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Abstract: This article is an introduction to Cluster Optimized Proximity Scaling (COPS) aimed at
practitioners, as well as a tutorial on the usage of the corresponding R package cops. COPS is a
variant of multidimensional scaling (MDS) that aims at providing a clustered configuration while still
representing multivariate dissimilarities faithfully. It subsumes most popular MDS versions as special
cases. We illustrate the ideas, use, flexibility and versatility of the method and the package with
data from clinical psychology on how modules of the Modular Approach to Therapy for Children
(MATCH) are used by clinicians in the wild. We supplement the COPS analyses with density-based
hierarchical clustering in the original space and faceting with support vector machines. We find
that scaling with COPS gives a sensible and insightful spatial arrangement of the modules, allows
easy identification of clusters of modules and provides clear facets of modules corresponding to the
MATCH protocols. In that respect COPS works better than both standard MDS and clustering.

Keywords: clustering; exploratory data analysis; facet theory; ordination; psychotherapy; multidi-
mensional scaling; proximity scaling; youth psychotherapy

1. Introduction

Proximity scaling techniques such as multidimensional scaling (MDS) are essential
statistical/psychometric tools to explore data sets. Flexible modern approaches such as
Cluster Optimized Proximity Scaling (COPS) [1] or Structure Optimized Proximity Scaling
(STOPS) [2] allow users to emphasize various structural aspects of the data during the
scaling process. Technically, this is achieved by augmenting the loss function that is subject
to minimization with structural considerations. For instance, the COPS framework, which
we will use in this paper, incorporates a penalty and parametrized transformations with the
aim of increasing the clusteredness of the final result. That is, the resulting configuration
exhibits improved clustering of the scaled objects, which may give practitioners important
structural insights.

The aim of this paper, targeted to applied researchers, is twofold. First, it provides a
lightweight introduction to the COPS framework. With a real-world data set, we highlight
the applicability and usage of the framework. We include practical suggestions related to
the application of COPS and related techniques, and how to turn the different gauges to
achieve the best results. The article also functions as a software tutorial on the use of the
newly developed R package cops; we use it in a stand-alone fashion and in conjunction
with complementary R packages, in that this article serves as a blueprint for the typical
setting for which we believe the COPS framework to be particularly useful. The tutorial
instructions are meant to support practitioners with structural explorations of their own
data sets when they utilize the COPS framework.
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Second, the paper also has a substantive motivation: Several past reviews of psy-
chotherapies have grouped psychotherapy treatment techniques according to theoretical
similarities and differences. These previous expert reviews have identified important do-
mains on which psychotherapy treatment techniques differ such as a focus on insights or on
direct behavior change, diagnoses targeted, degree of focus on goals and solutions, clinician
directiveness or client directedness, focus on cognitions, behaviors, or emotions, duration
and intensity, and individual or family-focus [3–7]. What has been lacking are empirical
investigations based on practical usage. The present article addresses that by contributing
an empirical investigation into grouping treatment techniques via structural exploration
of the modules of the Modular Approach to Therapy for Children with Anxiety, Depres-
sion, Trauma, or Conduct Problems (MATCH-ADTC; [8]) based on their use by practicing
clinicians, which has relevance for psychotherapy research and clinical psychology.

MATCH-ADTC is a flexible youth psychotherapy designed to suit the needs of youth
seeking mental health care in community clinics, most of whom have multiple primary
and secondary diagnoses and changing needs throughout treatment. MATCH is a modular
youth psychotherapy, meaning that it consists of multiple, unique component parts (i.e.,
modules), each with a specific function, and that these component parts may be flexibly
rearranged, repeated, and omitted according to the unique needs of each client [9]. Each
MATCH module (e.g., psycho-education about anxiety for youth and caregivers; rewards
for desired behaviors) is drawn from reviews of evidence-based youth psychotherapies [10].
The MATCH manual includes assessment recommendations, flowcharts, and narrative text
meant to help clinicians select appropriate module sequences for each client, yet following
these recommendations and selecting modules involves the use of clinical judgment; there-
fore, treatment courses for each client who receives MATCH can be rather unique, even
among youths with similar diagnoses.

Using the COPS framework and related statistical methods, we seek to empirically
establish the groupings of MATCH modules and explore their relation based on the real
use of practitioners in communities. To that end, COPS as a variant of MDS will be used
together with a density-based hierarchical clustering method OPTICS [11] as well as the
derived goodness-of-clustering summary statistic, the OPTICS Cordillera [12], to scale
and explore the usage of the modules of the MATCH-ADTC. We also connect this to facet
theory [13] via the SVM-MDS framework of [14] that generates facets with support vector
machines (SVM). These substantive results are of interest not only to practitioners and
developers of MATCH, but as the first empirical investigation into grouping treatment
techniques they can also be interpreted in the context of previous theoretical research,
and may be used to guide future research on the effects and use of treatment elements.
In doing so, we give an example of how the COPS framework and the software may
typically be used. The R code to fully reproduce the results presented in this paper is given
as Supplementary Materials.

2. Materials and Methods

In this section, we give a description of the data and an overview of the statistical
methods and ideas that we use in this study without going into too much technical de-
tail. The main R software package that we use is cops [15] for MDS and COPS-related
functionality. We also use dbscan [16] and cordillera [17] for functions related to OPTICS
clustering, smacof [18] for faceting and MDS infrastructure and e1071 [19] for fitting SVM.

2.1. Multidimensional Scaling (MDS)

The starting point of our methodological elaborations is multidimensional scaling
(MDS), a well-known technique for scaling objects in a low-dimensional space [20–24].
The input is a symmetric pairwise dissimilarity matrix ∆ of dimension o× o with elements
δij between object i and object j, where o is the number of objects. The main output is a
configuration matrix X, typically subject to plotting. X is of dimension o× p, where p is the
number of dimensions, xi = (xi1, . . . , xip) is the i-th row vector of X.
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The most popular approach to find the solution is by minimizing the stress target
function [24]:

σ(X) = ∑
i<j

(
δ̂ij − dij(X)

)2
(1)

Here, dij(X) are the fitted distances between the points in the p-dimensional space
(almost always Euclidean), and the δ̂ij’s (disparities) are transformed versions of the input
dissimilarities δij. Classical transformations include (under the restriction δ̂ij ≥ 0)

• Ratio transformation δ̂ij = bδij;
• Interval transformation: δ̂ij = a + bδij.

Thus, stress-based MDS tries to find a configuration X whose point-wise distances
are as close as possible to a transformed version of the input dissimilarities. Naturally,
the smaller the stress, the better the fit [25].

Over the years, various extensions and modifications of Kruskal’s original stress
formulation have been proposed. They extend the family of MDS methods towards a
more general proximity scaling (PS) framework [1]. In order to incorporate some of the
extensions relevant in this article, we re-write Equation (1) as follows:

σ2(X) = ∑
i<j

(
δ̂ij − d̂ij(X)

)2
. (2)

This reformulation allows us to include transformations for the disparities as well as
for the fitted distances d̂ij(X). We may think of

• Logarithmic transformation: δ̂ij = log(δij) and d̂ij(X) = log(dij(X));
• Quadratic transformation: δ̂ij = δ2

ij and d̂ij(X) = dij(X)2.

The logarithmic transformation is also known as the multiscale approach [26]. The quadratic
transformation is also known as s-stress [27].

Such transformations allow different values of δij and dij(X) to receive more or less
emphasis compared to classical MDS, for example to emphasize larger values more strongly
(as in s-stress) or to express a probabilistic model for the δij (as in multiscale). Within a gen-
eral proximity scaling framework, the systematic flexibility given by such transformations
is of special importance.

