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Abstract: Item response theory models and applications are affected by many sources of variability,
including errors associated with item parameter estimation. Metric stability analysis (MSA) is one
method to evaluate the effects of item parameter standard errors that quantifies how well a model
determines the latent trait metric. This paper describes how to evaluate MSA in dichotomous and
polytomous data and describes a Bayesian implementation of MSA that does not require a positive
definite variance–covariance matrix among item parameters. MSA analyses are illustrated in the
context of an oral-health-related quality of life measure administered before and after prosthodontic
treatment. The R code to implement the methods described in this paper is provided.
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1. Introduction

When using item response theory (IRT) models to score examinees, there are several
factors that may cause score estimates to vary. Jones, Wainer, and Kaplan [1] (see also [2])
enumerated four sources of score variability:

1. Variability associated with the inherently probabilistic nature of item response models,
captured by the model-implied information and standard errors of trait estimates.

2. Variability associated with a particular trait estimation method.
3. Variability associated with item parameter estimate.
4. Variability associated with imperfect match of a model to data.

Uncertainty associated with the first and second sources is quantified by the stan-
dard errors of item parameter estimates. Uncertainty associated with the third and fourth
sources—errors in item parameters and errors in model selection—are often ignored when
using IRT-based person-scoring algorithms, though several estimation methods that ac-
count for these errors have been proposed [3–9]. The impact of the third and fourth sources
on score estimates is not ignorable. Neglecting to account for these sources of variability
can lead to inaccurate estimates of latent trait scores and their standard errors [8] and
negatively affect the results of other IRT-based procedures [10–13]. In addition, there is
evidence that the linear nature of a model (i.e., the location and units of the latent trait
scale) is not always well-determined when item parameters are estimated with error [14].
Therefore, it is pertinent to routinely evaluate how well the latent trait metric is determined
for a given fitted model.

Understanding and properly accounting for errors associated with item parameter
uncertainty ought to be a routine part of model evaluation. However, relatively few
methods exist to evaluate the impact of these factors. These methods include inspecting the
parameter standard errors, which can be difficult to synthesize, or calculating confidence
envelopes [15,16] around the predicted item or test response curves. Although confidence
envelopes are a useful visual tool, they only consider variability with respect to a fixed θ
metric (i.e., they cannot reflect nonlinear distortions of the latent trait metric across sets of
plausible parameters [14]). In addition, it is unclear how to use the information provided
by confidence envelopes to quantitatively assess which regions of the latent trait metric are
well-determined by the model.
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Feuerstahler [14] proposed metric stability analysis (MSA) as a way to express item
parameter standard errors in terms of their effects on the latent trait metric itself. The aims
of the current study are to extend metric stability analysis (MSA) to polytomous item
response models and to develop Bayesian methods for MSA that do not require direct
estimation of item parameter standard errors. These Bayesian methods are especially useful
for evaluating a complex model for which it is difficult or impossible to obtain a positive
definite matrix of item parameter variances and covariances. First, metric stability as it
was originally proposed [14] will be described along with its implementation using the
mirt [17] package for R [18]. Second, a fully Bayesian approach to MSA will be described
and exemplified using the brms [19] package for R. Third, we will apply MSA to the analysis
of longitudinal patient-reported outcomes data to demonstrate how MSA provides useful
information to supplement other model evaluation tools.

1.1. Metric Stability Analysis Using Multiple Imputation

The approach to MSA proposed by Feuerstahler [14] follows from a geometrical
definition of the IRT latent trait. Specifically, for a test composed of I items each with ki
response categories, the latent trait metric is a vector-valued function composed of the set
of n = ∑I

i=1(ki − 1) response probabilities for categories ≥ 1. Probabilities associated with
the lowest response category, 0, are excluded from this definition because category response
probabilities must sum to 1 for any given item. For illustration, consider the two-parameter
logistic item response model (2PL) for which

