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Abstract: Generalizability theory provides a comprehensive framework for determining how mul-
tiple sources of measurement error affect scores from psychological assessments and using that
information to improve those assessments. Although generalizability theory designs have tradi-
tionally been analyzed using analyses of variance (ANOVA) procedures, the same analyses can be
replicated and extended using structural equation models. We collected multi-occasion data from
inventories measuring numerous dimensions of personality, self-concept, and socially desirable
responding to compare variance components, generalizability coefficients, dependability coefficients,
and proportions of universe score and measurement error variance using structural equation mod-
eling versus ANOVA techniques. We further applied structural equation modeling techniques to
continuous latent response variable metrics and derived Monte Carlo-based confidence intervals
for those indices on both observed score and continuous latent response variable metrics. Results
for observed scores estimated using structural equation modeling and ANOVA procedures seldom
varied. Differences in reliability between raw score and continuous latent response variable metrics
were much greater for scales with dichotomous responses, thereby highlighting the value of doing
analyses on both metrics to evaluate gains that might be achieved by increasing response options.
We provide detailed guidelines for applying the demonstrated techniques using structural equation
modeling and ANOVA-based statistical software.

Keywords: generalizability theory; structural equation modeling; ANOVA; psychometrics;
R programming; International Personality Item Pool Big Five Model Questionnaire; Self-Description
Questionnaire III; Balanced Inventory of Desirable Responding; confidence intervals; continuous
latent response variables

1. Introduction

Cronbach et al. [1] first introduced generalizability theory (GT) to the research commu-
nity, and it continues to provide an elegant framework for conceptualizing how different
sources of measurement error affect scores from assessment measures and how that infor-
mation can be used to evaluate and improve such measures. GT techniques encompass both
objectively and subjectively scored measures and can be readily applied to assessments
in affective, cognitive, behavioral, and psychomotor domains. Applications of GT rely
heavily on variance component estimates traditionally obtained using analysis of variance
(ANOVA)-based expected mean squares within software packages catered specifically to
applications of GT such as GENOVA [2], urGENOVA [3], and EduG [4] or from variance
component programs within popular statistical packages such as SPSS, SAS, STATA, R,
MATLAB, and Minitab (see, e.g., [5]). The computational framework for GT analyses also
can be represented within linear mixed models (see, e.g., [6,7]). For example, in contrast
to the other programs listed here, the gtheory package in R [8] uses the lme4 package [9]
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to fit a linear mixed model to the data. This package also uses restricted maximum likeli-
hood (REML) rather than conventional expected mean square estimates to derive variance
components, with both options also being available in most variance component programs.

Structural equation models (SEMs) offer yet another useful though less frequently
applied means to estimate variance components for GT analyses in a variety of ways.
Marcoulides [10] and Raykov and Marcoulides [11] were among the first to highlight such
connections and demonstrate how to partially analyze one- and two-facet GT designs
within SEM frameworks using LISREL [12]. Other researchers have since revisited and
expanded those techniques to other designs, estimation procedures, and software packages
(see, e.g., [13–24]). However, the original applications of GT to SEMs by Marcoulides
and Raykov as well as those by later researchers cited here focused predominantly on
derivation of variance components reflecting relative differences among scores for making
norm-referenced decisions and typically omitted components reflecting absolute differences
in scores for making criterion-referenced decisions. Part of the reason for such omissions
was that derivation of variance components for absolute differences in scores was often
considered unwieldy and fraught with technical difficulties due, for example, to presump-
tions that the data matrices analyzed needed to be transposed to treat facet conditions as
objects of measurement and objects of measurement as facet conditions [13]. However, this
method will not work in typical scenarios in which the number of persons exceeds the
number of facet conditions, seemingly restricting practical uses of GT-SEMs to estimating
indices of score consistency that reflect only relative differences in scores.

To overcome this perceived limitation of GT-SEMs, Jorgensen [14] proposed much
simpler alternatives to obtaining variance components for absolute differences using the
same GT-SEM designs analyzed in previous studies by imposing effect coding [25] and
related constraints on factor loadings, means, and intercepts. However, illustrations of
his procedures were based on a generated dataset of 200 normally distributed scores for a
hypothetical measure of unspecified content with no clearly defined response options for
items. When applying his procedures to that dataset with fully crossed one- and two-facet
GT-SEM designs, using the lavaan SEM package in R and maximum likelihood parameter
estimates, he obtained generalizability (G or Eρ2) and dependability (D or Φ) coefficients
that varied by more than 0.003 from those produced by the anova() function in R using
ANOVA mean square (MS) estimates and the gtheory package in R using restricted max-
imum likelihood (REML) estimates. After trichotomizing the original data into discrete
ordered categories, Jorgensen repeated the SEM analyses using diagonally weighted least
squares estimates (WLSMV in R) to place results on a continuous latent response variable
(CLRV) metric that corrected indices of score consistency for possible effects of scale coarse-
ness resulting from limited response options and/or unequal underlying intervals between
those options (see [13,22]). He found that G and D coefficients were appreciably higher
when taking such effects into account. Jorgensen further noted that simple commands
from the semTools package in R [26] could be added to code for GT-SEMs within lavaan to
produce Monte Carlo-based confidence intervals for G and D coefficients that are typically
unavailable in standard GT and variance component programs. The semTools package
also can create Monte Carlo-based confidence intervals from packages outside of R if an
asymptotic sampling covariance (ACOV) matrix of variance-component parameters is
available. More detailed information about Monte Carlo-based confidence intervals can be
found in [27–29].

The purpose of this article is to illustrate and expand SEM procedures for analyzing
fully crossed GT designs discussed by Jorgensen [14] using empirical data from respon-
dents who completed popular self-report inventories measuring multiple dimensions of
personality, self-concept, and socially desirable responding. We chose these inventories
for their widespread use, strong psychometric properties, and variety of item response
options. Consequently, the results provide a tangible and stronger empirical foundation for
evaluating scale coarseness effects in real-life settings. The analyses also were intended to
contribute new evidence of the psychometric properties of scores within GT frameworks
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for the inventories administered and to extend comparisons of results between SEM- and
ANOVA-based procedures beyond G and D coefficients to include variance components,
proportions of individual sources of measurement error, and confidence intervals for all
reported indices.

1.1. Background

In Cronbach et al.’s [1] original treatment of GT and in those by most subsequent
authors (see, e.g., [30,31]), distinctions were made between generalizability and decision
studies. In a generalizability study, researchers identify the objects of measurement and
universes of admissible observations, collect data, and estimate relevant variance compo-
nents. For our present applications to self-report questionnaires, persons are the objects
of measurement, and items and occasions serve as possible universes of generalization.
Within GT designs, universes of generalization are represented as facets that correspond to
sources of measurement error that limit generalization of results. Systematic (i.e., non-error)
variance in GT designs is referred to as universe or person score variance and conceptually
parallels true score variance in classical test theory and communality in factor analysis (see,
e.g., [20]).

In a decision study, variance components from the generalizability study are used to
estimate indices of score consistency and measurement error when using scores for norm-
and/or criterion-referencing purposes based on the original generalizability or altered
decision study design. The most common alterations in decision studies for questionnaire
data are restricting original universes of items and occasions to just items or just occasions
and changing the numbers of items and/or occasions from those originally analyzed (see,
e.g., [16–22,24,30,32–34]). To acquaint readers with these fundamental GT techniques for
analyzing data from objectively scored self-report measures, we begin with brief intro-
ductions to relevant ANOVA-based single- and multi-facet designs and how they can be
represented within SEMs.

1.2. Single-Facet GT Designs, Key Formulas, and Related SEMs

Basic concepts. Within a persons × items (pi) random effects GT design, persons and
items are fully crossed, allowing the observed score for a particular person and item to be
decomposed into person, item, and residual effects. The associated variance of each effect
is called a variance component. Equations (1) and (2) show how estimated variances for item
and item-mean scores are partitioned within this design.

pi design : Individual item score level : σ̂2
Ypi

= σ̂2
p + σ̂2

pi,e + σ̂2
i , (1)

pI design : Item-mean score level : σ̂2
YpI

= σ̂2
p +

σ̂2
pi,e

n′i
, (2)

where σ̂2 = estimated variance component, Ypi = score for a particular person on a given
item, YpI = mean across all items for a particular person, and n′i = number of items.

Items serve as the single facet of interest here, but the same principles would apply if
the facet represented other tasks, occasions, or raters. Equation (1) reveals that the overall
estimated variance in scores across all items and persons is partitioned into three additive
components, representing persons (or universe scores; σ̂2

p), inter-person differences in item

scores plus other confounded residual error
(

σ̂2
pi,e

)
, and item differences (σ̂2

i ). The letter I is
capitalized in Equation (2) to emphasize that scores for each person are now averaged across
items. The partitioning of item-mean variance across persons is more relevant in practical
settings because decisions are typically made using those scores or simple transformations
of them that would yield the same estimates of score consistency (e.g., multiplying item-
mean scores by the number of items to obtain total scale scores). Primes appear over ns in
Equation (2) and elsewhere to indicate that any number of conditions/replicates for a facet
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can be specified in a decision study. The variance component for items (σ̂2
i ) drops out of

Equation (2) because the mean score for items across persons in the partitioning shown is
now a constant.

Indices of score consistency and agreement. Once estimated, the three variance
components on the right side of Equation (1) can be inserted into Equations (3)–(5) to derive
three key indices: G coefficients, global D coefficients, and cut-score specific D coefficients
(see, e.g., [20,30,35]).

ˆ
G coefficient for pI design =

σ̂2
p

σ̂2
p +

(
σ̂2

pi,e
n′i

) (3)

Global D̂ coefficient for pI design =
σ̂2

p

σ̂2
p +

(
σ̂2

pi,e
n′i

+
σ̂2

i
n′i

) (4)

Cut-score specific D̂ coefficient for pI design =
σ̂2

p +
[(

Y−Cut-score
)2 − σ̂2

Y

]
σ̂2

p +
[(

Y− Cut-score
)2 − σ̂2

Y

]
+

(
σ̂2

pi,e
n′i

+
σ̂2

i
n′i

) (5)

where σ̂2
Y =

σ̂2
p

n′p
+

σ̂2
pi,e

n′pn′i
+

σ̂2
i

n′i
and corrects for bias (see [35]).

G coefficients reflect relative differences in scores used for norm-referencing purposes
(e.g., rank ordering). Within the present pI design, they are equivalent to alpha reliability
estimates [36] and would be analogous to stability or inter-rater reliability coefficients
had occasions or raters been the lone facets in the design. Global and cut-score specific D
coefficients take both relative and absolute differences in scores into account. Terms within
parentheses in the denominators of Equations (3) and (4) represent relative error and absolute
error, respectively. When item means are equal (i.e., σ̂2

i = 0), relative and absolute error will
coincide, as will G and global D coefficients. When observed scores are used for screening,
selection, classification, or domain-referencing purposes, cut-score specific D coefficients
provide the best indices of dependability because they reflect agreement in decisions over
random repetitions of the assessment procedure [37]. Values for these coefficients will vary
with the cut point chosen and increase as cut-scores deviate from the scale mean.

SEM representation. An SEM for the pi GT design based on administration of three
items is shown at the top of Figure 1. This model has a single factor for person linked to
each item, with factor loadings set equal to one and uniquenesses set equal. Consequently,
only two variance components are directly estimated: the variance for the person factor(

σ̂2
p

)
and the common uniqueness across items

(
σ̂2

pi,e

)
. To derive the missing variance

component for items
(

σ̂2
i

)
needed to calculate D coefficients, Jorgensen [14] imposed effect

coding constraints on loadings and intercepts [25] that placed results on the same scale as
the original indicators (item scores here) and set the mean for the person factor equal to the
grand mean of observed scores. With effect coding, item intercepts are constrained to sum
to zero and factor loadings are constrained to average one (or equivalently sum to equal
the number of items). Under these conditions within the present model, Jorgensen noted
that σ̂2

i can be derived using Equation (6).