One very general and flexible formulation is the p-stress (power stress) target func-
tion [1,28]

σp(X) = ∑
i<j

(bδλ
ij − dij(X)κ)2, (3)

with power coefficients λ for the dissimilarities, κ for the fitted distances and b as a ratio
transformation parameter (so that bδλ

ij ≥ 0). This p-stress encompasses most of the popular
metric stress functions proposed in the literature [1] (there also exists a version with weights
but we omitted the weights for simplicity). Concerning the mentioned models, p-stress
gives ratio MDS if κ = λ = 1, s-stress if κ = 2, λ = 2, and approximates multiscale stress
with κ → 0 if we use δ̂ij = log(δij) and λ = 1 (this is due to the identity log(dij(X)) ≈
adij(X)1/a − a for large a, that additive and multiplicative constants are irrelevant for the
Euclidean distance and that dij(X) ≥ 0).

In p-stress and its special cases, the exponents have the following effects: For λ, larger
values emphasize larger dissimilarities and smaller values emphasize the local structure
(smaller dissimilarities). For κ > 1, larger values mean we map the higher values of δ̂ij
to an increasingly tighter range of dij(X) (as in a convex function). The differentiation
between the large δ̂ij is down weighted as compared to the smaller δ̂ij and thus the fitted
dij(X) discriminate more finely between the lower δ̂ij, emphasizing local variation in the
δ̂ij. For κ < 1, smaller values mean we map the lower values of δ̂ij to a tighter range of
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dij(X) (concave function) and thus the dij(X) discriminate more finely between the higher
δ̂ij, which emphasizes the global picture (as if zooming out).

In this article, we are interested in scaling the modules of MATCH-ADTC based on
their usage by clinicians in the wild. The configurations that we obtain give us insight into
how the usage of the modules is structured over the patients. We do this by interpreting the
pairwise distances between the points in the configuration plot as the best representation
of the higher dimensional proximities. The closer two points, the less dissimilar the
corresponding objects are, assuming that the MDS solution fits well. This is one part of the
story we tell here: scaling the modules in a lower dimensional space and interpreting their
spatial arrangement.

2.2. Distance Measure

To apply the methods we describe here, we need a measure of dissimilarity. The raw
data are counts (see Section 2.6 for details), so we use a dissimilarity for count vectors (or
count profiles, i.e., elements are non-negative), which we call the φ-distance, dφ. For two
non-zero vectors, xi = (xi1, . . . , xil , . . . , xio) and xj = (xj1, . . . , xjl , . . . xjo),

dφ
ij = dφ(xi, xj) =

√√√√ o

∑
l=1

(xil − xjl)2

(xil + xjl)(ni + nj)
=

1√
N

√√√√ o

∑
l=1

(xil − xjl)2

(xil + xjl)
(4)

with N = ni + nj and nk = ∑l xkl . Note that in the last expression, the term involving the
xi, xj is a blended χ2-distance [29]. Therefore, dφ is a blended χ2-distance between two
count vectors normalized with the square root of the overall sum N of the elements in both
vectors, similar in spirit to the mean square contingency φ2 = χ2/N [30]. Note that in case
of both vectors being zero vectors, we would have a division by 0 in Equation (4) and the
distance is not defined. If only one vector is a zero vector, dφ can be calculated, but we
believe it only makes sense for non-zero vectors.

The φ-distance has a number of properties that we deem favorable for this situation:
Since it is based on a blended χ2-distance (essentially a re-weighted version), it retains
properties of the blended χ2-distance including that it is a metric, a weighted Euclidean
distance and measures mostly the difference in shape of the vector profile. It is also
robust [29]. Each l-th element is exchangeable between i, j, which means we can look at
every l’s contribution to the distance in isolation. Additionally, the φ-distance only uses the
elements of the two vectors i, j, for which we want the distance; values in other vectors have
no bearing on the distance calculation, making it invariant to the inclusion or exclusion
of other vectors. Weighting with N makes the distance lie between 0 (same profile) and
1 (non-overlapping profile, i.e., every element in xj corresponding to a non-zero element
in xi is zero). Furthermore, if we multiply all elements in both xi and xj with a constant,
the φ-distance does not change. Conversely, if for a pair of vectors the blended χ2-distance
is equal to another pair, but the latter pair has higher N = ni + nj, then the φ-distance
between the first pair is larger than between the second pair. It can thus account for
prevalence differences in the vectors and that larger χ2-distances between xi and xj are
randomly more likely if we have larger ni and nj.

2.3. Ordering Points to Identify the Clustering Structure (OPTICS) and the OPTICS Cordillera

As part of this study, we are also interested in identifying data-driven groups of
modules based on their usage. This is the task of clustering, which is in many ways
complementary to the scaling approach.

Out of the myriad of cluster algorithms, we will use OPTICS, a hierarchical cluster
algorithm that has a density-based definition of clustering [11]. Informally, this means that
within a neighborhood around each point xi other points are considered as belonging to the
same cluster if the density of points in that area is higher than outside of that area. Thus, a
cluster is defined as a dense accumulation of points; clusters are separated from each other
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by regions that are sparsely (or not at all) populated by points. The main attractions of this
clustering algorithm are that the shape of the accumulation can be anything (as opposed to,
say, the Voronoi tessellation of k-means), that the algorithm can find nested clusters, that
points that fall into the sparse regions are considered as noise points and that we do not
have to specify the number of clusters.

OPTICS needs to make only one assumption about what constitutes a cluster: the
minimum number k of objects that must make up a cluster (argument minPts in the R
function optics in dbscan). It also features a parameter ε (argument eps in optics) that
defines the neighborhood radius in which to look for points and controls how likely a
point is considered as noise; for our purpose it just needs to be sufficiently large as we
do not think any of our observations may be noise. Once these two parameters are fixed,
the OPTICS algorithm encodes the complete density-based clustering information in the
data as an ordering of the points in data matrix X, R(X), and an associated minimum
reachability r∗i of each point xi. This minimum reachability distance can be thought of as
a type of single linkage distance of a point xi to the point xj that comes before it in the
ordering R(X). The ordering itself is so that points that are close in the ordering and have
relatively small associated values of r∗i are an accumulation, whereas points that are far
from each other in the ordering, or are close but have relatively large r∗i can be considered
to not be part of the same accumulation.

This combination of R(X) and the set of minimum reachabilities can be visualized in a
reachability plot, with the OPTICS ordering of the points on the x-axis and each point’s
r∗i on the y-axis. This plot is a representation of the overall clustering structure of the
data. OPTICS does not assign clusters per se, but they can result from interpreting the
reachability plot (much like in a dendrogram). The interpretation usually is that a “valley”
stands for a possible cluster (as it is a dense accumulation of points) whereas “peaks” are
separators between possible clusters (as the minimum reachability of the point that shows
the peak to the preceding point is large). The number of valleys can be interpreted as
corresponding to the number of clusters. A valley within a valley is a denser accumulation
nested within a less dense accumulation. There also is a method, the ξ-strategy, to detect
and extract clusters hierarchically based on the steepness in the reachability plot and to
assign observations to the clusters automatically. In this the ξ-parameter can be interpreted
as the steepness threshold to identify clusters in the reachability plot. It classifies clusters
by the change in relative cluster density. The technical details for all of this can be found
in [11].

Based on OPTICS, there also exists a goodness-of-clustering index that summarizes the
reachability plot into a single number: The OPTICS Cordillera, OC(X) [12]. It measures
how rugged the reachability plot is by calculating the length of the up and down of the r∗i
over the ordering R(X). A larger OC(X) stands for a more rugged reachability plot and thus
more density-based clusteredness of X. The OC(X) features the same two parameters k and
ε with the same role as OPTICS (in the function cordillera of R package cordillera they
are called minpts and epsilon, respectively). The length can be any Lq-norm, with q ≥ 1
(typically 1 or 2, argument q in cordillera). The OC(X) has favorable properties for
measuring density-based clusteredness in a data matrix, including a monotonic increase in
the value if the clusters become more dense, if the clusters become more separated or if the
numbers of clusters increases. See [12] for technical details.