P(y = 1|θ, ai, di) =
1

1 + exp(−(aiθ + di))
(1)

where ai and di reflect item-specific discrimination and intercept parameters, and θ is
the latent trait parameter. Suppose that three items are fit to the 2PL such that a1 =
0.75, a2 = 1, a3 = 1.25, d1 = 0, d2 = 0.5, and d3 = −0.5. Each θ value is associated with
a triplet of predicted response probabilities, for example, θ = 0: {0.50, 0.62, 0.38} and
θ = 1: {0.68, 0.82, 0.68}. In this way, the IRT latent trait metric can be defined entirely in
terms of these sets of associated response probabilities, which will trace a trajectory in
multidimensional space. For more information, see [14,20].

An important feature of the geometrical definition of the latent trait is that it is invariant
to the scaling of θ. In other words, the vectors of associated probilities will be identical for
every linear or (monotonic) nonlinear transformation of θ, as these transformed models
make identical predictions [21]. This invariant latent trait definition also makes it possible to
compare the similarity of predictions made by different models based on the same data and
to understand how uncertainty in item parameter estimates affects the precision of predicted
response probabilities. The latter is the goal of MSA. Specifically, MSA characterizes metric
uncertainty in terms of variability in the vector of predicted response probabilities.

MSA can be evaluated as follows. For a fitted item response model with point estimates
of the item parameters ξ and variance–covariance among item parameter estimates Σξ ,
draw M multiply imputed (MI [9]) samples from a multivariate normal distribution with
mean ξ and covariance Σξ . Then, select Q θ values at which to evaluate metric stability.
Let f be the vector of n predicted probabilities to all items on a test, excluding the lowest
response category for each item. The Euclidean distance between f (θq|ξ̂) and any point r
on the trajectory implied by ξm, m = 1, . . . , M equals

d(θq, ηr|ξm) =

√
1
n

n

∑
i=1

1
ki − 1

( f (θq|ξ̂)i − f (ηr|ξm)i)2 (2)

Then, metric stability can be quantified for each value of m ∈ M and q ∈ Q by
minimizing as a function of η:
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∆mq = arg min
η

d(θq, η|ξm). (3)

In other words, Equation (3) finds the Euclidean distance between point q on the
trajectory implied by ξ and the nearest location on the trajectory implied by ξm. The more
similar the MI trajectories are to the trajectory based on point estimates, the smaller the
values of ∆mq, and ∆mq can be interpreted as the root mean squared difference between
a point on the point-estimated trajectory and the nearest point on the trajectory implied by
MI draw m. Metric stability can be evaluated as a function of θ at each q value by taking
medians or other quantiles of ∆mq across the M values. By evaluating metric stability at
each θq value, researchers can understand the magnitude of metric variability as well as the
regions of the latent trait metric that are well-determined by the fitted model.

1.2. Bayesian Metric Stability Analysis

There are several potential limitations to the MI-based MSA approach described
above. First, this approach relies on the assumption of available, accurate, and normally
distributed standard errors of item parameters. However, it can be difficult to obtain
a positive definite Σξ , especially for complex models [22]. A second limitation is that this
method relies on numerical optimization computed separately for each point. That is,
optimization-based MSA does not guarantee that the η values that minimize Equation (3)
increase monotonically with θq within any given iteration m.

Two new strategies to assess metric stability are available when jointly estimating
item and person parameters through Bayesian Markov chain Monte Carlo (MCMC) [23].
MCMC estimation results in a large number of draws from the joint posterior distribution
of θ and ξ. In the first proposed strategy, the posterior draws of item parameters can
serve the same role as the M multiple imputation draws and the posterior mean of each
parameter can serve as ξ. This optimization-based strategy shares the properties listed in
the previous section, except that the posterior samples are always available and do not need
to be sampled from a multivariate normal distribution. Although this strategy assumes
that the MCMC model has converged, it avoids the common problem of unavailable item
parameter standard errors. Specifically, many IRT model estimation methods other than
MCMC compute standard errors by inverting a parameter information matrix. Inversion is
unstable or impossible under the common scenario that the information matrix is (nearly)
singular. Even for estimation algorithms that do not involve inverting an information matrix
such as the Metropolis–Hasings Robbins–Monro (MH-RM) algorithm [24], the resulting
variance–covariance matrix may not be positive definite. These problems in obtaining item
parameter standard errors were repeatedly encountered when using the mirt package for
the analyses described in this paper.