σ̂2
i =

1
ni − 1

ni

∑
1
(Intercepti)

2 (6)
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൅
𝜎ො௣௜௢,௘
ଶ
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Figure 1. GT pi Design SEM with Three Items (top); GT pio Design SEM with Three Items and Two
Occasions (bottom).

1.3. Two-Facet GT Designs, Key Formulas, and Related SEMs

Basic concepts. To create a two-facet GT design, we will include occasions as an
additional facet to produce a persons × items × occasions (pio) random-effects design. Within
this design, each person responds to all items on all occasions. The partitioning of estimated
variance at individual item and item-mean score levels is shown in Equations (7) and (8).

pio design : Individual item score level : σ̂2
Ypio

= σ̂2
p + σ̂2

pi + σ̂2
po + σ̂2

pio,e + σ̂2
i + σ̂2

o + σ̂2
io, (7)

pIO design : Item-mean score level : σ̂2
YpIO

= σ̂2
p +

σ̂2
pi

n′i
+

σ̂2
po

n′o
+

σ̂2
pio,e

n′in
′
o

, (8)

where σ̂2 = estimated variance component, Ypio = a score for a particular person on a given
combination of item and occasion, YpIO = the mean across all items and occasions for a
particular person, n′i = number of items, and n′o = number of occasions.

Equation (7) reveals that the estimated variance in observed scores across persons,
items, and occasions (σ̂2

Ypio
) is now partitioned into seven additive components representing
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persons (σ̂2
p), inter-person differences in item and/or occasion scores (σ̂2

pi, σ̂2
po, σ̂2

pio,e), and

absolute differences in item and/or occasion scores (σ̂2
i , σ̂2

o , σ̂2
io). When partitioning variance

at the item-mean level in Equation (8), variance components for absolute differences again
drop out because the mean for scores averaged over items and occasions is now a constant
across persons.

Indices of score consistency and agreement. Formulas for G, global D, and cut-score
specific D coefficients for the pIO design are provided in Equations (9)–(11).

Ĝ coefficient for pIO design =
σ̂2

p

σ̂2
p +

(
σ̂2

pi
n′i

+
σ̂2

po
n′o

+
σ̂2

pio,e
n′in
′
o

) (9)

Global D̂ coefficient for pIO design =
σ̂2

p

σ̂2
p +

(
σ̂2

pi
n′i

+
σ̂2

po
n′o

+
σ̂2

pio,e
n′in
′
o
+

σ̂2
i

n′i
+

σ̂2
o

n′o
+

σ̂2
io

n′in
′
o

) (10)

Cut-score specific D̂ coefficient for pIO design

=
σ̂2

p+
[
(Y− Cut-score)

2−σ̂2
Y

]
σ̂2

p+
[
(Y− Cut-score)

2−σ̂2
Y

]
+

(
σ̂2

pi
n′i

+
σ̂2

po
n′o

+
σ̂2

pio,e
n′in′o

+
σ̂2

i
n′i
+

σ̂2
o

n′o
+

σ̂2
io

n′in′o

) (11)

where σ̂2
Y =

σ̂2
p

n′p
+

σ̂2
pi

n′pn′i
+

σ̂2
po

n′pn′o
+

σ̂2
pio,e

n′pn′in
′
o
+

σ̂2
i

n′i
+

σ̂2
o

n′o
+

σ̂2
io

n′in
′
o

and corrects for bias (see [29]).

Measurement error within Equation (9) for the G coefficient is now subdivided
into three sources. σ̂2

pi/n′i reflects inter-person differences in the ordering of item scores

(specific-factor error), σ̂2
po/n′o reflects inter-person differences in the ordering of occasion

scores (transient error), and σ̂2
pio,e/

(
n′i × n′o

)
reflects inter-person differences in within-

occasion “noise” (random-response error; see [24,38–40] for more extended discussions
of these sources of measurement error). The global and cut-score specific D coefficients
in Equations (10) and (11) also include three additional estimated variance components(

σ̂2
i , σ̂2

o , σ̂2
io

)
to account for absolute differences among item and occasion scores. Values

within parentheses for G and global D coefficients in Equations (9) and (10) again represent
estimates of relative and absolute error. As before, when means across facet conditions
are equal (i.e., σ̂2

i = σ̂2
o = σ̂2

io = 0 here), relative and absolute error coincide, as do G and
global D coefficients.

SEM representation. An SEM for the pio GT design based on administration of the
same three items on two occasions is shown at the bottom of Figure 1. This model has
orthogonal factors for person, each item, and each occasion. Occasion variances, item
variances, and uniquenesses are, respectively, set equal, and all factor loadings are set
equal to one. In total, the four variance components reflecting relative differences in scores
(σ̂2

p, σ̂2
pi, σ̂2

po, σ̂2
pio,e) are directly estimated, but those for absolute differences (σ̂2

i , σ̂2
o , σ̂2

io)
are excluded.

To estimate the remaining components, effect coding constraints are again imposed
along with setting the sum of all item factor means and the sum of all occasion factor means
equal to zero. When these restrictions are imposed, Jorgensen [14] noted that variance
components for absolute differences in scores can be obtained using Equations (12)–(14).

σ̂2
i =

1
ni − 1

ni

∑
1
(Item f actor meani)

2 (12)

σ̂2
o =

1
no − 1

no

∑
1
(Occasion factor meano)

2 (13)
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σ̂2
io =

1
(ni × no)− 1

ni×no

∑
1

(Interceptio)
2 (14)

Scale coarseness. When considering results from GT analyses, we routinely assume
that data are interval level in nature, meaning that equal differences in observed scores
represent equal differences in the constructs being measured [1]. However, this assump-
tion is not strictly met with most self-report measures due to scale coarseness effects
resulting from limited numbers of response options and/or unequal underlying intervals
between those options. To address this problem, Ark [13], Jorgensen [14] and Vispoel
et al. [22] described how to conduct GT analyses on continuous latent response variable
(CLRV) metrics using SEMs. The GT-SEMs are identical to those for observed scores de-
scribed here except that estimation methods such as diagonally weighted least squares
(DWLS) or paired maximum likelihood (PML) can be used to convert observed score results
to CLRV metrics.

Vispoel at al. [22] used DWLS estimation for SEMs with delta parameterization to
derive G and D coefficients for pi and pio designs with scores for indicators expressed on
the same standardized scales. However, Jorgensen [14] noted that variability in means for
latent variable indicators could be modeled to provide more informative D coefficients
in CLRV analyses by using theta parameterization and constraining thresholds to be
the same across all indicators. As a result, we adopted his approach when analyzing
designs for CLRVs.

1.4. This Investigation

Our goal in the research reported here was to expand upon Jorgensen’s [14] preliminary
demonstration of ways to represent complete GT designs in SEM frameworks to encompass
empirical data collected from respondents in live assessment settings who completed
popular measures of personality, self-concept, and socially desirable responding on two
occasions. We compared results from GT-SEM analyses using the lavaan package in R [41]
to those obtained using the ANOVA-based package GENOVA [2], which remains one of
the most comprehensive programs available for conducting traditional GT analyses (see,
e.g., [20]). We further compared results from both packages to those obtained from lavaan
using diagonally weighted least squares estimation to evaluate effects of scale coarseness
and included Monte Carlo-based confidence intervals for variance components, proportions
of measurement error, G coefficients, global D coefficients, and selected cut-score specific D
coefficients within both the observed score and CLRV analyses.

2. Materials and Methods
2.1. Participants and Procedure

We collected data from three separate samples of college students from the University
of Iowa who completed self-report inventories online using the Qualtrics platform on two
occasions a week apart. Data collection was approved by the governing institutional review
board (ID# 200809738) and all respondents gave informed consent before participating.
Students within their respective samples completed all subscales from either the 100-item
International Personality Item Pool Big Five Model Questionnaire (IPIP-BFM-100 [42];
n = 359, 69.58% female, 72.70% Caucasian; mean age = 23.80), Self-Description Question-
naire III (SDQ-III [43]; n = 427, 70.02% female, 78.69% Caucasian; mean age = 23.20), or
Balanced Inventory of Desirable Responding (BIDR [44]; n = 595, 76.47% female, 77.31%
Caucasian; mean age = 22.46). Inquiries about accessibility to the data should be directed
to the first author.

2.2. Measures

IPIP-BFM-100. The IPIP-BFM-100 includes 100 items designed to measure the broad
personality constructs associated with the Big Five model: Agreeableness, Conscientious-
ness, Emotional Stability, Extraversion, and Openness [42,45,46]. Each subscale has 20



Psych 2023, 5 256

items answered using a 5-point response metric (1 = Very Inaccurate, 5 = Very Accurate).
Goldberg [42] reported alpha reliability estimates for the subscales ranging from 0.81 to
0.97 and exploratory factor analyses for self and peer ratings supporting the anticipated
five-factor structure underlying item responses.

SDQ-III. The SDQ-III is a 136-item questionnaire intended for use with late adoles-
cents and adults. It includes one subscale to measure overall self-esteem (General Self) and
12 additional ones to measure self-perceptions in the following areas: Emotional Stability,
Honesty–Trustworthiness, Religious–Spiritual Values, Opposite-Sex Relations, Same-Sex
Relations, Parental Relations, Physical Appearance, Physical Ability, General Academic
Ability, Verbal Skills, Math Skills, and Problem-Solving Skills. Each scale has 10 or 12 items,
equally balanced for negative and positive phrasing rated along an eight-point response
metric (1 = Definitely False, 8 = Definitely True). Evidence reported by Marsh [43] and
Byrne [47] in support of the reliability and construct validity of SDO-III subscale scores
included alpha coefficients ranging from 0.76 to 0.95, median 1-month and 18-month test–
retest coefficients, respectively, equaling 0.87 and 0.74, factor analyses verifying that each
subscale measures a distinguishable construct, and logically consistent relationships of
subscale scores with each other and external criterion measures.

BIDR. The BIDR (Version 6, [44]) has 40 items comprising two 20-item subscales that
measure two dimensions of socially desirable responding: Impression Management and
Self-Deceptive Enhancement. Items within each scale are equally balanced for positive and
negative phrasing and rated along a 7-point response metric (1 = Not True, 4 = Somewhat
True, 7 = Very True). After reversals are made to negatively phrased items, scores can remain
on the original polytomous metric, be dichotomized to emphasize exaggeratedly desirable
responses by rescoring extremely high responses (6 or 7) to equal 1 and other responses to
equal 0, or be dichotomized to emphasize exaggeratedly undesirable responses by rescor-
ing extremely low responses (1 or 2) to equal 0 and other responses to equal 1 [48–50].
We included all three approaches here. In practical settings, polytomous scores are more
informative when Impression Management and Self-Deceptive Enhancement are treated
as psychological traits, whereas dichotomized scores are frequently used to flag possible
instances of faking good (i.e., exaggerated endorsement) or faking bad (i.e., exaggerated
denial). Paulhus [44], Kilinc [48], Vispoel and Kim [49], Vispoel, Morris, and Clough [50],
and Vispoel, Morris, and Sun [51] reported alpha coefficients for BIDR subscales ranging
from 0.66 to 0.88, 1-week test–retest coefficients ranging from 0.71 to 0.88, and confir-
mation of anticipated patterns of convergent and discriminant validity coefficients with
other measures.