We use the normalized version OC′(X), which lies between 0 and 1 with 0 being a
perfectly regular arrangement and 1 a perfectly clustered arrangement, both as defined
in [12]. For this normalization next to the OPTICS parameters k and ε and the q, one also
needs to fix a dmax (argument dmax), which defines the maximal between-cluster-distance to
derive the maximally clustered arrangement (maximal clusteredness is defined as having
o/k clusters of exactly k objects all coinciding at the same point, respectively, and that these
clusters are all at a distance of dmax from each other). The dmax is also a winsorization limit
of the r∗i so that any r∗i > dmax is set to dmax; it provides robustness against outliers.
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2.4. Cluster Optimized Proximity Scaling (COPS)

A standard but ad hoc approach is to use different flavors of MDS to scale the data
and visualize the configuration and then use clustering methods to assess the clusteredness
and clustering structure of the data in the original space or in the configuration (e.g., [31]).
More elegantly, we can also combine MDS and the OPTICS Cordillera in one go to a variant
of MDS that is called Cluster Optimized Proximity Scaling or COPS [1]. It is a proximity
scaling method that penalizes the MDS fit measure stress with the OC′(X) to allow finding
a configuration that is close to the corresponding unpenalized optimal MDS configuration,
but shows higher clusteredness. This can be useful for exploring or generating discrete
structures or to preserve clusters.

In [1], two ways of how COPS can be used are presented: In one variant (COPS-C),
one looks for an optimal configuration X∗ directly, given transformation parameters θ (e.g.,
θ = (κ, λ) in Equation (3)). This yields a configuration that has an equally or more clustered
appearance than the standard MDS with the same transformation parameters. In the other
variant (P-COPS), one can automatically select optimal transformation parameters so that
the clustered appearance of the configuration is improved.

Formally, in COPS, one combines a normalized stress function σ′(X|θ) given hyper-
parameter vector θ (for the transformations) and the OPTICS Cordillera (OC′(X)) to the
following objective:

σCOPS(X|θ) = v1 · σ′(X|θ)− v2 ·OC′(X), (5)

with scalarization weights v1, v2 ∈ R≥0. The stress in Equation (5) is then minimized either
over X (COPS-C) or over θ (P-COPS). Note we abused notation a bit here to convey the
idea by only gave the target function for COPS-C; the one for P-COPS needs to be written a
bit differently. We refer the interested reader to [1].

The scalarization weights v1, v2 are treated as given and in COPS-C are typically a
convex combination v2 = 1 − v1 with 0 ≤ v1 ≤ 1. Minimizing σCOPS then jitters the
configuration that would be obtained from minimizing σ′ alone towards a more clustered
arrangement; the amount of jittering is governed by the values of v1, v2. For a given θ,
if v2 = 0, the result of the above equation is the same as solving the respective MDS
problem given by σ′. In general, we recommend to put much more weight on v1 so as to
stay faithful to the MDS result (say, v1 > 0.9; the default in cops is v1 = 0.975). It is also
prudent to try out different starting configurations and choose the result that shows the
overall lowest value for σCOPS(X|θ) [32].

In this article, we fit COPS-C with different given transformations for ratio, interval,
s-stress and multiscale MDS. We will also use P-COPS to select clusteredness-optimal
transformation parameters θ∗ = (κ∗, λ∗) for p-stress and then run COPS-C with p-stress
and the θ∗ we found from P-COPS.

2.5. Facets

From a practical point of view, the important thing is the interpretation of a PS
configuration. Obviously, one can interpret the pairwise distances between the points in
the configuration plot. The closer two points, the less dissimilar the corresponding objects
are, assuming the PS solution fits well. As opposed to principal component analysis (PCA),
the interpretation of the p dimensions is of less importance in PS [22], especially since the
axes can be rotated and reflected arbitrarily without changing the stress value and therefore
the actual fit.

Another avenue of interpretation is by facets. MDS has a long tradition in the field of
facet theory [13,33] where researchers aim to partition a configuration space into connected,
non-overlapping, and exhaustive parts, which are then subject to interpretation. A long-
standing problem has been how to optimally identify these facets in a data-driven way.
Ref. [14] propose to use support vector machines (SVM) [34,35] to solve this problem.
The basic idea is to take a PS configuration and perform a supervised classification of the
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configuration space with given facet labels, leading to a regional interpretation. For the
supervised classification, SVM are used. SVM are non-probabilistic classifiers that allow
for linear and nonlinear classification. A key component of any SVM is the kernel function,
which allows mapping of the data into a transformed feature space where the classification
problem becomes linear. In the original input space, this determines the functional shape
of the classification boundaries used to separate the points into regions in the feature space
(i.e., the PS configuration in our case). The most prominent kernels are the linear kernel
(linear boundaries), the polynomial kernel (nonlinear boundaries using a polynomial of
a particular degree), and the radial basis function (or Gaussian) kernel (nonlinear, radial
boundaries; they depend only on the distance between the points and a center). We will
use this approach in the data example below.

2.6. Data Description

The data for the present study are drawn from three randomized trials of the MATCH
youth psychotherapy, each conducted in a community treatment setting by community
clinicians working in these clinics [36–38]. All participants in these trials who received
the MATCH youth psychotherapy (i.e., were not in a control condition) and who received
at least one session of MATCH were included. The use of MATCH treatment modules
was recorded by clinicians for each treatment session. Clinicians could use any MATCH
treatment module in any order for each client and could use each module in as many
sessions as they wished. The raw data are the counts of how many sessions each of the
32 MATCH-ADTC modules was used with each of the 449 patients over the course of
their treatment. Thus, for each module, we have a count profile, for example, the module
“GettingAcquainted” was used 2 times with the first patient, 1 time with the second, 0 times
with the third and so on. We are interested in making statements about the usage of the
modules, so the focus of our investigations are dissimilarities of the modules.

The profiles of the raw counts of how often each module has been used over the
patients are what we use to calculate the matrix of pairwise φ-distances δij = dφ

ij between
modules (function phidistance in package cops). Our distance matrix is available in cops
via data(matchphi) containing the object matchphi (or directly as cops::matchphi). We
create a new object distM to work with

R> distM <− cops : : matchphi

which is visualized in Figure 1 (darker shades stand for less distance and lighter for
more distance).
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Figure 1. An image plot of the pairwise distance matrix with elements δij = dφ
ij for the MATCH data.

Darker shades stand for less distance.

We see that there seem to be blocks of modules that are closer together and more
distant from other modules. We also see that the modules “GettingAcquainted” and
“WrapUp”, and to a lower degree “QuickCalming”, “LearningToRelax” and “PbmSolving”,
are closer to more modules than what is typical for the data. “Booster”, “Narrative” and
“SafetyPlanning” seem to have the highest average distances to all other modules.

3. Results

In this section, we walk the reader through the analysis and results of the analysis
strategy outlined above.

3.1. Clustering Structure in the Original Space

Since we are interested in exploring the similarity of the usage of MATCH-ADTC
modules (via the count profile over the patients) and finding clusters based on module
usage, we first start with looking at an OPTICS analysis of the data in the original space.
For this, we use the implementation optics from package dbscan [39] and cordillera
from cordillera [12].

We are especially interested in clusters that comprise at least three modules (that is
the parameter k, the minimum number of points per cluster specified as minPts = 3). This
was inspired partly by the FIRST principles ([7], see also Section 3.3), a theoretical category
system for treatment techniques. Theoretically classifying the MATCH modules based
on FIRST leads to categories that comprise at least three modules (with the exception of
FeelingCalm comprising two). Together with the consideration that allowing for clusters
with less than three modules is likely to generate a large number of clusters with 32 modules,
leading to fragmentation, we chose k = 3. We do not expect any of the modules to be “just
noise”, so the ε parameter that defines the neighborhood around a point in which to look
for other points just needs to be set sufficiently high to consider each point as a possible
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neighbor of every other point; we use eps=10 (10 times the maximum possible φ-distance).
Setting a smaller ε has the effect of letting points in sparsely populated regions be labeled
as noise, which can make sense if we cannot take the data at face value because we suspect,
e.g., contamination, error-prone measurement or similar in the data. For the OC′(X) via
cordillera, we use the same setup as for optics (so, eps=10 and minpts=3) and measure
it in terms of the L2-norm (Euclidean), so q=2. As dmax, we will use the function default,
which is the max r∗i , making the OC′(X) a goodness-of-clustering index relative to the
largest reachability observed for the distance matrix.