A second, quantile-based, strategy based on MCMC calculates metric stability based
on quantiles of the estimated θ distribution at each draw m rather than finding the nearest
trajectory point. This approach relies on a monotonically ordered θ scale such that the
predicted response probabilities associated with quantiles of θ are invariant to transfor-
mations of θ. To implement the quantile-based MSA measure, evaluate Equation (2) for
each posterior draw m, setting θq to be the posterior mean θ at each quantile, and setting
ηr equal to the θ estimate that exists at the qth quantile of iteration m. Then, medians or
other quantiles of the resulting values, which function in the same way as ∆mq, can be
used to evaluate metric stability in a similar way as the optimization-based strategy. Note
that this quantile-based strategy is only available when joint estimates both of the item
and person parameters are available, as with MCMC estimation because it uses observed
quantiles of θ throughout the posterior distribution space. In addition to not requiring
a positive definite variance–covariance matrix, this method involves no optimization and
will guarantee a continuous trajectory within each iteration.
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2. Methods

In the remainder of this paper, we illustrate MSA in an empirical application and
provide R code so that researchers can apply these methods to their own models and data.
First, metric stability is analyzed in several ways in both mirt and brms. Second, we apply
MSA to longitudinal models and demonstrate that despite the added model complexity,
the metric becomes more stable when item parameters are informed by information at
multiple time points.

2.1. Data for Illustration

In this paper, we use data from the Oral Health Impact Profile - German version
(OHIP-G) [25]. These data were previously analyzed in the context of identifying mean-
ingful change score effect sizes [26] and include responses from 224 adults before and
after receiving prosthodontic treatment (fixed prosthodontics, removable partial dentures,
or complete dentures). Further information about this sample is provided elsewhere [26].
The OHIP-G includes 49 items for which patients self-report how often in the past month
they experienced various oral-health-related problems on a five-point Likert scale with
labels 0 = ‘never’, 1 = ‘hardly ever’, 2 = ‘occasionally’, 3 = ‘fairly often’, and 4 = ‘very often’.
Patients responded to this survey at two baseline appointments (separated by 1 to 2 weeks)
and again after prosthodontic treatment. For the purpose of the current study, we focus
on 5 items that belong to a previously proposed short form known as the OHIP-5 [27].
To simplify analyses, the full sample of N = 224 respondents was restricted to the N = 185
respondents who provided complete OHIP-5 data at each time point. In addition, very
few responses were in the upper categories for each item, and several categories have zero
frequencies for some time points, especially at follow-up. As such, we rescored responses
so that data are observed in consecutive integers within each item and time point. We also
analyzed a dichotomized data set that combined responses to categories 1 through 4 for
each item. The full text of these items is available elsewhere [28], and Table 1 presents
shortened item content and summary statistics at each time point for the reduced data. As
expected, mean responses are generally lower at follow-up than at either baseline assess-
ment, reflecting that the treatment may have resulted in an improved quality of life. At all
time points, responses are highly positively skewed, indicating that many patients seeking
prosthodontic treatment have high oral-health-related quality of life in some respects, even
before treatment.

Table 1. OHIP-G Function Dimension Items and Summary Statistics Before Rescoring.

