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Abstract: Differential item functioning (DIF) is a critical step in providing evidence to support a
scoring inference in building a validity argument for a psychological or educational assessment.
Effect sizes can assist in understanding the accumulation of DIF at the test score level. The current
simulation study investigated the performance of several proposed effect size measures under a
variety of conditions. Conditions under study included varied sample sizes, DIF effect sizes, the
proportion of items with DIF, and the type of DIF (additive vs. non-additive). DIF effect sizes under
study included sDTF%, uDTF%, τ̂2

w, d, R2
∆, I2∗

DIF, and S− DIF−V. The results of this study suggest
that across study conditions, τ̂2

w, I2∗
DIF, and d were consistently the most accurate measures of the

DIF effects. The effect sizes were also estimated in an empirical example. Recommendations and
implications for practice are discussed.
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1. Introduction

A key requirement of educational measurement is that assessments be fair for indi-
viduals in different groups within the broader population [1]. Establishing test fairness
involves the investigation of differential item/bundle functioning (DIF/DBF) present in
the assessment. DIF refers to differential performance on assessment items for individuals
in different groups who have the same level of the latent trait being measured, whereas
DBF refers to differential group performance on sets, or bundles of items. When differ-
ential functioning is considered for the entire set of test items, we refer to differential
test functioning (DTF). For the remainder of this paper, we will use DTF to refer to the
presence of DIF in an entire assessment. DTF has been investigated in different contexts,
from personality selection [2] to health care [3], including comparisons of effect sizes [2].
Capturing a lack of item invariance at the test level can assist in assessing if such issues
influence score-level decisions and assisting with understanding the practical importance
of a lack of invariance [4,5]. Given the centrality of assessment in educational systems,
paramount importance must be given to ensuring fair and equal measurement of abilities
for all individuals. DIF/DTF does not guarantee fairness or equal measurement or use of
scores, but it does assist in providing a piece of evidence to support a path in that direction.

Test fairness and DIF has focused on item-level differences. However, given decisions
about individuals are based on test scores, understanding the influence of DIF on overall
test scores is critical [6]. Effect sizes at the score level can aid this process. A number of such
effect sizes have been suggested, including the DIF variance estimate from a random effects
model, both unweighted (τ̂2) and weighted (τ̂2

w) [7], Cohen’s d for between group average
DIF [8,9], the average variance associated with DIF from logistic regression R2

∆; [8,10], the
signed (sDTF) and unsigned (uDTF) DTF, and the percent scoring difference of the test
(sDTF%/uDTF%). Doebler [11] described a new DIF assessment framework designed
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to obviate the need to account for differences in group means on the measured latent
trait (impact) or item purification. The statistics associated with this approach provide
information about DTF, including a measure of the variance in differences between group
difficulty parameters (I2∗

DIF), and a standardized DIF variance measure (S− DIF−V) for
the difference between group difficulty parameters. These have not been studied for
their effectiveness.

The remainder of this manuscript is organized as follows. First, a review of various
methods for test-level DIF effect sizes is described, after which the goals of this study
are presented. The simulation study used to assess the performance of these effect sizes
is then described, followed by a presentation of the results for both a simulation and
an applied data example. Finally, these results are discussed, and their implications for
practice are considered. The simulation study was motivated by the ability to compare
all effect sizes under known and controlled conditions, as has been common in other DTF
effect size comparisons [2,12], and moves beyond comparisons that have only been on
applied datasets [4].

1.1. Effect Size Methods for Quantifying the Magnitude of DIF in an Assessment

Effect size use in DIF detection has been emphasized for DIF identification [6] and
for general measurement invariance work [13]. A number of effect size measures for
quantifying DIF for a single assessment have been proposed. One such approach for
quantifying the total amount of DIF in a set of items (e.g., subtests) is based on the concept
of the random effect item response theory (IRT) model [7]. Consider the 2-parameter logistic
model for DIF (2PL-DIF):

P(θ) =
exp
(
1.7ai

(
θj − bi

)
+ Gξi

)
1 + exp

(
1.7ai

(
θj − bi

)
+ Gξi

) (1)

In Equation (1), ai is the discrimination parameter for item I, bi is the difficulty pa-
rameter for item i, θj is the latent trait value for examinee j, G is group membership (focal
group = 0 and reference group = 1), and ξi = DIF effect for item i. In this context, ξi = 0
signals no DIF, ξi > 0 signals DIF against the focal group, and ξi < 0 signals DIF against
the reference group. The log odds ratio from the Mantel–Haenszel test is an effective and
appropriate estimate of ξi [7] and can be modeled in the random effects context as follows:

log(α̂MHi) = µ + ξi + εi (2)

where µ is the mean DIF across all items and εi is the estimation error.
When no DIF is present, the variance of ξ, τ2, will be 0. In short, τ2 provides an

estimate of the amount of DIF in a set of items, with larger values indicating a greater
amount of cumulative DIF. Camilli and Penfield proposed two approaches to estimating τ2.
The unweighted estimator takes the form:

τ̂2 =
∑I

i=1[log(α̂MHi)− µ̂]2 −∑I
i=1 S2

i
I

(3)

where µ̂ is the mean of log(α̂MHi) across the I items of the test, and S2
i is the variance in

log(α̂MHi) for each of the i items of the test. The weighted estimator is as follows:

τ̂2
w =

∑I
i=1 w2

i [log(α̂MHi)− µ̂]2 −∑I
i=1 w2

i

∑I
i=1 w2

i
(4)

where w2
i = S−2

i . The index τ̂2
w can provide a more accurate estimation of the true amount

of cumulative DIF (DTF) present in a set of items [7].
A second proposed method for quantifying the amount of DIF in an assessment in-

volves a conversion of log(α̂MHi) for item i to a Cohen’s d effect size using a transformation
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first proposed by Hasselblad and Hedges [9]. Specifically, assuming a logistic distribution
and homogeneous variances, a log odds ratio, such as log(α̂MHi) can be converted to d by
the following:

d = log(α̂MHi)

√
3

π
(5)

In the context of comparing the amount of DTF present in two or more scales, we
propose to calculate log(α̂MHi) for each item in the test or item bundle, convert these to
d using Equation (5), and then average the ds across the items, creating d. The potential
advantage is that d is on a familiar scale to researchers and has interpretive values for
application. Two values of d will be calculated in this study, ds in which the signs of the d
values are taken into consideration, and du, where the absolute value of the ds is used.

A third approach is based on logistic regression (LR), a popular method for DIF
detection [14]. When LR is used for DIF assessment, R2

∆, the effect size, is reported with
the statistical test for each item. R2

∆ reflects the amount of DIF present for the item. To
characterize the magnitude of uniform DIF for an item, this statistic is calculated as the
difference between the R2 associated with the model including only the latent trait as the
predictor for the item response, and the R2 associated with the model including the latent
trait and an indicator for the grouping variable. In order to estimate the amount of DIF
present for an entire scale, we propose the use of the mean of R2

∆, R2
∆, taken across items in

an item bundle or an entire assessment. Thus, for the set of items of interest, R2
∆ will be

calculated for each item and R2
∆ will be taken across the set of items, with larger values

reflecting a greater amount of DIF present in the set of items. Note that this estimate of
DTF is unsigned and does not reflect cancellation DIF.

Doebler [11] described DIF effect sizes that have shown promise for assessing the
magnitude of DIF at the item level, and that may be useful for describing the impact of DIF
at the test level. One of these statistics is based upon the variance in the difference of item
level parameter estimates (e.g., item difficulty) across groups. For the two groups’ case, this
difference is estimated as follows:

∆̂βi = β̂Fi − β̂Ri (6)

where
β̂Fi = Focal group difficulty estimate for item i
β̂Ri = Reference group difficulty estimate for item i
When uniform DIF is not present for an item, then ∆̂βi = 0. The variance associated

with this statistic can be used to estimate the total amount of DIF present in a test. One
such example is the I2

DIF statistic, which is based upon a statistic used in meta-analysis and
which can be calculated as follows:

I2
DIF =

v̂2

v̂2 + s2
∆β

(7)

where
v̂2 = Variance in the ∆̂βi
s2

∆β = Mean squared error of ∆̂βi

The s2
∆β value is estimated as

s2
∆β =

(I − 1)∑I
i=1 wi

∑I
i=1 wi

2 −∑I
i=1 w2

i
(8)

where
I = Number of items
wi =

1
s2

∆̂βi
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Larger values of I2
DIF indicate greater inconsistency in the DIF structure across items.

In practice, the REML estimator of v̂2 using maximum likelihood cannot be obtained
in closed form. An alternative estimator of I2

DIF can be calculated using an estimate of v̂2

proposed by DerSimonian and Laird (1986). This estimator takes the form:

I2∗
DIF =

max(0, Q− (I − 1))
Q

(9)

where

Q =
I

∑
i=1

(∆̂βi−∆)
2

s2
∆̂βi

∆ =
(∑I

i=1 wi∆̂βi)
∑I

i=1 wi

I2∗
DIF can be interpreted as the ratio of excess homogeneity to the total heterogeneity in

DIF across the items, and serves as an estimate of I2
DIF such that larger values indicate a

higher level of DIF in the assessment being studied.
Chalmers et al. [15] described two approaches for characterizing the amount of

DIF in an assessment, both based on the group-specific expected test score function in
Equation (10).