We run OPTICS with this setup and also calculate the OPTICS Cordillera by

R> o1 <− dbscan : : o p t i c s ( as . d i s t ( distM ) , minPts =3 , eps =10)
R> c1 <− c o r d i l l e r a : : c o r d i l l e r a ( as . d i s t ( distM ) , minpts =3 , eps =10 ,q=2)

The OC′(X) is around 0.14, which suggests that the modules are not very clustered
based on the φ-distance and minpts=3.

The corresponding reachability plot with the OC(X) (black line) is shown in the top
panel of Figure 2. We see there is some but not much up and down as captured by the
OC(X); mostly the reachabilities are relatively high, which means points are relatively
far from their closest neighbors, and the valleys are not very deep meaning that the
clusters existing in the original space are not very dense, with the two closest objects being
modules “Praise” (module 24) and “OneOnOne” (23). They seem to belong to a cluster
with modules “GivingEffInst” (26), “ActiveIgnoring” (25), “LearningAboutBehavior” (22)
and “EngagingParents” (21). From visual inspection of the reachability plot, it looks as
though there may be 4 or 5 clusters (valleys) in the original space, but these clusters are
neither well-separated (average within cluster reachability is not much lower than the
peaks) nor very cohesive (valleys are not deep). It also appears that the clusters are nested
within bigger clusters (in Figure 2 to the left and right of the module “SafetyPlanning” (9)).
Overall, the picture suggested in the original space is one of a relatively regular distribution
of the modules, with little clustering information.
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Figure 2. OPTICS reachability plot with stylized OC(X) (top) and with coloring based on the clusters
found by the ξ-strategy (bottom). In the lower panel, the cluster nesting is displayed below the plot.
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The OC(X) already suggested that the clusteredness of the modules in the original
space is not great. We will now use the ξ-strategy on our OPTICS result to suggest clusters
(function extractXi); for this, we set the xi parameter to 0.039, which is just shy of the
minimum reachability between modules 23 and 24. The xi parameter can be interpreted
as detecting clusters in the reachability plot if there is a change of more than ξ in relative
cluster density or in the steepness in the reachability plot. This may signal a new cluster.
The value for xi needs to be specified by the user and often one has to try a few values to
find one that is working well; in general the smaller it is, the more clusters are found.

R> c l s <− dbscan : : e x t r a c t X i ( o1 , 0 . 0 3 9 )

The ξ-strategy with xi=0.039 suggests that there are four clusters of at least 3 points
with two modules not assigned (noise, the modules “Booster” (32) and “Safety Planning”
(9)). The bottom panel in Figure 2 shows the reachabilities colored with the cluster as-
signment (black is noise) and the nested clusters as color lines in the lower part of the
plot. There is a big cluster (red) containing a denser cluster (green); the latter are mod-
ules “LearningAnxChild” (4), “LearningAnxParent” (5), “FearLadder” (3), “Practicing” (6),
and “CognitiveSTOP” (8) and they are nested within the larger red cluster additionally
comprising modules “GettingAcquainted” (1), “PbmSolving” (13), “ActivitySelection” (14),
“LearningDepChild” (11), “LearningDepParent” (12), “LearningToRelax” (15), “QuickCalm-
ing” (16), “CognitiveBLUE” (18) “CognitiveTLC” (19), “PositiveSelf” (17), “PlansForCoping”
(20) (to the right of green cluster) and “WrapUp” (2), “Maintenance” (7), and “Narrative”
(10) (to the left of green). The blue cluster comprises “Rewards” (27), 26, 25, 24, 23, 22, 21 and
is nested in the turquoise one that additionally comprises “timeOut” (28), “LookingAhead”
(31), “MakingAPlan” (29) and “DailyRptCard” (30) on lower density.

So far, we have learned the following: In the original space, clusteredness is not
high and the clustering is not particularly suggestive, with two large clusters containing
two nested clusters each. The large cluster (red) contains roughly two-thirds of the mod-
ules, those that are anxiety-, trauma- and depression-related, as well as the modules that
are used for starting and ending a treatment. Within that cluster, “LearningAnxParent”,
“LearningAnxChild”, “FearLadder”, “Practicing” and “CognitiveSTOP” form a denser
cluster. The other cluster (turquoise) comprises roughly the other one-third of the mod-
ules, which are the conduct-based modules with the dense cluster around “OneOnOne”
and “Praise”.

3.2. Scaling with COPS

While the OPTICS analysis leaves us wanting a bit, we now turn to scaling the modules
in a reduced space. This allows us not only to visualize the spatial arrangement of the
modules in a Cartesian space, but perhaps suggests clusterings that we have not been able
to detect before.

With the R package cops, we can fit two instances of the COPS framework: First,
COPS-C with the fitting function copstressMin or using cops and specifying variant =
’COPS-C’. Second, we can also fit P-COPS (returning optimal parameter for p-stress), either
with the fitting function pcops or cops with variant=’P-COPS’. In this article, we will
focus on the COPS-C functionality.

Each variant’s fitting function has a number of arguments to allow for many different
types of models to be fitted. We give a short overview of the main ones in this article; a
more comprehensive discussion is available in the package vignette to cops (obtainable in
R via vignette(’cops’)).

In copstressMin, we can choose the optimal scaling transformation with the argument
type to be ’ratio’, ’interval’ or ’ordinal’. If a p-stress COPS (or any of its special
cases) should be fitted, we can set the kappa, lambda and/or nu parameters to the desired
values in copstressMin; note then only ratio transformations are allowed, so type =
’ratio’ only. In what follows, we will use COPS with the following stresses: First, we
look at a ratio COPS-C with v2 = 0 (corresponding to standard ratio MDS as reference).
We then fit a ratio COPS-C (type = ’ratio’), interval COPS-C (type = ’interval’) and
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two specific p-stress models, multiscale COPS-C (with distM2 = log(1 + distM), type
= ’ratio’ and kappa = 0.1) and s-stress COPS-C (type = ’ratio’, kappa = 2, lambda
= 2). We also run a P-COPS with loss = ’powermds’ (i.e., p-stress without weights) and
select an optimal κ, λ for p-stress. We then refit a p-stress COPS-C (type = ’ratio’) with
the optimal κ∗ and λ∗ as respective arguments for kappa and lambda.

For COPS models, we can set the weight v1 of the stress measure with stressweight
and the weight v2 for the OC′(X) with cordweight. We use v1 = 0.975 (stressweight
= 0.975) and v2 = 0.025 (cordweight = 0.025) in all subsequent COPS-C models apart
from standard ratio MDS, so essentially we are willing to sacrifice up to 2.5% of fit for a
more clustered appearance. This is a fairly low value (and the default), so this will lead to a
configuration that is still very close to the optimal one for the corresponding standard MDS
(which can be obtained by setting v2 = 0). The choice of v1 and v2 is up to the user, but we
recommend to use relatively high values of v1 (e.g., v1 > 0.95 and v2 < 0.05). We also point
out that in terms of optimization, a v2 that is close to 0 makes the complicated optimization
of COPS problem less difficult. The weighting for P-COPS works a bit differently, but there
is a smart default (see [1] for details).

The number of dimensions of the target space can be changed with ndim. It is also
possible to specify a symmetric weight matrix weightmat and an initial configuration init,
which can be used to try out different starting configurations. The minimization of (5)
is complicated and there are many different heuristics implemented; the optimization
strategy can be changed with the argument optimmethod. The default strategy usually
works well, so we stick to that one. We let the solver in COPS-C use up to itmax=50000
iterations, which will likely allow convergence of the optimizer at the default convergence
criterion. We note that such a high itmax is used for illustration here and is overkill in most
applications; normally we use between 5000 and 10,000.