3. Analyses

We analyzed fully crossed pi and pio random-facet GT designs for every subscale
from each instrument using the ANOVA-based package GENOVA [2] and SEM-based
lavaan package in R [41] with conventional least squares parameter estimates (labeled
as expected mean squares in GENOVA and unweighted least squares (ULS) in lavaan).
We repeated the lavaan analyses with robust diagonally weighted least squares (DWLS)
estimates (WLSMV in R) using theta parameterization to evaluate the effects of scale
coarseness and provide more informative D coefficients than those provided by delta
parameterization. All SEMs were constrained in the ways described earlier to render
indices reflecting both relative and absolute differences in scores. For each scale, design, and
analysis, we estimated G coefficients, global D coefficients, cut-score specific D coefficients
two standard deviations away from each scale’s mean, and proportions of universe score
and measurement error variance. We also derived 90% Monte Carlo-based confidence
intervals for variance components, proportions of measurement error, G coefficients, global
D coefficients, and cut-score specific D coefficients using the semTools package in R [26].
Within the reported GT analyses, n′i equals the number of items within a given subscale,
and n′o equals one.
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4. Results
4.1. Descriptive Statistics and Conventional Reliability Estimates

We provide means, standard deviations, alpha coefficients, and test–retest coefficients
for all subscale scores from the IPIP-BFM-100, SDQ-III, and BIDR in Table 1. Across scales
and inventories, alpha coefficients range from 0.691 to 0.956 (M = 0.870) and test–retest
coefficients from 0.704 to 0.940 (M = 0.857). On average, alpha coefficients across occa-
sions are highest for the IPIP-BFM-100 (M = 0.918), followed, respectively, by the SDQ-III
(M = 0.904), BIDR with polytomous scores (M = 0.766), BIDR for dichotomous exaggerated
endorsement scores (M = 0.751), and BIDR for dichotomous exaggerated denial scores
(M = 0.748). Mean test–retest coefficients for IPIP-BFM-100, SDQ-III, BIDR (polytomous),
BIDR (dichotomous exaggerated endorsement), and BIDR (dichotomous exaggerated de-
nial) scores, respectively, equal 0.888, 0.889, 0.826, 0.748, and 0.707. Overall, these indices
along with subscale means and standard deviations align well with those for college
students from the studies previously cited.

Table 1. Descriptive Statistics and Conventional Reliability Estimates for IPIP-BFM-100, SDQ-III, and
BIDR Scores.

Instrument and Subscale
Number

of
Items

Index

Time 1 Time 2

Mean
Scale
(Item)

SD
Scale
(Item)

Alpha
Mean
Scale
(Item)

SD
Scale
(Item)

Alpha Test
Retest

IPIP-BFM-100
Extraversion 20 64.22 (3.21) 13.72 (0.69) 0.924 65.31 (3.27) 14.08 (0.70) 0.935 0.926
Agreeableness 20 80.37 (4.02) 9.83 (0.49) 0.883 79.98 (4.00) 10.11 (0.51) 0.904 0.853
Conscientiousness 20 73.70 (3.68) 12.41 (0.62) 0.914 73.44 (3.67) 12.41 (0.62) 0.924 0.896
Emotional stability 20 62.32 (3.12) 15.09 (0.75) 0.934 63.20 (3.16) 15.13 (0.76) 0.942 0.887
Openness 20 74.11 (3.71) 11.14 (0.56) 0.901 73.90 (3.69) 11.45 (0.57) 0.913 0.879
Mean 20 70.94 (3.55) 12.44 (0.62) 0.911 71.17 (3.56) 12.63 (0.63) 0.924 0.888

SDQ-III
General self-esteem 12 71.81 (5.98) 16.33 (1.36) 0.952 70.76 (5.90) 16.62 (1.39) 0.954 0.898
Emotional stability 10 51.04 (5.10) 13.83 (1.38) 0.910 51.71 (5.17) 13.66 (1.37) 0.913 0.880
General academic skills 10 58.56 (5.86) 11.69 (1.17) 0.911 58.21 (5.82) 11.68 (1.17) 0.914 0.862
Verbal skills 10 46.73 (4.67) 18.03 (1.80) 0.952 47.30 (4.73) 17.22 (1.72) 0.946 0.936
Math skills 10 56.80 (5.68) 11.71 (1.17) 0.866 56.70 (5.67) 11.51 (1.15) 0.869 0.888
Problem-solving skills 10 53.78 (5.38) 10.05 (1.00) 0.833 53.04 (5.30) 10.73 (1.07) 0.868 0.870
Physical ability 10 54.66 (5.47) 16.74 (1.67) 0.950 53.96 (5.40) 16.71 (1.67) 0.956 0.928
Physical appearance 10 50.43 (5.04) 12.86 (1.29) 0.916 50.40 (5.04) 12.91 (1.29) 0.924 0.918
Opposite-sex relations 10 55.24 (5.52) 12.21 (1.22) 0.882 55.04 (5.50) 12.52 (1.25) 0.902 0.882
Same-sex relations 10 57.16 (5.72) 10.94 (1.09) 0.849 56.30 (5.63) 11.40 (1.14) 0.880 0.843
Parental relations 10 61.87 (6.19) 13.88 (1.39) 0.923 61.77 (6.18) 13.67 (1.37) 0.930 0.897
Honesty–trustworthiness 12 74.42 (6.20) 9.99 (0.83) 0.773 73.28 (6.11) 10.99 (0.92) 0.836 0.813
Religious–spiritual values 12 59.09 (4.92) 21.83 (1.82) 0.949 59.09 (4.92) 22.23 (1.85) 0.954 0.940
Mean 10.46 57.81 (5.52) 13.85 (1.32) 0.897 57.50 (5.49) 13.99 (1.34) 0.911 0.889

BIDR Polytomous (1–7)
Impression management 20 80.62 (4.03) 16.43 (0.82) 0.766 81.33 (4.07) 18.11 (0.91) 0.826 0.830
Self-deceptive enhancement 20 82.18 (4.11) 13.54 (0.68) 0.717 84.32 (4.22) 13.89 (0.69) 0.754 0.822
Mean 20 81.40 (4.07) 14.99 (0.75) 0.742 82.82 (4.14) 16.00 (0.80) 0.790 0.826

BIDR Dichotomous (0 = 1–5; 1 = 6–7)
Impression management 20 6.74 (0.34) 3.47 (0.17) 0.726 14.52 (0.73) 3.74 (0.19) 0.808 0.783
Self-deceptive enhancement 20 5.27 (0.26) 3.24 (0.16) 0.691 16.42 (0.82) 3.01 (0.15) 0.779 0.712
Mean 20 6.00 (0.30) 3.36 (0.17) 0.708 15.47 (0.77) 3.38 (0.17) 0.793 0.748

BIDR Dichotomous (0 = 1–2; 1 = 3–7)
Impression management 20 13.90 (0.69) 3.40 (0.17) 0.735 6.39 (0.32) 4.03 (0.20) 0.797 0.711
Self-deceptive enhancement 20 15.66 (0.78) 3.18 (0.16) 0.728 5.33 (0.27) 3.77 (0.19) 0.733 0.704
Mean 20 14.78 (0.74) 3.29 (0.16) 0.731 5.86 (0.29) 3.90 (0.19) 0.765 0.707

4.2. Partitioning of Variance, G Coefficients, and D Coefficients on Observed Score Metrics

In Table 2, we provide variance components, G coefficients, global D coefficients,
cut-score specific D coefficients two standard deviations away from the scale mean, and
corresponding 90% confidence intervals for IPIP-BFM-100, SDQ-III, and BIDR observed
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scores within the GT pi design analyses. Across subscales, lavaan and GENOVA results
for G and D coefficients are identical to the three decimal places shown in the table, and
variance components differ by no more than 0.005. Confidence intervals for all variance
components fail to capture zero, thereby reflecting trustworthy effects. G coefficients
(which mirror alpha coefficients reported in Table 2 for Occasion 1) range from 0.691 to
0.952 (M = 0.858), global D coefficients from 0.672 to 0.945 (M = 0.834) and cut-score specific
D coefficients from 0.932 to 0.989 (M = 0.962). Confidence interval lower limits for G
coefficients equal or exceed 0.830 in all instances except for subscales from the BIDR and the
Honesty–Trustworthiness subscale from the SDQ-III. Lower limits for global D coefficients
equal or exceed 0.804 except for subscales from the BIDR and the Honesty–Trustworthiness
and Problem-Solving Skills subscales from the SDQ-III. Finally, lower limits for cut-score
specific D coefficients two standard deviations away from the mean equal or exceed
0.915 for all scales across all instruments.

In Tables 3 and 4, we provide parallel indices for the GT pio designs plus additional
variance components and partitioning of measurement error into three sources (specific-
factor, transient, and random-response). Across subscales, lavaan and GENOVA results
for G coefficients and proportions of measurement error are identical to the three decimal
places shown in the tables; D coefficients differ by no more than 0.002; and variance
components differ by no more than 0.013. Confidence intervals for all variance components
and proportions of measurement error fail to capture zero except o variance components for
most subscales across instruments, io variance components for the SDQ-III Problem-Solving
Skills subscale and BIDR Self-Deceptive Enhancement dichotomous subscales, and both po
variance components and proportions of transient error for all BIDR dichotomous subscales.
Across instruments, o and io variance components are extremely low in magnitude (M for
o = 0.0008; M for io = 0.0041), which makes sense given that means for occasions and for
items across occasions were not expected to vary much over the one-week interval between
administrations of the current trait-oriented measure.

Across subscales, G coefficients range from 0.592 to 0.915 (M = 0.795), global D coeffi-
cients from 0.561 to 0.909 (M = 0.774), cut-score specific D coefficients from 0.907 to 0.982
(M = 0.953), proportions of specific-factor error from 0.016 to 0.151 (M = 0.060), proportions
of transient error from 0.036 to 0.150 (M = 0.076), and proportions of random-response
error from 0.024 to 0.159 (M = 0.069). G and D coefficients and their corresponding con-
fidence interval lower limits for the pio designs are less than those for the pi designs due
to the inclusion of additional sources of measurement error. Confidence interval lower
limits for G coefficients equal or exceed 0.807 in all instances except for the Agreeableness
subscale from the IPIP-BFM-100; the Same-Sex Relations, Problem-Solving Skills, and
Honesty–Trustworthiness subscales from the SDQ-III; and all subscales from the BIDR.
Lower limits for global D coefficients equal or exceed 0.802 except for the Agreeableness
subscale from the IPIP-BFM-100, the Verbal Skills, Same-Sex Relations, Problem-Solving
Skills, and Honesty–Trustworthiness subscales from the SDQ-III, and all subscales from
the BIDR. Lastly, lower limits for cut-score specific D coefficients two standard deviations
away from the mean equal or exceed 0.874 for all subscales across all instruments.
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Table 2. Variance Components, G coefficients, and D coefficients for GT Observed Score pi Designs.

Instrument/
Subscale

Index

p pi,e i * G G-D CS-D

IPIP-BFM-100
Extraversion 0.435 (0.429, 0.441) 0.719 (0.698, 0.739) 0.173 (0.159, 0.193) 0.924 (0.921, 0.926) 0.907 (0.904, 0.910) 0.981 (0.980, 0.982)
Agreeableness 0.213 (0.207, 0.220) 0.564 (0.543, 0.584) 0.058 (0.052, 0.071) 0.883 (0.878, 0.889) 0.873 (0.866, 0.878) 0.974 (0.973, 0.975)
Conscientiousness 0.352 (0.346, 0.358) 0.662 (0.641, 0.682) 0.087 (0.078, 0.102) 0.914 (0.911, 0.917) 0.904 (0.900, 0.907) 0.981 (0.980, 0.981)
Emotional stability 0.532 (0.526, 0.538) 0.752 (0.731, 0.772) 0.142 (0.130, 0.161) 0.934 (0.932, 0.936) 0.922 (0.920, 0.925) 0.984 (0.984, 0.985)
Openness 0.280 (0.274, 0.286) 0.614 (0.593, 0.634) 0.067 (0.060, 0.081) 0.901 (0.897, 0.905) 0.891 (0.887, 0.895) 0.978 (0.977, 0.979)
Mean 0.911 0.899 0.980