OHIP-49 Number Shortened Item Time Mean Skewness

1. Difficulty chewing
B1 1.48 0.42
B1 1.34 0.61
F 1.01 0.80

10. Painful aching
B1 1.02 0.61
B1 1.06 0.54
F 0.84 1.01

22. Uncomfortable about appearance
B1 0.85 0.86
B1 0.75 1.24
F 0.40 1.90

26. Less flavor in food
B1 0.50 1.97
B1 0.48 2.06
F 0.40 1.93

43. Difficulty doing jobs
B1 0.30 2.36
B1 0.37 2.10
F 0.26 1.92

B1 = Baseline 1 scores, B2 = Baseline 2 scores, F = follow-up scores. Skewness was calculated using the the G1
formula described by [29].
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As expected, two-tailed paired-samples t-tests comparing sum scores (before any
rescoring) for the two baseline measures were not statistically significant at α = 0.05
(t(184) = 1.09, p = 0.28). Both paired-samples t-tests comparing baseline scores to post-
treatment scores indicated a significant decrease in reported problems (baseline 1 vs. follow-
up: t(184) = 5.40, p < 0.001; baseline 2 vs. follow-up: t(184) = 5.11, p < 0.001).

2.2. MSA at Each Time Point

Next, metric stability was evaluated in several ways separately for each time point.
A total of three item response models were considered: the graded response model
(GRM [30] and the generalized partial credit model (GPCM [31]) for the rescored poly-
tomous data, and the 2PL for the dichotomized data. Models were fit in either the mirt
[17] or brms [19] packages for R [18]. For each time point and for each of the 2PL, GRM,
and GPCM, MSA was evaluated in four ways: in mirt [17] fit with both marginal maximum
likelihood (MML) and marginal Bayes model (MBM) estimation, and in brms [19] using
both optimization-based and quantile-based MSA.

The exact specification of the GRM and GPCM varies across software packages used in
this study. These differences are notable because the parameters for which standard errors
are calculated vary across software. For the GRM implemented in mirt, the probability of
a response in category c = 0, . . . , ki − 1 or greater equals

P(y ≥ c|θ, ai, dic) =
1

1 + exp(−(aiθ + dic))
, (4)

whereas the same model in brms uses

P(y ≥ c|θ, ai, dic) =
1

1 + exp(−(aiθ − dic))
, (5)

with the opposite sign for the dik parameters and defining P(y ≥ 0 = 1). In Equation (4),
the dik parameters must be strictly decreasing whereas in Equation (5) they must be strictly
increasing. The GPCM in mirt gives the probability of a response in a specific category
c = 0, . . . , ki − 1 as

P(y = c|θ, ai, dic) =
exp(caiθ + dc−1)

∑ki
c=1 exp(caiθ + dc−1)

c = 1, . . . ki − 1, (6)

P(y = 0|θ, ai, dic) =
1

∑ki
c=1 exp(caiθ + dc−1)

(7)

whereas the same model in brms uses

P(y = c|θ, ai, dic) =
exp(∑c

l=0(aiθ + dl−1))

∑ki
c=1 exp(∑c

l=0(aiθ + dl−1))
, (8)

Regardless of these differences in parameterization, all Bayesian models were fit with
the priors a ∼ LN(0, 0.5) and d ∼ N(0, 1), and the same priors were used for all dic
parameters and all parameterizations. Models fit in mirt used package defaults for item
parameter and standard error estimation, except as indicated. Models fit in brms were run
using 4 parallel chains of 2000 iterations each, with the first 1000 iterations of each chain
discarded as burn-in for a total of M = 4000 samples used for MSA.

For the models estimated in mirt, M = 1000 MI samples were generated from multi-
variate normal distributions. For MSA analyzed through numerical optimization, stability
was estimated at −4 ≤ θ ≤ 4 in intervals of 0.25. For MSA analyzed with quantiles, θ
quantiles from 0.05 to 0.95 were used in intervals of 0.05. For all MSA analyses reported
in this paper, q-specific medians of ∆mq across the M values were used as the measures of
metric stability. For visualization, we plotted quantile-based results against the associated
quantiles of the standard normal distribution.
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R code to reproduce these analyses on a simulated data set based on the Baseline 1
model is included in the Supplementary Materials of this paper.