What is left are the arguments for measuring clusteredness with the OC′(X). These
are the same ones as in cordillera and mainly are minpts (minimum number of points k
to make up a cluster) and dmax the maximum reference distance and winsorization limit.
The decision on k must be made on substantive grounds; we will use minpts = 3. As dmax,
we set 1, which corresponds to around 1.5 times the maximum reachability in the standard
ratio MDS; this provides robustness to the OC′(X) against noise points or outliers that have
larger reachabilities than that. We may also set q, which we keep at 2 and epsilon, but that
can just be set to some high number (in our case the default, which is 10). Note we now want
to compare different X, so we need to have one dmax that defines the maximal clusteredness
for all; then, the OC′(X) is the clusteredness achieved relative to that maximum for all X.
When looking at only one X, one can just use the default for goodness-of-clustering, but
that default is likely to change between different X. So, when comparing different X we
should use the same dmax, k, q, ε.

So, let us set up the control parameters in R.

R> ## OC parameters
R> minpts <− 3
R> dmax <− 1
R> q <− 2
R> ## i t e r a t i o n s
R> itm <− 50000

Our starting point is the standard ratio MDS solution, which we can obtain by setting
stressweight = 1 and cordweight = 0 in the call to copstressMin.

R> ## Standard MDS
R> MDSM0 <− cops : : copstressMin ( distM , # d i s t a n c e o b j e c t
type =" r a t i o " , #MDS type
dmax=dmax , minpts=minpts , q=q , # metaparameters
s t r e s s w e i g h t =1 , cordweight =0 , #v1 and v2
itmax=itm )
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This solution has a stress-1 (square root of stress) of 0.315 and an OC′(X) = 0.11 for the
respective Cordillera parameters. As before with our OPTICS investigation in the original
space, in terms of clusteredness this is relatively low.

The configuration plot and the corresponding reachability plot with stylized OC(X)
can be found in Figure 3. They corroborate that the clusteredness obtained for this result
is not very high and that the arrangement of modules has a relatively low density for
all. Nevertheless, we can already see which modules seem to be used similarly over the
patients: In the top left quadrant, we find modules that are related to depression, whereas
in the bottom left quadrant we find modules related to anxiety. In the top right and bottom
right quadrant, we have modules that are related to conduct problems. The trauma related
modules are located between the anxiety modules and the conduct modules. The icebreaker
module (“GettingAcquainted”) and the finisher (“WrapUp”) are located between the
depression and anxiety modules. Still, the modules are not arranged in a way that allows
us to identify a more detailed organizing principle.

To change that, we now put some more weight on the Cordillera as described above
by setting stressweight=sw and cordweight=cw.

R> ## Weights
R> cw <− 0 .025
R> sw <− 0 .975

The change in clusteredness is quite drastic: Stress-1 became only slightly worse
(0.319), but the OC′(X) more than quadrupled to OC′(X) = 0.47. This is also easy to
discern in the configuration plot and the corresponding reachability plot, which can be
found in Figure 4. The reachability plot is much more rugged now, reflecting the higher
clusteredness and clearer clustering structure as seen in the configuration plot.

This result opens up many new avenues for interpretation: The basic quadrant struc-
ture we already identified in the standard MDS is upheld. Within those, however, we now
find new and clearer clusters of modules. For example, it seems that “GettingAcquainted”
has a similar profile to the relaxation modules, suggesting that they are used similarly over
the youths. The anxiety module “FearLadder” and the learning about anxiety modules now
cluster more strongly and “Practicing” is moved closer to them. The trauma modules are
still separated clearly from the anxiety modules, but are close. We find additional clusters
also for the conduct modules, which seem to group in three clusters: the clusters of “En-
gagingParents”, “LearningAboutBehavior” and “OneOnOne”, a cluster of “GivingEffInst”,
“Praise”, “Rewards”, “ActiveIgnoring” and one comprising “timeOut”, “MakingAPlan”,
“LookingAhead” and “DailyRptCard”. “Booster” appears removed from any clusters.
Among the depression modules, the modules are separated into two more obvious clusters,
each with a denser sub-cluster: the aforementioned “GettingAcquainted” and relaxation
module cluster on the one hand and “LearningDepChild”,“LearningDepParent” and “Ac-
tivitySelection” on the other. There is already much to be hypothesized from this result,
but we will look at whether there are any changes if we use other stress models as well.

We next use COPS-C with the interval transformation. Compared to ratio MDS,
this essentially removes shared absolute information in the proximities from the fitted
distances in the configuration due to allowing a constant in the disparities. A fitted
distance of 0 then represents the shared absolute information and the fitted distances only
approximate the information that is left, therefore emphasizing the dissimilarity difference
more strongly; this increases the coefficient of variation of the d̂ij(X) and we expect a clearer
clustering structure.
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Figure 3. Configuration plot (top) and reachability plot (bottom) with stylized OPTICS Cordillera
(black line) for the standard ratio MDS of the MATCH-ADTC modules.
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Figure 4. Configuration plot (top) and reachability plot (bottom) with stylized OPTICS Cordillera
(black line) for the ratio COPS-C of the MATCH-ADTC modules.
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R> ## I n t e r v a l COPS−C
R> MDSMint <− cops : : copstressMin ( distM , type =" i n t e r v a l " ,
dmax=dmax , minpts=minpts , q=q ,
s t r e s s w e i g h t=sw , cordweight=cw ,
itmax=itm )

This solution has a stress-1 of 0.22 and OC′(X) = 0.49. The configuration plot and the
corresponding reachability plot can be found in Figure 5. Notice the winsorization effect of
dmax for the reachabilities for modules 9, 31, 32.
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(black line) for interval COPS-C of the MATCH-ADTC modules.
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The clustering has indeed become clearer. In particular, clusters are now much denser
than they were in the ratio solution owing to the interval transformation. We also see
that within the overall organizing principle we identified before, clusters of modules are
emphasized or new ones are revealed. For example, “Quick Calming” and “Learning-
ToRelax” are now still close to “GettingAcquainted” but form their own tuple. They are
also located in between depression and anxiety modules. The conduct modules “En-
gagingParents”, “LearningAboutBehavior”, “OneOnOne”, “Praise”, “ActiveIgnoring”,
“Rewards” and “GivingEffInst” form a dense cluster and so do “MakingAPlan”, “timeOut”,
and “LookingAhead”. The two trauma modules are now more clearly separated from
the anxiety modules, but still relatively close. The anxiety modules form a bigger cluster
with a denser nested cluster of “FearLadder”, “LearnAnxParent”, “LearnAnxChild” and
“Practicing”. The non-relaxation related depression modules can be separated into two
groups: “LearningDepChild”, “LearningDepParent”, “ActivitySelection”, “PbmSolving”
on the one hand and “PositiveSelf”, “CognitiveBLUE”, “CognitiveTLC”, “PlansForCoping”
on the other.

We now turn to see if there is additional insight we can gain from fitting other stresses.
We first fit an s-stress COPS-C model, which emphasizes larger distances more strongly as
ratio or interval COPS-C did; this may allow us to learn something new by focusing mostly
on the modules with the largest profile distances. We then fit a multiscale COPS-C that
does basically the opposite of s-stress by emphasizing local distances and variation more
strongly because smaller distances are made relatively larger and larger distances are made
relatively smaller by the log transformation. The respective configuration plots and the
corresponding reachability plots can be found in Figures 6 and 7.

We start with s-stress.