SDQ-III
General self-esteem 1.761 (1.751, 1.771) 1.077 (1.052, 1.102) 0.150 (0.134, 0.171) 0.952 (0.950, 0.953) 0.945 (0.944, 0.946) 0.989 (0.989, 0.989)
Emotional stability 1.740 (1.728, 1.752) 1.729 (1.701, 1.757) 0.606 (0.567, 0.650) 0.910 (0.908, 0.911) 0.882 (0.879, 0.884) 0.976 (0.975, 0.976)
General academic skills 1.244 (1.232, 1.256) 1.219 (1.191, 1.247) 0.250 (0.226, 0.279) 0.911 (0.908, 0.913) 0.894 (0.891, 0.897) 0.978 (0.978, 0.979)
Verbal skills 1.188 (1.176, 1.200) 1.839 (1.811, 1.867) 0.375 (0.345, 0.410) 0.866 (0.863, 0.868) 0.843 (0.840, 0.846) 0.968 (0.967, 0.968)
Math skills 3.096 (3.084, 3.108) 1.562 (1.534, 1.590) 0.235 (0.212, 0.264) 0.952 (0.951, 0.953) 0.945 (0.944, 0.946) 0.989 (0.989, 0.989)
Problem-solving skills 0.841 (0.829, 0.853) 1.681 (1.653, 1.708) 0.433 (0.400, 0.470) 0.833 (0.830, 0.837) 0.799 (0.794, 0.804) 0.958 (0.957, 0.959)
Physical ability 2.661 (2.649, 2.672) 1.413 (1.386, 1.441) 0.248 (0.224, 0.277) 0.950 (0.949, 0.951) 0.941 (0.940, 0.943) 0.988 (0.988, 0.988)
Physical appearance 1.515 (1.503, 1.527) 1.381 (1.354, 1.409) 0.665 (0.624, 0.711) 0.916 (0.915, 0.918) 0.881 (0.878, 0.884) 0.975 (0.975, 0.976)
Opposite-sex relations 1.316 (1.304, 1.327) 1.753 (1.725, 1.781) 0.403 (0.372, 0.440) 0.882 (0.880, 0.885) 0.859 (0.856, 0.862) 0.971 (0.970, 0.972)
Same-sex relations 1.015 (1.003, 1.027) 1.807 (1.779, 1.834) 0.609 (0.571, 0.654) 0.849 (0.846, 0.852) 0.808 (0.804, 0.812) 0.960 (0.959, 0.960)
Parental relations 1.780 (1.768, 1.791) 1.483 (1.455, 1.511) 0.383 (0.353, 0.419) 0.923 (0.921, 0.925) 0.905 (0.903, 0.907) 0.981 (0.980, 0.981)
Honesty–trustworthiness 0.536 (0.526, 0.545) 1.884 (1.859, 1.909) 0.519 (0.487, 0.557) 0.773 (0.769, 0.778) 0.728 (0.722, 0.733) 0.942 (0.941, 0.943)
Religious–spiritual values 3.138 (3.128, 3.148) 2.038 (2.013, 2.064) 0.328 (0.303, 0.358) 0.949 (0.948, 0.949) 0.941 (0.940, 0.942) 0.988 (0.988, 0.988)
Mean 0.897 0.875 0.974

BIDR Polytomous (1–7)
Impression management 0.517 (0.512, 0.522) 3.164 (3.148, 3.180) 1.038 (1.008, 1.071) 0.766 (0.764, 0.768) 0.711 (0.708, 0.714) 0.938 (0.937, 0.938)
Self-deceptive enhancement 0.329 (0.324, 0.334) 2.592 (2.576, 2.608) 0.431 (0.412, 0.453) 0.717 (0.714, 0.721) 0.685 (0.681, 0.689) 0.934 (0.933, 0.935)
Mean 0.742 0.698 0.936

BIDR Dichotomous (0 = 1–5; 1 = 6–7)
Impression management 0.022 (0.017, 0.027) 0.165 (0.149, 0.181) 0.039 (0.034, 0.047) 0.726 (0.664, 0.773) 0.682 (0.615, 0.731) 0.932 (0.917, 0.943)
Self-deceptive enhancement 0.018 (0.013, 0.023) 0.162 (0.146, 0.178) 0.014 (0.012, 0.020) 0.691 (0.610, 0.749) 0.672 (0.588, 0.729) 0.933 (0.915, 0.944)
Mean 0.731 0.697 0.936

BIDR Dichotomous (0 = 1–2; 1 = 3–7)
Impression management 0.021 (0.016, 0.026) 0.153 (0.137, 0.169) 0.040 (0.036, 0.048) 0.735 (0.671, 0.783) 0.687 (0.618, 0.737) 0.933 (0.917, 0.944)
Self-deceptive enhancement 0.018 (0.014, 0.023) 0.138 (0.122, 0.153) 0.015 (0.013, 0.021) 0.728 (0.652, 0.783) 0.707 (0.627, 0.761) 0.940 (0.922, 0.951)
Mean 0.708 0.677 0.932

Note. p = person, pi,e = person × item and other error, i = item, G = G coefficient, G-D = global D coefficient, CS-D = cut-score specific D coefficient. Table entries represent results
obtained from lavaan in R. * Differences for i variance components between lavaan and GENOVA range between 0.002 and 0.005 (M = 0.003). All other indices between packages are
identical to the three decimal places shown in the table. Values within parentheses are 90% confidence interval limits.
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Table 3. Variance Components for GT Observed Score pio Designs.

Instrument/
Subscale

Index

p pi po pio,e i o io

IPIP-BFM-100
Extraversion 0.429 (0.424, 0.433) 0.375 (0.354, 0.395) 0.021 (0.014, 0.027) 0.305 (0.280, 0.330) 0.154 a (0.144, 0.166) 0.001 (0.000, 0.003) 0.001 (0.001, 0.004)
Agreeableness 0.200 (0.195, 0.204) 0.246 (0.226, 0.266) 0.022 (0.016, 0.029) 0.281 (0.256, 0.306) 0.054 a (0.049, 0.062) 0.000 (0.000, 0.001) 0.001 (0.001, 0.003)
Conscientiousness 0.329 (0.324, 0.333) 0.324 (0.304, 0.344) 0.025 (0.019, 0.031) 0.300 (0.275, 0.325) 0.081 a (0.074, 0.090) 0.000 (0.000, 0.001) 0.001 (0.001, 0.003)
Emotional stability 0.489 (0.485, 0.494) 0.343 (0.322, 0.363) 0.046 (0.040, 0.053) 0.368 (0.343, 0.393) 0.118 a (0.110, 0.129) 0.001 (0.000, 0.003) 0.002 (0.002, 0.005) a

Openness 0.264 (0.260, 0.269) 0.319 (0.299, 0.339) 0.025 (0.019, 0.032) 0.274 (0.249, 0.299) 0.052 a (0.047, 0.060) 0.000 (0.000, 0.001) 0.002 (0.002, 0.005) a

SDQ-III
General self-esteem 1.661 (1.654, 1.668) 0.368 (0.343, 0.392) 0.135 (0.125, 0.145) 0.698 (0.668, 0.728) 0.122 a (0.111, 0.135) 0.004 (0.002, 0.007) a 0.003 (0.002, 0.006) a

Emotional stability 1.573 (1.565, 1.582) 0.886 (0.860, 0.913) 0.148 (0.137, 0.160) 0.789 (0.756, 0.822) 0.568 a (0.541, 0.597) 0.002 (0.000, 0.005) a 0.001 (0.001, 0.004)
General academic skills 1.130 (1.121, 1.138) 0.470 (0.443, 0.496) 0.116 (0.104, 0.128) 0.724 (0.691, 0.757) 0.213 a (0.197, 0.232) 0.001 (0.000, 0.002) a 0.004 (0.003, 0.008) a

Verbal skills 1.099 (1.090, 1.107) 0.989 (0.962, 1.015) 0.071 (0.059, 0.083) 0.800 (0.767, 0.833) 0.316 (0.297, 0.339) 0.000 (0.000, 0.001) a 0.003 (0.002, 0.007) a

Math skills 2.840 (2.831, 2.848) 0.657 (0.630, 0.683) 0.111 (0.099, 0.123) 0.919 (0.885, 0.952) 0.205 a (0.190, 0.224) 0.002 a (0.000, 0.004) 0.002 a (0.002, 0.005)
Problem-solving skills 0.868 (0.860, 0.877) 0.695 (0.669, 0.722) 0.052 (0.041, 0.064) 0.903 (0.870, 0.936) 0.427 a (0.404, 0.453) 0.003 (0.001, 0.006) 0.000 a (0.000, 0.002)
Physical ability 2.542 (2.534, 2.551) 0.518 (0.491, 0.544) 0.122 (0.110, 0.133) 0.809 (0.776, 0.842) 0.177 a (0.162, 0.194) 0.002 a (0.001, 0.006) 0.005 a (0.004, 0.009)
Physical appearance 1.454 (1.446, 1.463) 0.697 (0.671, 0.724) 0.073 (0.061, 0.085) 0.628 (0.595, 0.661) 0.633 a (0.605, 0.665) 0.000 a(0.000, 0.001) 0.003 a (0.002, 0.006)
Opposite-sex relations 1.272 (1.264, 1.281) 0.763 (0.736, 0.789) 0.093 (0.081, 0.105) 0.880 (0.846, 0.913) 0.353 a (0.332, 0.377) 0.000 a (0.000, 0.002) 0.002 a (0.002, 0.006)
Same-sex relations 0.984 (0.976, 0.993) 0.670 (0.643, 0.697) 0.095 (0.083, 0.107) 1.014 (0.980, 1.047) 0.567 a (0.540, 0.597) 0.004 (0.001, 0.007) 0.002 a (0.002, 0.005)
Parental relations 1.634 (1.625, 1.642) 0.687 (0.661, 0.714) 0.126 (0.114, 0.137) 0.709 (0.676, 0.742) 0.328 a (0.307, 0.351) 0.000 a (0.000, 0.001) 0.003 a (0.002, 0.007)
Honesty–trustworthiness 0.553 (0.546, 0.560) 0.804 (0.780, 0.828) 0.066 (0.056, 0.076) 0.965 (0.935, 0.995) 0.486 a (0.463, 0.511) 0.005 a (0.002, 0.008) 0.005 a (0.004, 0.009)
Religious–spiritual values 3.084 (3.077, 3.091) 0.993 (0.969, 1.018) 0.123 (0.113, 0.133) 0.964 (0.934, 0.994) 0.276 a (0.260, 0.295) 0.000 a (0.000, 0.001) 0.003 a (0.003, 0.007)

BIDR Polytomous (1–7)
Impression management 0.539 (0.536, 0.542) 1.574 (1.558, 1.589) 0.058 (0.053, 0.063) 1.431 (1.412, 1.450) 0.942 a (0.922, 0.964) 0.001 a (0.000, 0.002) 0.007 a (0.006, 0.010)
Self-deceptive enhancement 0.316 (0.312, 0.319) 1.417 (1.401, 1.432) 0.031 (0.026, 0.035) 1.065 (1.046, 1.084) 0.385 a (0.373, 0.400) 0.006 a (0.004, 0.008) 0.004 a (0.004, 0.006)

BIDR Dichotomous (0 = 1–5; 1 = 6–7)
Impression management 0.024 (0.020, 0.027) 0.071 (0.056, 0.087) 0.003 (–0.001, 0.008) 0.090 (0.070, 0.109) 0.034 a (0.031, 0.039) 0.000 (0.000, 0.001) 0.001 a (0.001, 0.002)
Self-deceptive enhancement 0.018 (0.015, 0.022) 0.069 (0.054, 0.085) 0.005 (0.000, 0.010) 0.090 (0.071, 0.109) 0.013 (0.012, 0.017) 0.000 (0.000, 0.000) 0.000 (0.000, 0.001)

BIDR Dichotomous (0 = 1–2; 1 = 3–7)
Impression management 0.020 (0.016, 0.023) 0.056 (0.040, 0.071) 0.005 (0.000, 0.010) 0.092 (0.072, 0.111) 0.035 a (0.032, 0.040) 0.000 (0.000, 0.001) 0.001 a (0.001, 0.002)
Self-deceptive enhancement 0.014 (0.011, 0.018) 0.053 (0.037, 0.068) 0.003 (–0.002, 0.008) 0.076 (0.057, 0.095) 0.012 (0.011, 0.016) 0.001 (0.000, 0.002) 0.000 (0.000, 0.002)

Note. p = person, pi = person × item, po = person × occasion, pio = person × item × occasion and other error, i = item, o = occasion, io = item × occasion. Table entries represent results
obtained from lavaan in R. a Differences for these indices between lavaan and GENOVA range between −0.011 and 0.013 (M = 0.001). All other indices between packages are identical to
the three decimal places shown in the table. Values within parentheses are 90% confidence interval limits.
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Table 4. G coefficients, D coefficients, and Partitioning of Variance for GT Observed Score pIO Designs.