2.3. Longitudinal Analyses

Next, we fit data from multiple time points to Cai’s two-tier model [32] to account
for the longitudinal nature of these data. This model is a special case of a bifactor model
that includes a primary dimension for each time point and specific factors for each item
that capture the residual covariance among items expected from the use of longitudinal
data. A path diagram of this model applied to five items and three time points is given
in Figure 1. In this model, primary dimensions θ1, θ2, and θ3 represent the latent trait
scores at baseline 1, baseline 2, and follow-up. Specific dimensions γ1, . . . , γ5 capture the
item covariances associated with administering the same items multiple times to the same
patients. This model allows for correlations among the three primary dimensions, but the
specific dimensions are uncorrelated with the primary dimensions and with each other.
In addition, for each item i, all item parameters (primary factor discriminations, specific
factor discriminations, and intercepts) are constrained to equal the same values across
time points.

Figure 1. Cai’s two-tier model for longitudinal item response data. θ1, θ2, and θ3 represent the
primary dimension at each of the three time points, and γ1, . . . , γ5 represent the specific dimensions
for each of the five items.

In this section, three 2PL models were fit to the dichotomized OHIP-5 data: a unidi-
mensional model using only baseline 1 data, a two-tier model using both baseline 1 and
baseline 2 data, and a two-tier model using baseline 1, baseline 2, and follow-up data. All
models were fit using mirt and the MH-RM algorithm. In exploring variations of this
model with the OHIP-G data, we often found non-positive definite variance–covariance
matrices of item parameters, some of which included negative diagonal elements. Because
a positive definite parameter covariance matrix is needed to draw MI samples from a mul-
tivariate normal distribution, the following specifications were made for these analyses.
First, Bayesian priors were used to stabilize estimation with a ∼ LN(0, 0.5) for primary
dimensions, a ∼ LN(0, 0.25) for specific dimensions, and d ∼ N(0, 1). The resulting co-
variance matrices were still not positive definite for the two longitudinal models, so only
covariances among the primary dimension ai and di were used to draw M = 1000 MI
samples. For all models, metric stability was calculated based on the primary dimension ai
and di item parameters alone, ignoring the effects of the specific dimensions.

3. Results
3.1. Metric Stability at Each Time Point

Metric stability for each model and method is visualized in Figure 2. Although results
are presented in different panels for different models, it is theoretically appropriate to
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directly compare results from different models based on the same data (here, at the same
time point), so long as the underlying θ metric is the same. Note that lower values of median
∆q indicate less variability in predicted probabilities. Although the choice of an upper
cutoff for “stable enough” is subjective, Feuerstahler [14] recommended an upper bound of
0.02 for median ∆q values. Most θ regions for all models in this example do not meet this
criterion, largely because of the relatively small sample size used to fit the IRT models.

Figure 2. Metric stability evaluated separately at three time points with three different models.
brmO = optimization-based approach with MCMC samples from brms, brmQ = quantile-based
approach with MCMC samples from brms, MBM = marginal Bayes modal estimates, MML = marginal
maximum likelihood estimates

For most panels in Figure 2, different measures of metric stability yield similar results,
suggesting that any of these methods is appropriate to evaluate MSA. However, some
within-panel differences appear to be due to differences in model specification. For example,
for the GPCM and GRM, MML yields increasing instability at high θ values, whereas the
prior used in the Bayesian models decreases the magnitude of this effect. Minor differences
in instability between MBM and MML are visible for nearly all models. Finally, the quantile-
based method appears systematically higher than the optimization-based methods for the
2PL. This may be because the optimization-based methods explicitly seek the nearest points
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in the posterior space; however, it is not clear why this phenomenon does not occur for the
GPCM or GRM.