R> ## S− S t r e s s COPS−C
R> MDSMsst <− cops : : copstressMin ( distM , type =" r a t i o " , kappa =2 , lambda =2 ,
dmax=dmax , minpts=minpts , q=q ,
s t r e s s w e i g h t=sw , cordweight=cw ,
itmax=itm )

The s-stress COPS-C gives a stress-1 of 0.419 and an OC′(X) = 0.52. In Figure 6, we
see that clusteredness is high for the s-stress model (0.52), leading to many dense clusters
of around 3 modules, which are often also nested within a larger cluster. The general story
that we discussed in ratio and interval COPS-C is largely reproduced here, but emphasized:
The conduct and depression modules cluster together and are organized in a number of
similar clusters to what we had before, but the clusters are much denser. What is new is
that with s-stress the trauma and anxiety modules now form one cluster with two very
dense nested ones. “Booster” and “WrapUp” are individually singled out as being used
differently to all other modules.

For multiscale COPS-C, we manually transform the δij to log(1 + δij) because they lie
between 0 and 1, and we need non-negative dissimilarities. We further use the p-stress
approximation to multiscale stress with κ = 0.1.

R> distM2 <− log (1+ distM )
R> diag ( distM2 ) <− 0
R> MDSMmsc <− cops : : copstressMin ( distM2 , type =" r a t i o " , kappa = 0 . 1 ,
dmax=dmax , minpts=minpts , q=q ,
s t r e s s w e i g h t=sw , cordweight=cw ,
itmax=itm )
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Figure 6. Configuration plot (top) and reachability plot (bottom) with stylized OPTICS Cordillera
(black line) for s-stress COPS-C of the MATCH-ADTC modules.
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Figure 7. Configuration plot (top) and reachability plot (bottom) with stylized OPTICS Cordillera
(black line) for multiscale COPS-C of the MATCH-ADTC modules.
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For multiscale COPS-C (see Figure 7), we again have high clusteredness (0.51). While
confirming some of the already established patterns, we also find new things: Of note is that
“WrapUp” takes the center stage and is less close to “GettingAcquainted” as in the ratio and
interval. The anxiety modules seem to fall into one cluster apart from “CognitiveSTOP” and
“Maintenance”, the latter now bridging the anxiety and trauma modules. “Booster” seems
to be used very differently to all the other modules, even the related conduct modules.
To a certain degree, this was already suggested by prior analyses, but only in multiscale is
“Booster” heavily represented as an outlier, mirroring the results from the OPTICS analysis,
where it was considered to be a noise point.

Ratio, s-stress, and multiscale MDS are all special cases of p-stress resulting from
different exponents of the power transformations κ and λ. The COPS framework also
allows us to use this to search for optimal power transformations to obtain an MDS model
that is highly clustered, without having to penalize the fit itself when looking for the
configuration (as in COPS-C). This method is called P-COPS and is a special case of a larger
framework, the STOPS framework, which allows us to select parameters in MDS based on
structural considerations [2]. We can run P-COPS for our data and see which θ∗ = (κ∗, λ∗)>

is suggested. We use a p-stress without weights (loss=‘powermds‘) as the badness-of-fit
measure. We specify to search for an optimal κ, λ in the region [0.01, 5] for each parameter
(thus encompassing ratio, s-stress and multiscale). This is done with the arguments lower
and upper that take a numeric vector of the same length as θ (here 2) with the lower and
upper boundaries for the parameters, respectively.

R> ## P−COPS ( powermds l o s s )
R> MDSMpco <− cops : : pcops ( distM , l o s s ="powermds " ,
minpts=minpts , rang=c ( 0 ,dmax ) ,
upper=c ( 5 , 5 ) , lower=c ( 0 . 0 1 , 0 . 0 1 ) ,
i tmaxi =10000)

The optimal θ∗ found is (0.467, 3.644)>, which are in MDSMpco$par. Note that this
means that the ratio, multiscale or s-stress models were not selected as optimal; rather the

selected MDS model is close to δ̂ij = |b|δ3.6
ij and d̂ij(X) =

√
dij(X), which means it puts

a lot of emphasis on the large dissimilarities and maps them to a concave function of the
Euclidean distances emphasizing the variation in the smaller distances. The OC′(X) for
this MDS model is 0.37, which is quite high given that we only achieved it by changing the
transformation parameters and not by penalizing the configuration.

Nevertheless, we can combine the two: We can use the parameters found with P-COPS
and fit a p-stress COPS-C with said κ∗ and λ∗ to further improve the clusteredness of that
configuration. We also use the P-COPS configuration as the starting configuration init.

R> ## Power S t r e s s COPS−C
R> MDSMpst <− cops : : copstressMin ( distM ,
kappa=MDSMpco$par [ 1 ] , lambda=MDSMpco$par [ 2 ] ,
i n i t =MDSMpco$fit$conf , dmax=dmax , minpts=minpts , q=q ,
s t r e s s w e i g h t=sw , cordweight=cw ,
itmax=itm )

The stress-1 for this p-stress COPS-C is 0.091 and the OC′(X) = 0.43. The resulting
configuration plot and the corresponding reachability plots can be found in Figure 8.

We see that this configuration seems like a compromise of the results of the ratio,
multiscale and s-stress models: dense and well separated clusters, “GettingAcquainted”
and “WrapUp” are again scaled closer together, the conduct, depression, anxiety and
trauma modules are grouped in well-separated clusters and within these clusters the
scaling seems to suggest the nested subclusters already mentioned. “Booster” is once again
clearly singled out as an outlier.
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(black line) for the standard ratio MDS of the MATCH-ADTC modules.
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3.3. Faceting with COPS and SVM

We already alluded numerous times to a congruence between the spatial arrangement
of the modules in the COPS results and the behavioral health concerns that MATCH-ADTC
was developed for. Note that we arrived on that in an exploratory fashion; in this section,
we formally analyze this congruence with the facet framework of [14].

We use SVM to identify facets in the reduced space corresponding to the problems that
MATCH addresses (called protocols): anxiety (ANX), depression (DEP), trauma (TRA) and
conduct (CON). We also define the protocol General (GEN) to capture the cross-protocol
modules “GettingAcquainted” and “WrapUp”.

We will use the results of the interval COPS-C and of the p-stress COPS-C to derive
our facets. We fit SVM with a radial kernel. We tune the SVM over costs of a constraint
violation of 10 to 100 in steps of 2. The optimal cost parameter of the SVM is selected via
a 10-fold cross-validation. For the best SVMs (optimal cost parameters of 16 and 18 for
interval and p-stress COPS, respectively) we obtain perfect predictions: The partitioning
of the COPS space allows us to perfectly allocate each module to its respective protocol.
This is displayed in Figure 9, where we used svm_mdsplot from smacof, which also works
for objects returned by cops. The most important information in this plot are the colored
regions. To read the labels that are overplotted, one can refer to the configuration of points
in Figures 4 and 8, respectively, as they are the same ones.

Each protocol has a region associated with it in the respective COPS-C space, and each
module’s assignment to its corresponding facet is perfect. There is also a circumplex-type
structure of the protocol facets, meaning that trauma is located next to anxiety, anxiety
next to depression and depression next to conduct. Conduct then also borders on trauma,
although the modules of each protocol are further apart (especially in the p-stress result).