Instrument/
Subscale

Index

G SFE TE RRE G-D CS-D

IPIP-BFM-100
Extraversion 0.887 (0.875, 0.899) 0.039 (0.037, 0.041) 0.043 (0.030, 0.056) 0.032 (0.029, 0.034) 0.870 (0.858, 0.882) 0.974 (0.971, 0.976)
Agreeableness 0.804 (0.781, 0.827) 0.050 (0.045, 0.054) 0.090 (0.066, 0.115) 0.057 (0.051, 0.062) 0.794 a (0.771, 0.816) 0.958 (0.954, 0.963)
Conscientiousness 0.854 (0.839, 0.869) 0.042 (0.039, 0.045) 0.065 (0.049, 0.081) 0.039 (0.036, 0.042) 0.845 (0.830, 0.859) 0.969 (0.966, 0.972)
Emotional stability 0.857 (0.847, 0.867) 0.030 (0.028, 0.032) 0.081 (0.070, 0.092) 0.032 (0.030, 0.034) 0.846 a (0.836, 0.856) 0.969 (0.967, 0.971)
Openness 0.828 (0.810, 0.846) 0.050 (0.047, 0.053) 0.079 (0.060, 0.098) 0.043 (0.039, 0.047) 0.821 (0.803, 0.838) 0.964 (0.960, 0.967)
Mean 0.846 0.042 0.072 0.040 0.835 0.967

SDQ-III
General self-esteem 0.881 (0.876, 0.886) 0.016 (0.015, 0.017) 0.072 (0.067, 0.077) 0.031 (0.030, 0.032) 0.875 (0.869, 0.879) 0.975 (0.974, 0.976)
Emotional stability 0.833 (0.827, 0.838) 0.047 (0.045, 0.048) 0.079 (0.072, 0.085) 0.042 (0.040, 0.044) 0.807 (0.802, 0.813) 0.960 (0.959, 0.961)
General academic skills 0.828 (0.820, 0.835) 0.034 (0.032, 0.036) 0.085 (0.077, 0.093) 0.053 (0.051, 0.056) 0.814 (0.806, 0.822) 0.962 (0.961, 0.964)
Verbal skills 0.814 (0.807, 0.822) 0.073 (0.071, 0.075) 0.053 (0.044, 0.061) 0.059 (0.057, 0.062) 0.796 (0.788, 0.803) 0.958 (0.956, 0.960)
Math skills 0.914 (0.910, 0.917) 0.021 (0.020, 0.022) 0.036 (0.032, 0.039) 0.030 (0.028, 0.031) 0.907 (0.903, 0.911) 0.981 (0.981, 0.982)
Problem-solving skills 0.804 (0.794, 0.813) 0.064 (0.062, 0.067) 0.049 (0.038, 0.059) 0.084 (0.080, 0.087) 0.771 (0.761, 0.780) 0.952 (0.950, 0.954)
Physical ability 0.909 (0.905, 0.913) 0.019 (0.018, 0.019) 0.043 (0.039, 0.048) 0.029 (0.028, 0.030) 0.902 (0.898, 0.906) 0.980 (0.979, 0.981)
Physical appearance 0.876 (0.870, 0.883) 0.042 (0.040, 0.044) 0.044 (0.037, 0.051) 0.038 (0.036, 0.040) 0.844 (0.837, 0.850) 0.968 (0.966, 0.969)
Opposite-sex relations 0.832 (0.825, 0.839) 0.050 (0.048, 0.052) 0.061 (0.053, 0.068) 0.058 (0.055, 0.060) 0.813 (0.806, 0.819) 0.962 (0.960, 0.963)
Same-sex relations 0.789 (0.781, 0.797) 0.054 (0.052, 0.056) 0.076 (0.067, 0.085) 0.081 (0.078, 0.084) 0.752 (0.744, 0.760) 0.948 (0.946, 0.950)
Parental relations 0.860 (0.855, 0.866) 0.036 (0.035, 0.038) 0.066 (0.060, 0.072) 0.037 (0.036, 0.039) 0.846 (0.840, 0.851) 0.969 (0.967, 0.970)
Honesty–trustworthiness 0.722 (0.711, 0.733) 0.088 (0.085, 0.090) 0.086 (0.074, 0.098) 0.105 (0.102, 0.108) 0.681 (0.670, 0.691) 0.932 (0.930, 0.935)
Religious–spiritual values 0.915 (0.912, 0.918) 0.025 (0.024, 0.025) 0.037 (0.034, 0.039) 0.024 (0.023, 0.025) 0.909 (0.906, 0.911) 0.982 (0.981, 0.982)
Mean 0.844 0.044 0.060 0.052 0.824 0.964

BIDR Polytomous (1–7)
Impression management 0.721 (0.716, 0.727) 0.105 (0.104, 0.106) 0.078 (0.071, 0.084) 0.096 (0.094, 0.097) 0.678 a (0.672, 0.683) 0.931 (0.930, 0.932)
Self-deceptive enhancement 0.671 (0.662, 0.680) 0.151 (0.149, 0.153) 0.065 (0.055, 0.075) 0.113 (0.111, 0.115) 0.637 a (0.628, 0.646) 0.923 (0.921, 0.925)
Mean 0.696 0.128 0.071 0.104 0.657 0.927

BIDR Dichotomous (0 = 1–5; 1 = 6–7)
Impression management 0.674 (0.563, 0.798) 0.100 (0.077, 0.125) 0.099 (−0.043, 0.223) 0.127 (0.097, 0.159) 0.640 b (0.533, 0.752) 0.924 (0.901, 0.948)
Self-deceptive enhancement 0.592 (0.469, 0.729) 0.112 (0.086, 0.142) 0.150 (−0.010, 0.289) 0.146 (0.112, 0.184) 0.579 a (0.457, 0.708) 0.914 (0.888, 0.940)
Mean 0.633 0.106 0.124 0.136 0.610 0.919

BIDR Dichotomous (0 = 1–2; 1 = 3–7)
Impression management 0.620 (0.500, 0.753) 0.088 (0.062, 0.115) 0.149 (−0.004, 0.284) 0.143 (0.110, 0.180) 0.579 a (0.466, 0.698) 0.910 (0.885, 0.935)
Self-deceptive enhancement 0.593 (0.436, 0.773) 0.110 (0.076, 0.149) 0.138 (−0.074, 0.314) 0.159 (0.115, 0.211) 0.561 a (0.411, 0.725) 0.907 (0.874, 0.941)
Mean 0.606 0.099 0.144 0.151 0.570 0.909

Note. G = G coefficient, SFE = specific-factor error, TE = transient error, RRE = random-response error, G-D = global D coefficient, CS-D = cut-score specific D coefficient. Table entries
represent results obtained from lavaan in R. Values within parentheses are 90% confidence interval limits. Differences with GENOVA are indicated by superscripts: a The lavaan result is
0.001 lower than in GENOVA; b The lavaan result is 0.002 lower than in GENOVA.
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4.3. Partitioning of Variance, G coefficients, and D coefficients on CLRV Metrics

In Tables 5–7, we provide the same indices for CLRVs as those reported in Tables 2–4
for observed scores within the pi and pio designs based on WLSMV estimates from lavaan.
For the pi design results within Table 5, G coefficients range from 0.756 to 0.976 (M = 0.909),
global D coefficients from 0.726 to 0.969 (M = 0.886), and cut-score specific D coefficients
from 0.943 to 0.994 (M = 0.976). In all instances, score consistency and agreement indices as
well as their corresponding confidence interval lower limits exceed those from the observed
score analyses. As was the case with observed scores, confidence intervals for all CLRV
variance components fail to capture zero, again underscoring trustworthy effects. Minimum
confidence interval lower limits for G, global D, and cut-score specific D coefficients for
CLRVs, respectively, equal 0.733, 0.700, and 0.937 as compared to 0.691, 0.588, and 0.915 for
observed scores.

For the CLRV pio design results in Table 7, G coefficients range from 0.684 to 0.923
(M = 0.819), global D coefficients from 0.653 to 0.917 (M = 0.800), cut-score specific D
coefficients from 0.927 to 0.983 (M = 0.959), proportions of specific-factor error from 0.012
to 0.143 (M = 0.050), proportions of transient error from 0.041 to 0.189 (M = 0.099), and
proportions of random-response error from 0.011 to 0.081 (M = 0.032). Confidence intervals
for all variance components and proportions of measurement error fail to capture zero
except o components for 19 of the 24 subscales and the io component for the SDQ-III’s
Problem-Solving Skills subscale. As was the case with observed scores, CLRV variance
components for o (M = 0.0024) and io (M = 0.0042) are extremely low in magnitude in
comparison to the other variance components. Differences in lower confidence interval
limits between CRLVs and observed scores for G, global D, and cut-score specific D coeffi-
cients vary with subscale. Across the 24 subscales, CLRV lower confidence interval limits
are greater than or equal to those for observed scores in 10 instances for G coefficients,
10 instances for global D coefficients, and 14 instances for cut-score specific D coefficients.
Minimum lower limits for G, global D, and cut-score specific D coefficients, respectively,
equal 0.637, 0.614, and 0.917 for CLRVs versus 0.436, 0.411, and 0.874 for observed scores.

In Table 8, we report differences between WLSMV and ULS SEMs in G coefficients,
global D coefficients, cut-score specific D coefficients, and proportions of measurement error
for all designs to further evaluate effects of scale coarseness. For the pi designs, differences
between WLSMV and ULS G and D coefficients are greater for dichotomously scored BIDR
scales than for those with five to eight response options, with differences across all scales
being noticeably greater for G and global D coefficients than for D coefficients representing
cut-scores two standard deviations away from the scale mean. However, even for scales
with five to eight options, G and global D coefficients are uniformly higher for WLSMV
than for ULS with differences ranging from 0.014 to 0.087 (M = 0.034) for G coefficients and
from 0.014 to 0.095 (M = 0.036) for global D coefficients.

In the pio designs, differences between WLSMV and ULS in G and global D coefficients
are lower than those in the pi designs and again markedly higher for dichotomous scales
than for polytomous scales. For the polytomous scales, differences in G and global D
coefficients on average are generally quite small (Ms = 0.010 and 0.011), with the largest
being for the Honesty–Trustworthiness subscale from the SDQ-III. The general pattern
of differences in relative proportions of variance between WLSMV and ULS within each
inventory is for relative proportions of universe score and transient error to increase and
relative proportions of specific-factor and random-response error to decrease.
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Table 5. Variance Components, G coefficients, and D coefficients for GT CLRV pi Designs.