3.2. Longitudinal Measurement Stability

Figure 3 shows results based on the models built on one, two, and three time points.
In the left-hand panel, our metric stability measure shows increased stability (lower median
∆q) at all θ values for models built on more time points. The model built on three time
points yields median ∆q values less than 0.03, though median ∆q is only less than the 0.02
cutoff for θ ≤ −1 and θ ≥ 1.75. The right-hand panel shows the expected standard error
functions (i.e., the inverse square root of test information in the direction of the primary
dimension). The expected standard errors are approximately equal across the three fitted
models, indicating that the expected variability due to probabilistic responding and trait
estimation is unaffected by the use of a single-time-point or longitudinal model.

Figure 3. Metric stability and expected standard errors based on the two-parameter model with
Bayesian modal estimation based on one, two, and three time points.

Note that the regions of θ that MSA indicates as more stable tend to be those at
extreme θ values, which happen to be regions associated with higher standard errors. This
phenomenon tends to occur because predicted response probabilities are less variable
at extreme θ values (i.e., where all response probabilities tend toward 0 or 1), but these
regions also tend to provide low information because the predicted item response curves
are relatively flat at extreme θ values. That these two measures seemingly disagree about
the reliability of θ highlights that MSA and information reflect different types of errors
in IRT models. Therefore, we recommend that researchers analyze both simultaneously,
seeking a model that yields both low ∆q values and low expected standard errors at the θ
regions intended to be measured well by the test.

4. Discussion

The primary contributions of this paper are the extensions of metric stability analysis
(MSA [14]) to polytomous data, the Bayesian MCMC implementation of MSA, and the
presentation of R code that researchers can adapt to investigate MSA in their own data.
Through an empirical illustration, this paper demonstrates that the different strategies
for investigating MSA usually yield comparable values, though differences in model
specification and use of informative priors can affect the regions of θ that are more and
less stable. The fact that different methods tend to yield comparable results, particularly
for similar model specifications, suggests that only one type of MSA needs to be used in
any real data analysis, so long as it corresponds to the model specification used in other
analyses of the same data.

The Bayesian MCMC methods described in this paper are particularly promising
alternatives to the MI approach described earlier [14]. This is because Bayesian MCMC
directly samples from the posterior distribution of item parameters rather than drawing
MI samples from a multivariate normal distribution. Such use of MI is limited because
it requires a positive definite matrix variance–covariance matrix among item parameters,
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which can be difficult or impossible to attain for complex multidimensional or longitudinal
models [22].

MSA as described in this paper is currently limited to reflective measurement models
for categorical data and continuous latent traits (i.e., item response models). Although sev-
eral empirical and simulation-based applications of MSA were provided in previous
work [14], future work should expand the variety of applications of this method. In ad-
dition, future work may extend the MSA strategy to other measurement models such as
cognitive diagnostic models, factor analysis, or formative models.

5. Conclusions

Understanding the consequences of item parameter estimation error ought to be a rou-
tine part of item response model evaluation. MSA is an improvement on previous methods
with similar goals [16,33] in that it provides both visual and quantitative information and
allows for nonlinear relationships between different models. In summary, we hope that the
developments and R code described in this paper will help facilitate the more routine use
of MSA.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/psych5020025/s1.
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2PL Two-parameter logistic item response model
GPCM Generalized partial credit model
GRM Graded response model
IRT Item response theory
MBM Marginal Bayes model estimation
MCMC Markov Chain Monte Carlo
MH-RM Metropolis–Hastings Robbins–Monro
MI Multiple imputations
MML Marginal maximum likelihood estimation
MSA Metric stability analysis
OHIP-5 Five-item short form of the Oral Health Impact Profile
OHIP-G Oral Health Impact Profile, German version

References
1. Jones, D.H.; Wainer, H.; Kaplan, B. Estimating ability with three item response models when the models are wrong and their

parameters are inaccurate. ETS Res. Rep. Ser. 1984, 1984, i-50. [CrossRef]
2. Feuerstahler, L.M. Sources of error in IRT trait estimation. Appl. Psychol. Meas. 2018, 42, 359–375. [CrossRef] [PubMed]
3. Cheng, Y.; Yuan, K.H. The impact of fallible item parameter estimates on latent trait recovery. Psychometrika 2010, 75, 280–291.

