12 0.60 1.81 1.12 0.58 1.87 1.12 0.59 1.88
β16 3.40 2.66 4.46 3.34 2.63 4.34 3.34 2.65 4.41
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Table 4. Cont.

JAGSJAGSJAGS StanStanStan NIMBLENIMBLENIMBLE

Post.m 95 %CI Post.m 95 %CI Post.m 95 %CI

β17 1.85 1.37 2.43 1.86 1.39 2.44 1.87 1.39 2.50
β18 0.51 −0.09 1.26 0.53 −0.06 1.31 0.53 −0.06 1.40
β19 1.96 1.36 2.94 1.92 1.34 2.80 1.91 1.33 2.84
β20 0.32 −0.21 1.03 0.31 −0.20 0.97 0.30 −0.21 1.02
β21 −0.72 −1.68 0.77 −0.69 −1.67 0.84 −0.71 −1.71 0.75
β22 3.85 2.90 5.03 3.83 2.88 5.08 3.86 2.89 5.15
β23 2.45 1.61 3.58 2.46 1.59 3.69 2.47 1.59 3.71
β24 0.63 −0.29 1.96 0.66 −0.27 2.09 0.61 −0.30 1.86
σ2 2.42 1.88 3.02 2.41 1.86 3.04 2.40 1.89 3.04
γ 1.41 1.24 1.59 1.42 1.24 1.62 1.43 1.26 1.63

6.2. Interaction Map Visualization

For interaction map visualization, the posterior samples of the person and item latent
positions (z and w) needed to be post-processed to resolve the unidentifiability and match
the samples across MCMC iterations, as discussed in Section 2.3. We applied Procrustes
matching, as shown in Listing 15. One can use the matched samples to draw the interaction
map. Note that zz.samples is a list object that has the dimensions of the number of
chains ×, the length of the posterior samples ×, the number of coordinates of z. The
number of coordinates equals the product of the sample size (N) and the size of the latent
space dimension (p = 2). JAGS and NIMBLE sort the last dimension of the zz.samples
as z11, . . . , zN1, z12, . . . , zN2, which can be directly processed with the code provided in
Listing 15. However, Stan sorts the estimated coordinates as z11, z12, . . . , zN1, zN2; thus,
this should be reordered before proceeding with the provided function. The same logic
applies to ww.samples . The functions used in Listing 15 can be directly retrieved using
the source function with the link provided in Line 13, and can also be obtained from
https://anonymous.4open.science/r/LSIRM_Estimation-14EE (accessed on 8 May 2023).

Listing 15: Procrustes matching and visualization of interaction map and strength (inverse
distance) plots.

1 libaray(coda)
2 # extracting MCMC samples
3 # use rstan ::As.mcmc.list() to convert Stan output
4 fitted_samples <- as.matrix(fitted_LSIRM)
5 llCols <- grep("log_ll", colnames(fitted_samples)) # columns for log_ll
6 wCols <- grep("w", colnames(fitted_samples)) # columns for item positions
7 zCols <- grep("z", colnames(fitted_samples)) # columns for person positions
8 ll.samples <- fitted_LSIRM[,c(llCols)]
9 zz.samples <- fitted_LSIRM[,c(zCols)]

10 ww.samples <- fitted_LSIRM[,c(wCols)]
11

12 # sourcing the functions to be used for visualizations
13 source("https://raw.githubusercontent.com/jevanluo/LSIRM_Estimation/main/

vislsirm.R")
14

15 # Procustese matching
16 matched <- procrustes_trans(z=zz.samples , w=ww.samples , ll=ll.samples)
17

18 # matched samples
19 zz.matched <- matched$zz # matched person position samples
20 ww.matched <- matched$ww # matched item position samples
21

22 # visualization
23 ItemLabel <- c(rep(c("Curse","Scold","Shout") ,8)) # define item labels
24 # plot the interaction map and color the items by labels
25 plot_latent(zz.matched , ww.matched , ItemGroup = ItemLabel)
26 # plot the inverse distance (strength) plots for person 1
27 plot_strength(zz.matched , ww.matched , PersonIndex = 1, ItemGroup = ItemLabel)

https://anonymous.4open.science/r/LSIRM_Estimation-14EE
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Figure 2 displays the estimated interaction maps from the three packages. In all plots,
solid black dots represent respondents, and colored numbers represent items, where Cursing
items are in red, Scolding in green, and Shouting in blue. The exact positions of items and
respondents were not identical across the three packages, due to the latent positions’ unidenfi-
ability discussed earlier. That said, it can be observed that the overall configuration of the item
positions was similar across the three plots. For example, in all plots, the blue item groups
were distant from the red and green item groups. There was some separation between the red
and green items, although, overall, the two groups (red and green) were close to each other.
This indicated strong dependencies (or similarities) among the items within each item group.
There were some similarities between Cursing and Scolding items (red and green), which were
stronger than similarities between Cursing and Shouting items (red and blue).