Instrument/
Subscale

Index

p pi,e i G G-D CS-D

IPIP-BFM-100
Extraversion 1.744 (1.548, 1.938) 1.866 (1.816, 1.918) 0.570 (0.520, 0.638) 0.949 (0.943, 0.954) 0.935 (0.927, 0.941) 0.987 (0.985, 0.988)
Agreeableness 0.545 (0.482, 0.610) 0.816 (0.777, 0.856) 0.105 (0.094, 0.125) 0.930 (0.922, 0.937) 0.922 (0.913, 0.929) 0.984 (0.982, 0.986)
Conscientiousness 0.723 (0.633, 0.814) 0.925 (0.884, 0.967) 0.155 (0.138, 0.179) 0.940 (0.933, 0.946) 0.930 (0.922, 0.937) 0.986 (0.984, 0.987)
Emotional stability 1.091 (0.958, 1.225) 1.097 (1.058, 1.137) 0.260 (0.236, 0.292) 0.952 (0.946, 0.957) 0.941 (0.934, 0.947) 0.988 (0.987, 0.989)
Openness 0.604 (0.532, 0.675) 0.830 (0.791, 0.869) 0.109 (0.094, 0.131) 0.936 (0.928, 0.942) 0.928 (0.919, 0.934) 0.985 (0.984, 0.987)
Mean 0.941 0.931 0.986

SDQ-III
General self-esteem 1.928 (1.686, 2.172) 0.747 (0.705, 0.789) 0.156 (0.134, 0.184) 0.969 (0.965, 0.972) 0.962 (0.958, 0.966) 0.992 (0.991, 0.993)
Emotional stability 0.924 (0.817, 1.032) 0.584 (0.557, 0.611) 0.270 (0.237, 0.310) 0.941 (0.934, 0.946) 0.915 (0.905, 0.924) 0.983 (0.980, 0.984)
General academic skills 0.975 (0.851, 1.099) 0.623 (0.592, 0.655) 0.157 (0.136, 0.184) 0.940 (0.932, 0.946) 0.926 (0.916, 0.933) 0.985 (0.983, 0.986)
Verbal skills 0.665 (0.584, 0.745) 0.698 (0.665, 0.731) 0.168 (0.148, 0.193) 0.905 (0.894, 0.914) 0.885 (0.872, 0.895) 0.976 (0.974, 0.979)
Math skills 0.877 (0.770, 0.985) 0.314 (0.301, 0.326) 0.064 (0.054, 0.076) 0.965 (0.961, 0.969) 0.959 (0.953, 0.963) 0.992 (0.991, 0.993)
Problem-solving skills 0.483 (0.422, 0.545) 0.725 (0.691, 0.759) 0.194 (0.173, 0.219) 0.870 (0.854, 0.882) 0.840 (0.822, 0.855) 0.967 (0.963, 0.970)
Physical ability 1.723 (1.520, 1.927) 0.616 (0.590, 0.641) 0.158 (0.140, 0.181) 0.965 (0.961, 0.969) 0.957 (0.951, 0.961) 0.991 (0.990, 0.992)
Physical appearance 0.939 (0.828, 1.051) 0.581 (0.555, 0.606) 0.352 (0.321, 0.387) 0.942 (0.935, 0.948) 0.910 (0.899, 0.919) 0.981 (0.979, 0.983)
Opposite-sex relations 0.724 (0.640, 0.807) 0.667 (0.637, 0.697) 0.193 (0.171, 0.221) 0.916 (0.906, 0.923) 0.894 (0.882, 0.903) 0.978 (0.976, 0.980)
Same-sex relations 0.586 (0.508, 0.663) 0.708 (0.675, 0.741) 0.287 (0.256, 0.324) 0.892 (0.879, 0.903) 0.855 (0.837, 0.869) 0.970 (0.966, 0.973)
Parental relations 1.334 (1.156, 1.512) 0.728 (0.693, 0.763) 0.320 (0.287, 0.360) 0.948 (0.941, 0.954) 0.927 (0.916, 0.935) 0.985 (0.983, 0.987)
Honesty–trustworthiness 0.455 (0.403, 0.506) 0.887 (0.850, 0.925) 0.288 (0.259, 0.324) 0.860 (0.846, 0.872) 0.823 (0.804, 0.838) 0.963 (0.959, 0.966)
Religious–spiritual values 2.072 (1.853, 2.292) 0.600 (0.577, 0.623) 0.193 (0.167, 0.226) 0.976 (0.974, 0.979) 0.969 (0.965, 0.972) 0.994 (0.993, 0.994)
Mean 0.930 0.909 0.981

BIDR Polytomous (1–7)
Impression management 0.227 (0.199, 0.256) 0.962 (0.939, 0.986) 0.351 (0.329, 0.377) 0.825 (0.806, 0.841) 0.776 (0.752, 0.795) 0.952 (0.947, 0.957)
Self-deceptive enhancement 0.133 (0.117, 0.149) 0.857 (0.829, 0.885) 0.149 (0.137, 0.164) 0.756 (0.733, 0.776) 0.726 (0.700, 0.747) 0.943 (0.937, 0.947)
Mean 0.791 0.751 0.948

BIDR Dichotomous (0 = 1–5; 1 = 6–7)
Impression management 0.336 (0.288, 0.384) 1.091 (1.083, 1.100) 0.510 (0.476, 0.553) 0.860 (0.841, 0.876) 0.808 (0.782, 0.827) 0.959 (0.953, 0.963)
Self-deceptive enhancement 0.252 (0.216, 0.288) 1.009 (1.003, 1.015) 0.205 (0.185, 0.233) 0.833 (0.810, 0.851) 0.806 (0.780, 0.826) 0.960 (0.954, 0.964)
Mean 0.847 0.807 0.959

BIDR Dichotomous (0 = 1–2; 1 = 3–7)
Impression management 0.381 (0.326, 0.436) 1.145 (1.137, 1.154) 0.539 (0.504, 0.585) 0.869 (0.850, 0.884) 0.819 (0.794, 0.838) 0.962 (0.956, 0.966)
Self-deceptive enhancement 0.329 (0.278, 0.381) 1.005 (0.999, 1.011) 0.221 (0.201, 0.250) 0.868 (0.847, 0.884) 0.843 (0.818, 0.861) 0.968 (0.962, 0.971)
Mean 0.868 0.831 0.965

Note. CLRV = continuous latent response variable, p = person, pi,e = person × item and other error, i = item, G = G coefficient, G-D = global D coefficient, CS-D = cut-score specific D
coefficient. Values within parentheses are 90% confidence interval limits.
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Table 6. Variance Components for GT CLRV pio Designs.

Instrument/
Subscale

Index

p pi po pio,e i o io

IPIP-BFM-100
Extraversion 1.001 (0.880, 1.123) 0.677 (0.635, 0.718) 0.076 (0.063, 0.089) 0.373 (0.356, 0.389) 0.307 (0.279, 0.342) 0.003 (0.001, 0.006) 0.002 (0.002, 0.004)
Agreeableness 0.657 (0.581, 0.733) 0.617 (0.571, 0.664) 0.088 (0.067, 0.109) 0.357 (0.342, 0.373) 0.127 (0.114, 0.149) 0.000 (0.000, 0.002) 0.002 (0.002, 0.004)
Conscientiousness 1.038 (0.900, 1.177) 0.846 (0.785, 0.909) 0.106 (0.084, 0.128) 0.474 (0.451, 0.496) 0.222 (0.196, 0.257) 0.000 (0.000, 0.002) 0.002 (0.002, 0.005)
Emotional stability 1.495 (1.296, 1.696) 0.943 (0.882, 1.003) 0.184 (0.149, 0.220) 0.596 (0.570, 0.623) 0.327 (0.297, 0.367) 0.003 (0.000, 0.009) 0.006 (0.005, 0.010)
Openness 0.923 (0.803, 1.042) 0.848 (0.786, 0.911) 0.111 (0.088, 0.135) 0.462 (0.441, 0.483) 0.139 (0.120, 0.168) 0.000 (0.000, 0.002) 0.005 (0.005, 0.009)

SDQ-III
General self-esteem 0.654 (0.559, 0.748) 0.106 (0.095, 0.117) 0.068 (0.060, 0.077) 0.172 (0.162, 0.182) 0.041 (0.035, 0.050) 0.002 (0.000, 0.004) 0.001 (0.001, 0.003)
Emotional stability 1.218 (1.067, 1.370) 0.511 (0.473, 0.549) 0.157 (0.135, 0.178) 0.347 (0.332, 0.361) 0.386 (0.339, 0.439) 0.001 (0.000, 0.005) 0.001 (0.001, 0.003)
General academic skills 1.588 (1.397, 1.778) 0.469 (0.429, 0.510) 0.175 (0.146, 0.205) 0.604 (0.581, 0.628) 0.236 (0.203, 0.277) 0.001 (0.000, 0.005) 0.005 (0.004, 0.009)
Verbal skills 0.649 (0.564, 0.734) 0.477 (0.443, 0.511) 0.057 (0.045, 0.069) 0.257 (0.245, 0.269) 0.152 (0.135, 0.174) 0.000 (0.000, 0.001) 0.001 (0.001, 0.003)
Math skills 1.729 (1.514, 1.944) 0.338 (0.313, 0.362) 0.077 (0.065, 0.088) 0.341 (0.330, 0.352) 0.119 (0.101, 0.141) 0.001 (0.000, 0.003) 0.001 (0.001, 0.003)
Problem-solving skills 0.661 (0.573, 0.749) 0.445 (0.411, 0.480) 0.059 (0.047, 0.072) 0.485 (0.466, 0.505) 0.262 (0.237, 0.292) 0.002 (0.000, 0.005) 0.000 (0.000, 0.002)
Physical ability 2.053 (1.793, 2.311) 0.343 (0.318, 0.368) 0.117 (0.099, 0.135) 0.399 (0.383, 0.415) 0.142 (0.126, 0.164) 0.002 (0.000, 0.006) 0.004 (0.003, 0.007)
Physical appearance 1.329 (1.161, 1.496) 0.500 (0.466, 0.534) 0.114 (0.100, 0.128) 0.340 (0.325, 0.356) 0.501 (0.459, 0.548) 0.000 (0.000, 0.001) 0.002 (0.002, 0.005)
Opposite-sex relations 0.911 (0.798, 1.024) 0.445 (0.411, 0.479) 0.102 (0.086, 0.118) 0.403 (0.387, 0.420) 0.232 (0.206, 0.263) 0.000 (0.000, 0.002) 0.002 (0.001, 0.004)
Same-sex relations 0.879 (0.766, 0.992) 0.449 (0.411, 0.487) 0.120 (0.100, 0.139) 0.535 (0.516, 0.554) 0.413 (0.371, 0.460) 0.004 (0.001, 0.008) 0.002 (0.002, 0.005)
Parental relations 1.144 (0.984, 1.305) 0.333 (0.304, 0.363) 0.106 (0.087, 0.125) 0.301 (0.288, 0.314) 0.258 (0.232, 0.288) 0.000 (0.000, 0.002) 0.003 (0.002, 0.005)
Honesty–trustworthiness 0.341 (0.292, 0.390) 0.340 (0.304, 0.376) 0.044 (0.035, 0.054) 0.275 (0.252, 0.298) 0.165 (0.145, 0.190) 0.001 (0.000, 0.003) 0.002 (0.002, 0.005)
Religious–spiritual values 0.728 (0.615, 0.840) 0.113 (0.101, 0.124) 0.057 (0.051, 0.064) 0.102 (0.095, 0.109) 0.060 (0.051, 0.070) 0.000 (0.000, 0.000) 0.001 (0.001, 0.002)

BIDR Polytomous (1–7)
Impression management 0.310 (0.270, 0.349) 0.820 (0.780, 0.860) 0.048 (0.040, 0.055) 0.434 (0.421, 0.447) 0.438 (0.409, 0.471) 0.000 (0.000, 0.001) 0.003 (0.003, 0.005)
Self-deceptive enhancement 0.163 (0.141, 0.184) 0.679 (0.642, 0.716) 0.022 (0.018, 0.026) 0.385 (0.373, 0.397) 0.173 (0.159, 0.191) 0.003 (0.002, 0.004) 0.002 (0.001, 0.003)

BIDR Dichotomous (0 = 1–5; 1 = 6–7)
Impression management 0.716 (0.614, 0.818) 1.631 (1.605, 1.656) 0.114 (0.090, 0.137) 0.449 (0.408, 0.491) 0.880 (0.823, 0.950) 0.001 (0.000, 0.005) 0.016 (0.012, 0.024)
Self-deceptive enhancement 0.371 (0.316, 0.426) 1.032 (1.004, 1.060) 0.098 (0.077, 0.119) 0.413 (0.380, 0.447) 0.282 (0.257, 0.316) 0.000 (0.000, 0.002) 0.004 (0.003, 0.007)

BIDR Dichotomous (0 = 1–2; 1 = 3–7)
Impression management 0.809 (0.686, 0.932) 1.723 (1.668, 1.778) 0.217 (0.171, 0.263) 0.746 (0.685, 0.808) 1.090 (1.023, 1.174) 0.015 (0.006, 0.027) 0.023 (0.018, 0.035)
Self-deceptive enhancement 0.373 (0.308, 0.439) 0.933 (0.904, 0.963) 0.086 (0.066, 0.106) 0.397 (0.364, 0.431) 0.270 (0.249, 0.302) 0.017 (0.010, 0.026) 0.004 (0.004, 0.008)

Note. CLRV = continuous latent response variable, p = person, pi = person × item, po = person × occasion, pio,e = person × item × occasion and other error, i = item, o = occasion,
io = item × occasion. Values within parentheses are 90% confidence interval limits.
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Table 7. G coefficients, D coefficients, and Partitioning of Variance for GT CLRV pio Designs.