[CrossRef] [PubMed]
4. Hoshino, T.; Shigemasu, K. Standard errors of estimated latent variable scores with estimated structural parameters. Appl.

Psychol. Meas. 2008, 32, 181–189. [CrossRef]
5. Liu, Y.; Yang, J.S. Bootstrap-calibrated interval estimates for latent variable scores in item response theory. Psychometrika 2018,

83, 333–354. [CrossRef]
6. Mislevy, R.J.; Wingersky, M.S.; Sheehan, K.M. Dealing with uncertainty about item parameters: Expected response functions.

ETS Res. Rep. Ser. 1994, 1994, i-20.

https://www.mdpi.com/article/10.3390/psych5020025/s1
https://www.mdpi.com/article/10.3390/psych5020025/s1
http://doi.org/10.1002/j.2330-8516.1984.tb00066.x
http://dx.doi.org/10.1177/0146621617733955
http://www.ncbi.nlm.nih.gov/pubmed/30034054
http://dx.doi.org/10.1007/s11336-009-9144-x
http://www.ncbi.nlm.nih.gov/pubmed/21076651
http://dx.doi.org/10.1177/0146621607301652
http://dx.doi.org/10.1007/s11336-017-9582-9


Psych 2023, 5 385

7. Patton, J.M.; Cheng, Y.; Yuan, K.H.; Diao, Q. Bootstrap standard errors for maximum likelihood ability estimates when item
parameters are unknown. Educ. Psychol. Meas. 2014, 74, 697–712. [CrossRef]

8. Tsutakawa, R.K.; Johnson, J.C. The effect of uncertainty of item parameter estimation on ability estimates. Psychometrika 1990,
55, 371–390. [CrossRef]

9. Yang, J.S.; Hansen, M.; Cai, L. Characterizing sources of uncertainty in item response theory scale scores. Educ. Psychol. Meas.
2012, 72, 264–290. [CrossRef]

10. Baldwin, P. A strategy for developing a common metric in item response theory when parameter posterior distributions are
known. J. Educ. Meas. 2011, 48, 1–11. [CrossRef]

11. Pashley, P.J. Graphical IRT-based DIF analyses. ETS Res. Rep. Ser. 1992, 1992, i-20. [CrossRef]
12. Scrams, D.J.; McLeod, L.D. An expected response function approach to graphical differential item functioning. J. Educ. Meas.

2000, 37, 263–280. [CrossRef]
13. Sheehan, K.M.; Mislevy, R.J. Some consequences of the uncertainty in IRT linking procedures. ETS Res. Rep. Ser. 1988, 1988, i-40.

[CrossRef]
14. Feuerstahler, L.M. Metric stability in item response models. Multivar. Behav. Res. 2022, 57, 94–111. [CrossRef] [PubMed]
15. Thissen, D.; Wainer, H. Confidence Envelopes for Monotonic Functions: Principles, Derivations, and Examples; Technical Report;

Mcfann Gray and Associates Inc.: San Antonio, TX, USA, 1983.
16. Thissen, D.; Wainer, H. Confidence envelopes for item response theory. J. Educ. Stat. 1990, 15, 113–128. [CrossRef]
17. Chalmers, R.P. mirt: A multidimensional item response theory package for the R environment. J. Stat. Softw. 2012, 48, 1–29.

[CrossRef]
18. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,

2023.
19. Bürkner, P.C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 2017, 80, 1–28. [CrossRef]
20. JO, R. A geometrical approach to item response theory. Behaviormetrika 1996, 23, 3–16.
21. Lord, F.M. The ‘ability’scale in item characteristic curve theory. Psychometrika 1975, 40, 205–217. [CrossRef]
22. Chalmers, R.P. Numerical approximation of the observed information matrix with Oakes’ identity. Br. J. Math. Stat. Psychol. 2018,

71, 415–436. [CrossRef]
23. Stan Development Team. RStan: The R Interface to Stan. R Package, Version 2.26.15.
24. Cai, L. Metropolis-Hastings Robbins-Monro algorithm for confirmatory item factor analysis. J. Educ. Behav. Stat. 2010, 35, 307–335.