When exploring the configurations with the facets in Figure 9, we see that the scal-
ing results suggest clusters within each facet. To explore this further, we made use of
the FIRST principles [7] that provide a theory-based categorization of the modules into
empirically supported principles of change (ESPCs), or common cross-cutting treatment
techniques in evidence-based youth psychotherapies. These ESPCs were derived via a
review of relevant literature, e.g., [40,41], and subsequently by a panel of experts consisting
of both researchers and practitioners [7]. These ESPCs include “Relationship Building”
(e.g., get-to-know-you activities and psycho-education; RelBuild), “Future Planning” (e.g.,
discussing how a skill might be used in the future and how to identify relapses; FutPlan),
“Trying the Opposite” (e.g., exposure to feared stimuli and behavioral activation; TTO),
“Repairing Thoughts” (e.g., working to change hostile attributions and excessively negative
thinking patterns; RepThou), “Solve Problems” (e.g., naming the problem and thinking of
possible solutions; SolvProb), “Increasing Motivation” (e.g., rewards for desired behaviors
or time outs; IncMot) and “Feeling Calm” (e.g., deep, slow breathing and calming imagery;
FeelCalm). Each module belongs to one ESPC. We thus classify the modules based on
protocol and ESPC into a combined category. For example, “Practicing” is ANX-TTO and
“Narrative” is TRA-TTO. We are interested in two aspects: a) within each protocol are there
modules that are used similarly and are of the same ESPC or b) within each protocol, do the
similar modules vary with respect to ESPCs, so do clinicians use modules from different
EPSC similarly?
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To that end, we use the results from ratio and interval COPS-C and color the modules
based on their combined Protocol-ESPC categorization. This is shown in Figure 10, where
in both results we see that in the top left quadrant, the depression facet, modules of different
ESPC cluster together (e.g., for interval COPS-C “LearningDepChild” and “LearningDep-
Parent”, which are RelBuild with “ActivitySelection”, which is TTO and “PbmSolving”,
which is SolveProb). The use of the modules in this facet appears relatively diverse; if
we look at the ratio COPS-C result then the depression facet shows a fairly equidistant
use of modules from six different ESPCs (RelBuild, TTO, RepThou, FutPlan, FeelCalm
and SolvProb). In the interval COPS-C there is fragmentation into more homogeneous
subclusters, but there are still at least three ESPCs per cluster (out of four modules). The one
exception are the FeelCalm modules, which are of the same ESPC.

For anxiety, the picture is a bit different. In both COPS-C results, there is a cluster with
three RelBuild modules (“LearningAnxChild”, “LearningAnxParent”, “FearLadder”) and
also “Practicing” (TTO). “Maintenance” and “CognitiveSTOP” are a bit removed and form
a relatively dispersed cluster with the RelBuild ones. Overall, in the anxiety facet, the use of
the modules is less diverse than it was with depression. This is partially attributable to the
anxiety facet only comprising modules of four ESPCs, but still the anxiety modules show a
more homogeneous picture due to the ANX-RelBuild modules scaled close together.

For conduct modules, we find two dense clusters of at least three modules (interval
COPS-C) or three clusters of at least three modules (ratio COPS-C) with varying densities.
In the ratio COPS-C, we see that two out of three clusters are relatively homogeneous
with respect to the ESPCs. The cluster of “ActiveIgnoring”, “Praise”, “Rewards” and
“GivingEffInst” is perfectly homogeneous with instances of the IncMot ESPC. The other
dense cluster contains “LearningAboutBehavior” and “EngagingParents”, which are both
RelBuild and they cluster with “OneOnOne”, which is IncMot. In the interval COPS-
C, these two clusters are merged into one very dense cluster, making this a relatively
homogeneous cluster comprising seven modules of only two ESPCs (IncMot and RelBuild).
There is also a relatively diverse dense cluster in the conduct facet, which is the one
comprising “MakingAPlan” (SolvProb), “timeOut” (IncMot), “LookingAhead” (FutPlan)
in interval COPS-C, which presents as a dispersed cluster enhanced with “DailyRptCard”
(IncMot) in the ratio COPS-C.



Psych 2023, 5 297

GettingAcquainted

WrapUp

FearLadderLearningAnxChild

LearningAnxParent

Practicing

Maintenance

CognitiveSTOP

SafetyPlanning

Narrative

LearningDepChild

LearningDepParent

PbmSolving
ActivitySelection

LearningToRelax

QuickCalming

PositiveSelf

CognitiveBLUE

CognitiveTLC

PlansForCoping

EngagingParents
LearningAboutBehavior

OneOnOne

Praise

ActiveIgnoring

GivingEffInst

Rewards

timeOut

MakingAPlan

DailyRptCard

LookingAhead

Booster

−1

0

1

−1 0 1
D1

D
2

fac

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

ANX−FutPlan

ANX−RelBuild

ANX−RepThou

ANX−TTO

CON−FutPlan

CON−IncMot

CON−RelBuild

CON−SolvProb

DEP−FeelCalm

DEP−FutPlan

DEP−RelBuild

DEP−RepThou

DEP−SolvProb

DEP−TTO

GEN−FutPlan

GEN−RelBuild

TRA−SolvProb

TRA−TTO

Ratio COPS−C

GettingAcquainted

WrapUp

FearLadder
LearningAnxChild

LearningAnxParent
Practicing

Maintenance

CognitiveSTOP

SafetyPlanning

Narrative

LearningDepChild

LearningDepParent

PbmSolving

ActivitySelection

LearningToRelax

QuickCalming

PositiveSelf

CognitiveBLUE

CognitiveTLC

PlansForCoping EngagingParents
LearningAboutBehavior

OneOnOne

Praise
ActiveIgnoring
GivingEffInst

Rewards

timeOut
MakingAPlan

DailyRptCard

LookingAhead

Booster

−2

−1

0

1

−1 0 1
D1

D
2

fac

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

ANX−FutPlan

ANX−RelBuild

ANX−RepThou

ANX−TTO

CON−FutPlan

CON−IncMot

CON−RelBuild

CON−SolvProb

DEP−FeelCalm

DEP−FutPlan

DEP−RelBuild

DEP−RepThou

DEP−SolvProb

DEP−TTO

GEN−FutPlan

GEN−RelBuild

TRA−SolvProb

TRA−TTO

Interval COPS−C

Figure 10. Configuration plot for the interval COPS-C solution (top) and the p-stress COPS-C (bottom)
based on the combined MATCH protocols and ESPCs categorization.



Psych 2023, 5 298

4. Discussion

In this article, we illustrated a modern exploratory data analysis approach centered
around a novel variant of multidimensional scaling, Cluster Optimized Proximity Scaling
(COPS), which we used to explore data on clinicians’ usage of the MATCH-ADTC for
behavioral health problems in youths. COPS combines badness-of-fit measures used in
MDS with an index for clusteredness of the configuration, the OPTICS Cordillera. It
provides a scaling that emphasizes clusteredness in the configuration. To complement
the scaling approach, we also used and illustrated the OPTICS clustering algorithm in
the original space. COPS and OPTICS made use of pairwise φ-distances between the
modules based on the profile of how often each module was used over the patients; in
the φ-distance, modules with similar count data profiles are closer. We toured through a
few stress functions and data transformations to highlight different aspects in the data,
including COPS models employing ratio and interval transformations in Kruskal’s stress
and multiscale stress, s-stress and p-stress. In doing so, we also illustrated the usage of the
R package cops, a comprehensive software suite for flexible multidimensional scaling in
the COPS framework.

When looking at our data example, we found that COPS provided a scaling of the
MATCH-ADTC that is sensible and allows us to visually infer clusters of modules from
the configuration. The COPS analyses highlighted many clusters of modules that open up
possible new interpretations of how MATCH-ADTC is used. For example, the icebreaker
“GettingAcquainted” and the relaxation modules (“LearningToRelax” and “QuickCalming”)
are often scaled close to each other, sometimes together with the finisher “WrapUp”.
Additionally, “ActiveIgnoring”, “Praise”, “Rewards”, “GivingEffInst” cluster together
throughout the analyses. “FearLadder”, “LearningAnxChild”, “LearningAnxParent” and
“Practicing” are used similarly over the youths and show up as a cluster. “SafetyPlanning”
and “Narrative” form a recurring cluster as well.

In general, the modules were scaled much in accordance with the MATCH protocol
they belong to (anxiety, depression, trauma, conduct or general). This was corroborated by a
facet analysis with SVM-MDS to define regions corresponding to the protocols in the COPS
space; we observed the perfect classification of modules to protocol facets. In hindsight,
the obtained scaling, the clusters and the facets are often not surprising when we look
at how clinicians use the MATCH process. They start with an initial primary problem
protocol and then are guided through a standard course of modules along a flowchart.
If new problems arise, then the instruction guides the clinicians into choosing another
protocol and following a standard course of modules to help with that. Therefore, finding
the modules grouped by the protocols and also within the facets to be grouped along the
standard course of modules is sensible. The COPS analysis of the usage of MATCH-ADTC
in many respects reflects the MATCH-ADTC flowcharts and instruction.