Instrument/
Subscale

Index

G SFE TE RRE G-D CS-D

IPIP-BFM-100
Extraversion 0.886 (0.869, 0.901) 0.030 (0.027, 0.033) 0.067 (0.055, 0.081) 0.016 (0.015, 0.019) 0.872 (0.854, 0.888) 0.974 (0.970, 0.977)
Agreeableness 0.828 (0.798, 0.855) 0.039 (0.035, 0.043) 0.111 (0.085, 0.138) 0.022 (0.020, 0.025) 0.821 (0.790, 0.848) 0.964 (0.958, 0.969)
Conscientiousness 0.858 (0.834, 0.878) 0.035 (0.032, 0.039) 0.088 (0.069, 0.107) 0.020 (0.017, 0.022) 0.850 (0.825, 0.870) 0.970 (0.965, 0.974)
Emotional stability 0.851 (0.826, 0.874) 0.027 (0.024, 0.030) 0.105 (0.084, 0.127) 0.017 (0.015, 0.019) 0.842 (0.815, 0.865) 0.968 (0.963, 0.973)
Openness 0.839 (0.813, 0.862) 0.039 (0.035, 0.043) 0.101 (0.080, 0.123) 0.021 (0.019, 0.024) 0.834 (0.807, 0.856) 0.966 (0.961, 0.971)
Mean 0.852 0.034 0.094 0.019 0.844 0.968

SDQ-III
General self-esteem 0.877 (0.862, 0.890) 0.012 (0.011, 0.013) 0.092 (0.081, 0.104) 0.019 (0.017, 0.022) 0.871 (0.855, 0.884) 0.974 (0.971, 0.977)
Emotional stability 0.834 (0.813, 0.853) 0.035 (0.032, 0.039) 0.107 (0.092, 0.124) 0.024 (0.021, 0.027) 0.812 (0.788, 0.831) 0.961 (0.956, 0.965)
General academic skills 0.849 (0.829, 0.867) 0.025 (0.023, 0.028) 0.094 (0.079, 0.110) 0.032 (0.029, 0.036) 0.838 (0.816, 0.856) 0.967 (0.963, 0.971)
Verbal skills 0.833 (0.810, 0.853) 0.061 (0.056, 0.068) 0.073 (0.058, 0.089) 0.033 (0.029, 0.037) 0.817 (0.793, 0.837) 0.963 (0.958, 0.967)
Math skills 0.923 (0.913, 0.932) 0.018 (0.016, 0.020) 0.041 (0.035, 0.048) 0.018 (0.016, 0.021) 0.917 (0.905, 0.926) 0.983 (0.981, 0.985)
Problem-solving skills 0.813 (0.788, 0.834) 0.055 (0.049, 0.061) 0.073 (0.058, 0.089) 0.060 (0.054, 0.067) 0.786 (0.759, 0.807) 0.956 (0.950, 0.960)
Physical ability 0.915 (0.903, 0.925) 0.015 (0.014, 0.017) 0.052 (0.044, 0.061) 0.018 (0.016, 0.020) 0.908 (0.895, 0.919) 0.981 (0.979, 0.984)
Physical appearance 0.870 (0.854, 0.884) 0.033 (0.030, 0.037) 0.075 (0.064, 0.086) 0.022 (0.020, 0.025) 0.843 (0.823, 0.858) 0.967 (0.963, 0.971)
Opposite-sex relations 0.830 (0.808, 0.848) 0.041 (0.037, 0.045) 0.093 (0.079, 0.109) 0.037 (0.033, 0.041) 0.812 (0.789, 0.831) 0.962 (0.957, 0.966)
Same-sex relations 0.801 (0.777, 0.823) 0.041 (0.037, 0.045) 0.109 (0.092, 0.128) 0.049 (0.044, 0.054) 0.770 (0.743, 0.793) 0.952 (0.946, 0.957)
Parental relations 0.871 (0.852, 0.888) 0.025 (0.022, 0.029) 0.080 (0.067, 0.096) 0.023 (0.020, 0.026) 0.854 (0.833, 0.872) 0.970 (0.966, 0.974)
Honesty–trustworthiness 0.781 (0.756, 0.803) 0.065 (0.060, 0.071) 0.102 (0.083, 0.121) 0.052 (0.048, 0.058) 0.755 (0.728, 0.778) 0.949 (0.943, 0.954)
Religious–spiritual values 0.906 (0.895, 0.915) 0.012 (0.011, 0.013) 0.071 (0.064, 0.080) 0.011 (0.009, 0.012) 0.901 (0.889, 0.910) 0.980 (0.978, 0.982)
Mean 0.854 0.034 0.082 0.031 0.837 0.967

BIDR Polytomous (1–7)
Impression management 0.737 (0.709, 0.762) 0.098 (0.090, 0.107) 0.114 (0.095, 0.133) 0.052 (0.047, 0.058) 0.700 (0.670, 0.725) 0.937 (0.930, 0.942)
Self-deceptive enhancement 0.684 (0.652, 0.712) 0.143 (0.132, 0.155) 0.092 (0.075, 0.109) 0.081 (0.074, 0.089) 0.653 (0.620, 0.681) 0.927 (0.920, 0.933)
Mean 0.711 0.120 0.103 0.066 0.676 0.932

BIDR Dichotomous (0 = 1–5; 1 = 6–7)
Impression management 0.767 (0.731, 0.798) 0.087 (0.078, 0.098) 0.122 (0.096, 0.150) 0.024 (0.021, 0.028) 0.731 (0.694, 0.762) 0.944 (0.935, 0.950)
Self-deceptive enhancement 0.685 (0.637, 0.728) 0.095 (0.086, 0.107) 0.181 (0.143, 0.222) 0.038 (0.034, 0.044) 0.667 (0.619, 0.709) 0.932 (0.921, 0.940)
Mean 0.726 0.091 0.152 0.031 0.699 0.938

BIDR Dichotomous (0 = 1–2; 1 = 3–7)
Impression management 0.704 (0.656, 0.747) 0.075 (0.067, 0.084) 0.189 (0.149, 0.230) 0.032 (0.028, 0.037) 0.663 (0.614, 0.707) 0.929 (0.917, 0.938)
Self-deceptive enhancement 0.710 (0.656, 0.756) 0.089 (0.078, 0.102) 0.164 (0.124, 0.207) 0.038 (0.033, 0.044) 0.671 (0.614, 0.718) 0.930 (0.917, 0.941)
Mean 0.707 0.082 0.176 0.035 0.667 0.929

Note. CLRV = continuous latent response variable, G = G coefficient, SFE = specific-factor error, TE = transient error, RRE = random-response error, G-D = global D coefficient,
CS-D = cut-score specific D coefficient. Values within parentheses are 90% confidence interval limits.
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Table 8. Differences between GT WLSMV and ULS Analyses in Score Consistency, Agreement, and Measurement Error.

Instrument/
Subscale

pi Design (WLSMV-ULS) pio Design (WLSMV-ULS)

Number of
Items

Number of
Scale Points G G-D CS-D G SFE TE RRE G-D CS-D

IPIP-BFM-100
Extraversion 20 5 0.026 0.028 0.006 −0.001 −0.009 0.024 −0.015 0.002 0.000
Agreeableness 20 5 0.047 0.049 0.010 0.024 −0.011 0.020 −0.034 0.027 0.005
Conscientiousness 20 5 0.026 0.027 0.005 0.004 −0.007 0.023 −0.019 0.005 0.001
Emotional stability 20 5 0.018 0.019 0.004 −0.006 −0.003 0.024 −0.015 −0.005 −0.001
Openness 20 5 0.035 0.036 0.007 0.011 −0.011 0.022 −0.022 0.012 0.003
Mean 20 5 0.030 0.032 0.006 0.007 −0.008 0.023 −0.021 0.008 0.002

SDQ-III
General self-esteem 12 8 0.017 0.017 0.003 −0.004 −0.004 0.020 −0.012 −0.003 −0.001
Emotional stability 10 8 0.031 0.034 0.007 0.001 −0.012 0.029 −0.018 0.004 0.001
General academic skills 10 8 0.029 0.031 0.006 0.021 −0.009 0.009 −0.021 0.023 0.005
Verbal skills 10 8 0.039 0.042 0.009 0.018 −0.012 0.020 −0.026 0.021 0.004
Math skills 10 8 0.014 0.014 0.003 0.009 −0.003 0.005 −0.011 0.009 0.002
Problem-solving skills 10 8 0.036 0.041 0.009 0.009 −0.010 0.024 −0.024 0.014 0.003
Physical ability 10 8 0.016 0.016 0.003 0.006 −0.003 0.009 −0.011 0.006 0.001
Physical appearance 10 8 0.025 0.029 0.006 −0.006 −0.009 0.030 −0.016 −0.001 0.000
Opposite-sex relations 10 8 0.033 0.035 0.007 −0.002 −0.009 0.032 −0.021 −0.001 0.000
Same-sex relations 10 8 0.043 0.047 0.010 0.012 −0.013 0.033 −0.033 0.017 0.004
Parental relations 10 8 0.025 0.022 0.004 0.011 −0.011 0.014 −0.014 0.009 0.002
Honesty–trustworthiness 12 8 0.087 0.095 0.021 0.059 −0.023 0.016 −0.053 0.074 0.017
Religious–spiritual values 12 8 0.028 0.028 0.006 −0.009 −0.013 0.035 −0.013 −0.008 −0.002
Mean 10.46 8 0.033 0.035 0.007 0.010 −0.007 0.018 −0.020 0.011 0.003

BIDR Polytomous (1–7)
Impression management 20 7 0.060 0.065 0.015 0.016 −0.008 0.036 −0.044 0.022 0.005
Self-deceptive enhancement 20 7 0.039 0.041 0.009 0.013 −0.008 0.027 −0.032 0.016 0.004
Mean 20 7 0.049 0.053 0.012 0.015 −0.008 0.031 −0.038 0.019 0.005

BIDR Dichotomous (0 = 1–5; 1 = 6–7)
Impression management 20 2 0.134 0.125 0.027 0.093 −0.013 0.023 −0.103 0.091 0.019
Self-deceptive enhancement 20 2 0.142 0.134 0.027 0.093 −0.017 0.031 −0.108 0.088 0.018
Mean 20 2 0.138 0.130 0.027 0.093 −0.015 0.027 −0.105 0.089 0.018

BIDR Dichotomous (0 = 1–2; 1 = 3–7)
Impression management 20 2 0.135 0.132 0.028 0.084 −0.013 0.039 −0.111 0.084 0.019
Self-deceptive enhancement 20 2 0.140 0.136 0.028 0.117 −0.022 0.026 −0.121 0.110 0.023
Mean 20 2 0.137 0.134 0.028 0.101 −0.017 0.033 −0.116 0.097 0.021

Note. CLRV = continuous latent response variable, WLSMV = robust diagonally weighted least squares, ULS = unweighted least squares, G = G coefficient, G-D = global D coefficient,
CS-D = cut-score specific D coefficient, SFE = specific-factor error, TE = transient error, RRE = random-response error.
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5. Discussion
5.1. Overview

Our goal in the present study was to illustrate recently developed techniques for
expanding GT analyses within SEM frameworks more thoroughly than in previous stud-
ies by including measures assessing a broad range of psychological traits taken in live
assessment settings, deriving indices relevant to both norm- and criterion-referenced inter-
pretations of scores, constructing confidence intervals for a variety of key GT indices, and
taking the effects of scale coarseness into account. While doing so, we analyzed results for
24 scales from widely administered inventories assessing multiple dimensions of personal-
ity, self-concept, and socially desirable responding with item scale metrics having from two
to eight response categories. When considered collectively, the present results highlight the
effectiveness of SEMs in replicating results from ANOVA models, the importance of taking
multiple sources of measurement error into account, the value of Jorgensen’s procedures for
deriving GT-based dependability coefficients and Monte Carlo-based confidence intervals
for key indices, and the benefits of conducting GT analyses on both observed score and
CLRV metrics to gauge scale coarseness effects.