JAGS Stan NIMBLE
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Figure 2. Estimated interaction maps of the matched latent positions from the three packages. In all
plots, solid black dots represent respondents, and colored numbers represent items, where Cursing
items are in red, Scolding in green, and Shouting in blue.

As explained earlier, a large distance to an item indicates that the respondent has a
lower success probability for the item given her/his overall trait level and the item’s overall
difficulty. In other words, a respondent’s distance to an item can be understood as her/his
weakness (or lower likelihood) to the item, given her/his overall trait level and the item’s
difficulty level. Thus, it can be informative to quantify a person’s distances to the test
items to evaluate which items the respondent shows particular strengths or weaknesses (or
likelihood or unlikelihood) towards. Figure 3 illustrates Respondent 1’s inverse distances,
and, therefore, indicates her/his likelihood of endorsing the 24 verbal aggression items,
given the respondent’s overall latent trait level and the item’s difficulty. The items are
ordered from the largest to the shortest inverse distances. The three item groups are colored
the same way as in Figure 2. Overall, the results were similar across the three packages. To
be specific, the three packages gave the same order for the top 5 items. While there were
some minor differences, the rank correlations were nearly 1.0 between any package pair,
confirming strong similarity in the person–item distances across the three packages.
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Figure 3. Respondent 1’s inverse distances to the 24 verbal aggression items estimated from the three
packages. The height of the bars indicates respondent 1’s likelihood of endorsing the item, given
her/his overall trait level and the item’s difficulty. The items are ordered from the highest to lowest
endorsement likelihood for Respondent 1. The coloring of the bars is based on item types, where
Cursing items are in red, Scolding in green and Shouting in blue.
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7. Discussion

In this paper, we presented a practical guide to Bayesian estimation of latent space
item response models (LSIRMs), a recent development in IRT, using three popular, free of
charge, Bayesian packages, namely, JAGS, Stan, and NIMBLE, run from R through specific
packages. With an empirical example, we provided detailed instructions for specifying the
model and running the code with each package. We also evaluated model convergence,
model fit, sampling quality, and run time. Additionally, we presented the visualization of
interaction maps with the three packages.

In regard to the three packages, JAGS is relatively easy to learn and implement, making
it suitable for researchers who may be new to Bayesian modeling. With a relatively long
history, JAGS boasts an extensive user community that can provide a wide range of support
as open-source software. JAGS also supports a wide range of probability distributions,
making it a convenient choice for diverse modeling scenarios. Stan, on the other hand,
offers an advanced and flexible modeling framework, allowing for efficient estimation
of highly complex models involving high-dimensional model parameter space. One key
advantage of Stan is its built-in support for parallel computation. NIMBLE strikes a balance
between the ease of use of JAGS and the flexibility of Stan. Using a syntax similar to BUGS,
NIMBLE allows users to write their own algorithms with the nimbleFunction system, which
can be helpful for research and experimentation. In the context of LSIRM estimation, we
found that the results were consistent across the three packages with the empirical data
under investigation. NIMBLE was somewhat faster than JAGS and Stan, but NIMBLE needed
longer chains with larger thinning intervals than Stan. Thus, one may choose a package
depending on specific needs and expertise. It is worth noting that, in our illustrative
examples, the number of iterations, burning periods, and the length of thinning intervals
were chosen to yield posterior samples that had comparable qualities between the three
chosen packages. Longer chains were needed for JAGS and NIMBLE to match with Stan’s
results in our example. However, different set ups, potentially with a shorter chain, could
be considered when comparability between the packages is not of concern.

In closing, we demonstrated, in the current paper, the estimation of LSIRM in an
original specification for binary item responses. As LSIRM was introduced as an extension
of the Rasch model for conditional dependencies, one may be interested in model selection
between LSIRM and the Rasch model. The original paper, [1], addressed the model
selection question by applying a spike-and-slab prior to the weight parameter γ, which can
also be implemented in the discussed Bayesian packages. Lastly, to further broaden the
applicability of LSIRM, additional research would be needed to show the LSIRM estimation
in various other specifications, such as for polytomous data, which is possible due to the
flexibility of the Bayesian packages discussed in this paper.
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