Of note is that while the protocols are recovered by COPS, they are not completely
recovered by the OPTICS clustering in the original space. What is interesting is that after
scaling and faceting the OPTICS clustering is discernible in the COPS results: If we take
the decision boundary of the conduct modules as splitting our space, we have almost
perfect correspondence of the two large OPTICS clusters to the conduct facet and a meta
facet comprising the rest in the COPS results. Thus, the COPS results not only suggest
a faceting that matches the clusters suggested by OPTICS’s ξ-strategy in the original
space, but also allow to differentiate more nested clusters, organize modules, protocols
and clusters more clearly, make the results more palatable and provide a more insightful
visualization. The scaling results are also more directly aligned with the ground truth of
the protocol and MATCH flowcharts.

In the COPS analyses, we further find clusters of modules within each of the protocol
facets. We used a classification that is also based on ESPCs to further investigate the
within-protocol clusterings. We find that in the depression protocol, the usage of modules
is diverse with respect to their ESPCs. This is less so in the anxiety and conduct protocols,
where we find homogeneous ESPC clusters. It appears that clinicians’ usage of modules is
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diverse with respect to ESPCs if the primary diagnosis is one of depression. For conduct and
anxiety problems, the variability in which ESPCs are used is lower and we find relatively
homogeneous ESPC usage when looking at clusters of at least three modules. This may be
because these ESPCs are seen as especially relevant or helpful in these two problem areas by
the clinicians. It may also mean that it is a design property of the standard course of modules
for anxiety and conduct to have modules of the same ESPCs occur together frequently,
whereas this is not the case for depression. If a higher diversity of ESPCs per protocol
is seen as better, then a revised version of MATCH-ADTC could take that into account.
Further research may address these questions suggested by the exploratory analysis.

By using different stresses in COPS, we were able to highlight different aspects in
the data. For example, multiscale and s-stress clearly indicate the “Booster” module as
an outlier. The “Booster” module is one that is used with conduct problems and happens
weeks after the other modules are already finished. In most scalings, “GettingAcquainted”
and the relaxation modules are scaled close to each other, which could mean that clinicians
use relaxation modules in a more general sense than as one belonging to the depression
protocol; indeed, in most COPS scaling, we could classify the relaxation modules as GEN
and still obtain a perfect faceting. Further research might look into the usage of the
relaxation modules and how they might be best used in MATCH.

For the method itself, we believe that this article showcased the potential that COPS
has as a method for multivariate data exploration in a practical setting. Even though we did
a purely data-driven analysis, using COPS gave us a number of questions and hypotheses
that are potentially interesting topics for further research around MATCH-ADTC and its
usage and we invite interested readers to follow-up on them. Overall, we believe this
article highlights the versatility and flexibility of the COPS framework for this type of
analyses. Since standard MDS models are a special case of COPS, the COPS framework
expands the possibilities practitioners have to analyze and explore their data with scaling
and ordination techniques. Practitioners who are already familiar with using MDS can
easily incorporate the COPS framework and the additional flexibility it offers in their daily
work. In the best sense of modern exploratory data analysis, COPS provides a way to look
at what the data seem to say. As our analyses showed, COPS can uncover underlying
structures and isolate important aspects in the data, some of which are expected, but some
are also surprising. We thus believe COPS to have tremendous potential for exploring data
based on dissimilarities.

5. Limitations

This study is not without limitations. First, in general, the results of proximity scaling
depend on the choice of dissimilarity measure and there are a myriad to choose from. We
believe that it is a good idea to think deeply about what properties a dissimilarity measure
should have for the data at hand. It often takes a lot of thought and trial-and-error with
different dissimilarity measures to find one that works well for an application, as was the
case for the present study.

Second, the optimization in COPS is very difficult due to the combination of the
smooth and non-convex stress measures with the OPTICS Cordillera that captures discrete
structures. Therefore, the typical objective function in COPS can have multiple local optima,
may not be smooth and can show discontinuities [1]. Optimization therefore has to rely on
heuristics that have no guarantees to converge to a global maximum and we recommend
running the optimization process for a number of different starting configurations and
choose the one that is smallest over these runs (we used five different starting configura-
tions). While this still does not guarantee that we found the global optimum, at least we
have chosen the lowest local optimum we encountered.

Third, all the methods we use have a high number of gauges to tune and refine the
results. While we do believe that this flexibility is good in an exploratory setting (cf. [42]),
it leaves many decisions to be made by the analyst and this can feel overwhelming. We
typically approach this in two ways: We start with using defaults and systematically vary
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the parameters that have the most influence on the results. For example, for OPTICS, the OC
and COPS, varying the k (minimum points per cluster) is something we do routinely, as is
using different λ, κ in COPS. Additionally, dmax often needs to be adjusted to get a good
balance between efficiency and robustness. Other important choices are the type of PS loss
we want to use with COPS, and setting the v1 and v2; the latter has a bearing on how easy
the objective is to optimize, with v2 → 0 making optimization easier. Similarly, in SVM
the choice of kernel can also have a strong effect on the result as well as the choice of
cost constraints (which we chose by cross-validation). For all of these parameters, it is
worthwhile to explore their effect for a given data set and to try out different values and/or
systematically vary them. There are also less important parameters, such as the q or ε in
OPTICS, the OC or COPS, that can just be set and typically need not be varied. In any
case, and with all these methods, we recommend thinking deeply about the effects of these
gauges and which ones should be turned. It is, however, difficult to know what the “best”
choice would be.

Fourth, we operated in an exploratory setting as opposed to a confirmatory one. We
thus aim at creating many different results and this includes some that may be dead ends.
As Tukey states for exploratory data analysis ([42] p. 3): “To fail to collect all appearances
because some–or even most–are only accidents would, however, be gross misfeasance
[. . . ]”. In such a setting, we therefore need to try out a lot of parameters and see what
changes, and the many different gauges help in that regard. We can then look at what
changes: If changes in parameters lead to large changes in results, then we view this as an
opportunity for exploration—every parameter has a defined effect and the results can be
interpreted in light of that. For example, if one has two results with different values for
σCOPS obtained from different starting configurations, but otherwise same parameter setup,
then at least one of them was trapped in a local minimum. If two results use different k,
dmax or ε, then this allows the exploration of the configuration for different cluster and
clusteredness definitions. If two results differ because of different stress transformations
that are used (e.g., interval vs. multiscale), then this allows exploration of how different
mappings of dissimilarities to fitted distances play out. It is in this spirit that we suggest
one uses the methods we presented. However, it can also be that any number of these
results are just “accidents”, so whatever substantive insights are gained that way should be
followed up by confirmatory approaches.

Fourth, for the substantive results, we found somewhat ironically what we should
have suspected all along, namely that the usage of the MATCH modules matches in large
parts the guidance in the instruction manual and flowcharts. While our results do suggest
intra-modular clusterings that may be worth exploring further, the results were not as
illuminating as we hoped beyond what experts of MATCH already knew. Thus, it may
be that MATCH was not the best choice for exploring the usage of modular therapies
in general as the course of MATCH modules is highly standardized and most clinicians
seem to follow it. A promising future direction could be to look at the usage of a modular
psychotherapy whose guidance is less standardized.

6. Computational Details

COPS models as illustrated can be fitted with the R package cops. For OPTICS, we
used dbscan [16]. SVMs were fitted with e1071 [19] and SVM-MDS can be plotted with
smacof [18]. For plotting in this article, we used ggplot2 [43] with ggthemes [44] and
ggrepel [45] for label placement and ggplotify [46] was used to turn base plots into ggplots.
Colors were provided by colorspace [47]. To arrange the plots, we used gridExtra [48].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/psych5020020/s1, Code S1: cops-psych.R.
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