5.2. Sources of Measurement Error

Across the analyses for observed scores, mean proportions of explained variance for
specific-factor, transient, and random-response error equaled 0.060, 0.076, and 0.069, respectively.
These findings are highly consistent with those from previous studies in underscoring how relia-
bility is routinely overestimated in single-occasion research studies by failing to take all relevant
sources of measurement error into account [14,16,18–24,32–34,38,39,52–55]. The omission of
such effects within single-occasion studies, in turn, can lead to the substantial overestimation of
reliability and corresponding underestimation of relations between latent constructs when those
indices are used to correct correlation coefficients for measurement error (see, e.g., [15,32,38,54]).
Such findings emphasize the inherent limitations of single-occasion studies and the importance
of using multi-occasion data to better represent reliability and validity of scores from measures
of psychological traits.

5.3. Dependability Coefficients

Applications of SEMs to derive variance components for persons, sources of relative
measurement error, and corresponding G coefficients in the published research literature
date back to Marcoulides [10]. In Raykov and Marcoulides’s [11] follow-up to that study,
the authors cited an unpublished paper by Marcoulides [56] in which they alluded to using
SEMs in deriving variance components for absolute error. However, they provided no
further details about the procedures. Ark [13] later speculated that a Q method could
be used to derive each variance component for absolute error separately but acknowl-
edged that this procedure would be cumbersome and of limited utility. More recently,
Jorgensen [14] used a small set of contrived data to demonstrate simpler methods for deriv-
ing variance components for absolute error using indices embedded within the same SEMs
for one- and two-facet GT designs used by Marcoulides, Raykov, and other researchers (see,
e.g., [20–22]).

When we applied Jorgensen’s [14] procedures here to data obtained from three separate
samples of respondents in live settings, results for G coefficients, global D coefficients, cut-
score specific D coefficients, and proportions of measurement error within the pi and
pio designs varied by no more than 0.002 from ones obtained from the ANOVA-based
GT package GENOVA. These results coupled with those from Jorgensen’s original study
confirm that SEMs provide a viable option for doing complete GT analyses while offering
additional benefits that traditional ANOVA-based analyses rarely provide.

5.4. Confidence Intervals for Parameters within GT Analyses

One such benefit demonstrated here was to derive Monte Carlo-based confidence intervals
for all reported variance components, proportions of measurement error, and indices of score
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consistency and agreement. Cronbach et al. [57] and others (see, e.g., [30]) have long emphasized
the importance of gauging sampling variability in GT parameter estimates but methods to
do so are unavailable within most ANOVA-based packages or limited to procedures based
on restrictive assumptions. In contrast, the semTools package in R [26] readily allows for the
derivation of more widely applicable Monte Carlo-based intervals at any desired level of
confidence for all GT indices considered here simply by adding a few lines of code to link
commands within semTools to lavaan (see our online Supplementary Materials).

Although hypothesis testing is not part of traditional GT analyses, confidence intervals
for variance components can serve a similar function when evaluating effects for persons,
sources of measurement error, and differences in absolute levels of scores by noting whether
zero or other targeted values fall within the limits of the interval. Our 90% confidence
intervals for variance components often captured zero for occasion effects and sometimes
for item by occasion interaction and transient error effects, whereas G and D coefficients
had interval limits no lower than 0.411 across all scales, though some scales clearly yielded
much more reliable results than others. On the observed score metric within the pio designs,
confidence interval lower limits for both G and global D coefficients exceeded 0.80 for most
subscales from the IPIP-BFM-100 (4 out of 5) and SDQ-III (9 out of 13), but not for either
subscale from the BIDR across scoring methods. Overall, these results make sense because
the psychological traits we assessed were expected to remain stable over the one-week
interval between administrations, whereas item means, universe scores, and measurement
error effects were expected to vary among respondents as well as within and across scales.

5.5. Effects of Scale Coarseness

Another unique benefit of GT-SEMs illustrated here was to use WLSMV estimates in
lavaan to transform binary- and ordinal-level observed scores to CLRV metrics. Although we
do not advocate substituting CLRV indices directly for those representing observed scores,
we find such indices useful in gauging the effects of scale coarseness on reliability and
in disattenuating correlation coefficients simultaneously for measurement error and scale
coarseness. Because differences between observed scores and CLRVs in consistency and
agreement should diminish as scale options increase, indices for CLRVs can serve as upper
bounds for improvements that might be gained by increasing response options [14,22].
In essence, doing GT on CLRV metrics serves a similar function as n’ value changes
within G and D coefficient formulas by informing ways that assessment procedures might
be improved.

To evaluate possible scale coarseness effects here, we intentionally included measures
that varied in number of response categories. As expected, differences between G and global
D coefficients were more pronounced for BIDR dichotomous scales compared to scales
that included five to eight options. In general, these results support use of polytomous
BIDR scores when measuring individual differences in Impression Management and Self-
Deceptive Enhancement but do not preclude use of dichotomous scores for detecting faking
(see, e.g., [48,58,59]). However, even with scales having five or more response options, we
observed noticeable differences in score consistency and agreement between WLSMV and
ULS estimation in some instances.

One such instance that encompassed nearly all subscales with five or more response
options was within the pi designs in which mean differences between WLSMV and ULS
equaled 0.034 for G coefficients and 0.036 for global D coefficients. These results are
likely due in part to confounding of universe score and transient error variance in the pi
designs. For example, within the corresponding pio designs that separate out transient error
effects, mean differences between WLSMV and ULS dropped to 0.010 for G coefficients and
0.011 for global D coefficients. The greatest differences for polytomous scales were for
Honesty–Trustworthiness that had the lowest standard deviations, alpha coefficients, and
test–retest coefficient among SDQ-III scales.

Another factor that may be responsible for some differences between WLSMV and
ULS for multi-option scales was restricting factor loadings and uniquenesses to be the
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same across items within the pi and pio GT-SEM designs. In recent studies of GT, in which
models with equal and varying unstandardized factor loadings and/or uniquenesses have
been compared (i.e., congeneric versus essential tau-equivalent relationships), reliability is
typically higher for the less restricted models, which in turn may further reduce differences
between WLSMV- and ULS-based indices of consistency and agreement (see, e.g., [19,23,60].
In comparison to G and global D coefficients, cut-score specific D coefficients two standard
deviations away from the scale mean were higher and varied much less across estimation
methods. These results underscore that classification decisions made from extreme cut-
scores can be highly congruent even when overall score consistency is relatively low and
dichotomous score distributions are highly skewed.

5.6. Additional Advantages of GT-SEMs and Further Research

Although not demonstrated explicitly here, SEMs have additional benefits over tradi-
tional ANOVA models that merit comment and future exploration. One recent extension
just mentioned is to model congeneric rather than essential tau-equivalent relationships
between indicators and underlying factors. As is the case when comparing conventional
single-occasion omega to alpha coefficients that, respectively, reflect congeneric versus
essential tau-equivalent relationships [61,62], G coefficients are generally higher for con-
generic than for essential tau-equivalent factor models (see, e.g., [18,23,60]). The offsetting
drawback to modeling congeneric relationships within GT designs is that generalization
is restricted to items and occasions sharing the same characteristics as those sampled in
contrast to the broader domains from which they were drawn [61].

Vispoel, Xu, and Schneider [60] further showed that, despite differences in the labeling
of indices, GT congeneric and latent state–trait orthogonal method models [63,64] are
equivalent under certain conditions, thereby providing a useful bridge between the two
theories. Researchers also have demonstrated that models within both frameworks can
be extended to account for variance due to item phrasing effects (negative, positive, or
both) and allow for partitioning of variance at both total score and individual item levels
(see, e.g., [16,17,60]). However, a limitation of the GT congeneric models used in these stud-
ies was that they were not configured to yield global and cut-score specific D coefficients,
thereby highlighting an important area for further investigation.

Other noteworthy recent extensions of GT-SEMs are to represent
multivariate [16,54,55,65] and bifactor designs [16,18,19,65]. When analyzing multivari-
ate GT designs, variance components for individual subscale scores are the same as
those obtained from univariate designs, but those for composite scores are functions
of the variances of subscale scores that comprise them, the covariances among those
subscale scores, and the weighting of each subscale in forming the composite (see,
e.g., [16,30,54,55,57]). Multivariate GT designs are useful in providing a clearer mapping
of content within the global domain represented by subscale and item scores and in
producing more appropriate and typically higher indices of score consistency and agree-
ment for composite scores than would a direct univariate analysis of composite scores
that ignores subscale representation and interrelationships [18,54,55,65]. Multivariate
GT designs would be analyzed as SEMs with individual subscales represented in the
same ways as in univariate designs but allowing person and measurement error factors
(when appropriate) to covary across subscales (see [16,22,54,55,65]). Multivariate GT
designs also allow for calculation of correlation coefficients between pairs of subscale
scores corrected for all associated sources of measurement error (see, e.g., [54,55]).

Bifactor GT designs bear similarities to both univariate and multivariate GT designs
but further partition universe score variance into general factor effects representing variance
common to all items across subscales and independent group factor effects representing
additional systematic variance specific to each subscale. Score consistency indices in
bifactor models are expanded beyond those in univariate and multivariate GT designs
to reflect proportions of variance accounted for by just general factor effects, just group
factor effects, and general and group factor effects combined. Such partitioning provides



Psych 2023, 5 270

a useful means to investigating score dimensionality and value added when reporting
subscale in addition to composite scores (see, e.g., [65–68]). Bifactor SEMs would include a
general factor linked to all items and orthogonal group factors linked to items within each
subscale plus additional factors for sources of measurement error in multi-facet GT designs
(see [18,19,65] for further details).

Although research in representing GT multivariate and bifactor designs within SEM
frameworks is very limited, the techniques illustrated here for traditional univariate GT
designs can be extended to those designs to derive G, global D, and cut-score specific D
coefficients at composite and subscale score levels; reference results to either observed score
or CLRV metrics; and yield Monte Carlo-based confidence intervals for key parameters of
interest. As with univariate congeneric SEMs, congeneric multivariate and bifactor designs
can produce G coefficients, but methods for obtaining corresponding global and cut-score
specific D coefficients remain an important area for further development.

6. Summary and Conclusions

The results reported here coupled with those from previous studies provide compelling
evidence that SEMs can reproduce all key indices from GT ANOVA models for one- and
two-facet designs while yielding Monte Carlo-based confidence intervals for those indices
and referencing results to either observed score or CLRV metrics. Emerging research
also suggests that the techniques described here for univariate GT-SEM analyses can
be extended to multivariate and bifactor GT-SEMs to provide additional insights into
the nature of assessment domains, create more appropriate indices of score consistency
and agreement for composite scores, and further partition universe score variance into
independent components reflecting general and group factor effects. To aid readers in
applying the GT techniques demonstrated here, we provide examples of all illustrated
SEM analyses using the lavaan [41] and semTools [26] packages in R and examples of all
illustrated ANOVA analyses using the GENOVA package [2]. Additional guidelines for
analyzing and applying these and more complex traditional univariate GT ANOVA-based
designs are provided by Vispoel, Xu, and Schneider [24] using the gtheory package in R.
Related guidelines and illustrations, using the lavaan package in R, are provided by Vispoel,
Lee, and Hong [54,55,65] for analyzing multivariate GT-SEM designs and by Vispoel,
Lee, et al. [18,19,65] for analyzing bifactor GT-SEM designs. We hope readers find these
resources valuable in applying and extending GT-SEM procedures to their own data.
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