[CrossRef]
25. John, M.T.; Patrick, D.L.; Slade, G.D. The German version of the Oral Health Impact Profile–translation and psychometric

properties. Eur. J. Oral Sci. 2002, 110, 425–433. [CrossRef] [PubMed]
26. John, M.T.; Reißmann, D.R.; Szentpetery, A.; Steele, J. An approach to define clinical significance in prosthodontics. J. Prosthodont.

Implant. Esthet. Reconstr. Dent. 2009, 18, 455–460. [CrossRef] [PubMed]
27. John, M.T.; Miglioretti, D.L.; LeResche, L.; Koepsell, T.D.; Hujoel, P.; Micheelis, W. German short forms of the oral health impact

profile. Community Dent. Oral Epidemiol. 2006, 34, 277–288. [CrossRef] [PubMed]
28. Slade, G.D.; Spencer, A.J. Development and evaluation of the oral health impact profile. Community Dent. Health 1994, 11, 3–11.

[PubMed]
29. Joanes, D.N.; Gill, C.A. Comparing measures of sample skewness and kurtosis. J. R. Stat. Soc. Ser. D 1998, 47, 183–189. [CrossRef]
30. Samejima, F. Graded response model. In Handbook of Modern Item Response Theory; Springer: Berlin/Heidelberg, Germany, 1997;

pp. 85–100.
31. Muraki, E. A generalized partial credit model: Application of an EM algorithm. ETS Res. Rep. Ser. 1992, 1992, i-30.
32. Cai, L. A two-tier full-information item factor analysis model with applications. Psychometrika 2010, 75, 581–612. [CrossRef]
33. Thissen, D.; Wainer, H. Some standard errors in item response theory. Psychometrika 1982, 47, 397–412. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1177/0013164413511083
http://dx.doi.org/10.1007/BF02295293
http://dx.doi.org/10.1177/0013164411410056
http://dx.doi.org/10.1111/j.1745-3984.2010.00127.x
http://dx.doi.org/10.1002/j.2333-8504.1992.tb01497.x
http://dx.doi.org/10.1111/j.1745-3984.2000.tb01086.x
http://dx.doi.org/10.1002/j.2330-8516.1988.tb00294.x
http://dx.doi.org/10.1080/00273171.2020.1809980
http://www.ncbi.nlm.nih.gov/pubmed/32876499
http://dx.doi.org/10.3102/10769986015002113
http://dx.doi.org/10.18637/jss.v048.i06
http://dx.doi.org/10.18637/jss.v080.i01
http://dx.doi.org/10.1007/BF02291567
http://dx.doi.org/10.1111/bmsp.12127
http://dx.doi.org/10.3102/1076998609353115
http://dx.doi.org/10.1034/j.1600-0722.2002.21363.x
http://www.ncbi.nlm.nih.gov/pubmed/12507215
http://dx.doi.org/10.1111/j.1532-849X.2009.00457.x
http://www.ncbi.nlm.nih.gov/pubmed/19374706
http://dx.doi.org/10.1111/j.1600-0528.2006.00279.x
http://www.ncbi.nlm.nih.gov/pubmed/16856948
http://www.ncbi.nlm.nih.gov/pubmed/8193981
http://dx.doi.org/10.1111/1467-9884.00122
http://dx.doi.org/10.1007/s11336-010-9178-0
http://dx.doi.org/10.1007/BF02293705

	Introduction
	Metric Stability Analysis Using Multiple Imputation
	Bayesian Metric Stability Analysis

	Methods
	Data for Illustration
	MSA at Each Time Point
	Longitudinal Analyses

	Results
	Metric Stability at Each Time Point
	Longitudinal Measurement Stability

	Discussion
	Conclusions
	References