T(θ, ψG) = ∑n
j=1 Sj(θ, ψG) (10)

where
ψG = Item parameters for group G
Si = ∑K−1

K=0 k·P
(
y = k

∣∣θ, ψj
)
; score function for item i

y = Item response
k = Item category
θ = Latent trait value
In turn, T(θ, ψG) can be used to ascertain whether there is differential test functioning

(DTF) across multiple groups. One such statistic is an index of signed DTF.

sDTF =
∫
[T(θ, ψR)− T(θ, ψF))]g(θ)d(θ) (11)

where
g(θ) = Weight function such that

∫
g(θ)d(θ) = 1

ψR = Reference group item parameters
ψF = Focal group item parameters
The sample estimate of sDTF is obtained by evaluating the function in Equation (11)

at a set of Q quadrature points, as in Equation (12).

sDTF = ∑Q
q=1 T

(
Xq, ψR)− T

(
Xq, ψF

))
g
(
Xq
)

(12)

where
Xq = Quadrature value
g
(
Xq
)
= Weight associated with the quadrature node

Researchers can interpret sDTF as the mean difference between the test response
functions for the two groups, with negative values indicating that the reference group had
lower mean scores on the assessment and positive values indicating that the focal group
had lower mean scores, after accounting for item parameter values.

An alternative to the sDTF is an unsigned measure of DTF, which focuses on group
differences in the test function, without respect to which group is favored. This unsigned
DTF measure is expressed as follows:

uDTF =
∫
|T(θ, ψR − T(θ, ψF))|g(θ)d(θ) (13)
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Note that the uDTF is identical to the sDTF with the exception that the absolute value
of test function differences is applied in Equation (13). As with the sDTF, quadrature is
used to obtain estimates for specific samples, as in Equation (14):

uDTF = ∑Q
q=1

∣∣T(Xq, ψR)− T
(
Xq, ψF

))∣∣g(Xq
)

(14)

uDTF reflects the mean difference between the two groups’ curves, and can be stan-
dardized in order to make interpretation easier, as in Equation (15).

uDTF% =
uDTF

TS
× 100 (15)

where
TS = Highest possible test score
Larger values of these statistics reflect a greater degree of DTF.
Doebler [11] described another effect size measure of DIF across a set of items, the

standardized DIF variance (S− DIF−V). This statistic takes the form:

S− DIF−V =
(JR + JF − 2)τ̂2

(JF − 1)σ2
F + (JF − 1)σ2

F
(16)

where
JR = Reference group sample size
JF = Focal group sample size
σ2

F = Variance in latent trait for focal group
σ2

R = Variance in latent trait for reference group
Doebler argues that in contrast to I2∗

DIF, S− DIF−V is largely independent of sample
size and thus may be particularly useful as an effect size.

There is a dearth of work examining the performance of these test-level DIF (DTF)
effect size measures. Finch et al. [8] found that when comparing the amount of DIF present
in two assessments of the same construct τ̂2, ds, du, and R2

∆ all were effective in identifying
the test with greater DIF across its items. In contrast, when the tests were not of equal
length, τ̂2 yielded more accurate results compared to other methods studied. Furthermore,
when DIF was present for both tests but greater in one than the other, τ̂2 was better able to
identify which had greater levels of DIF than were ds, du, and R2

∆. With respect to I2∗
DIF and

S− DIF−V, Doebler [11] demonstrated their use with an extant dataset and supported
that they were able to identify cumulative DIF across a set of items in a scale.

1.2. Study Goals

This study’s goals were to (a) describe a variety of effect size statistics designed to
measure the impact of uniform DIF at the item level in terms of the impact at the score
level, (b) compare these measures across simulated conditions, and (c) show these effect
sizes in an applied example. A simulation was used to compare the effect sizes following
past research [2,5]. In this work, population parameter effect size values were obtained
by generating populations consisting of 20,000,000 individuals in each group under a
specific DIF condition. The population data generating conditions appear in Table 1 and
are described in the methods section below. This study adds to the literature by comparing
a number of test-level DIF effect sizes, several of which have not been examined heretofore
using a simulation methodology.

Table 1. Study factors and conditions used in the simulation.

Factor Levels

Number of items 10, 20
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Table 1. Cont.

Factor Levels

Group sample sizes
250/250, 500/500, 1000/1000, 2000/2000,
500/250, 1000/250,
2000/250, 1000/500, 2000/500, 2000/1000

Group mean difference 0, −0.5, −1
Proportion of DIF items 0, 0.1, 0.2
Uniform DIF magnitude 0, 0.4, 0.8
DIF effect Additive, Non-additive

Effect sizes sDTF%, uDTF%, τ̂2
w, d, R2

∆ from logistic
regression, I2∗

DIF, S− DIF−V

2. Materials and Methods

A Monte Carlo simulation study (1000 replications per condition) was conducted to
compare the effect size measures with one another across a variety of study conditions.
Item response data for dichotomous items were generated using a Rasch model in order
to follow the modeling used in Doebler [11]. The study conditions, which are described
below and appear in Table 1, were completely crossed, and were selected to represent what
is common in many DIF studies.

Data generation and analysis were completed with the R software system, version
4.0 [16]. The item difficulty parameters used to generate data for the reference group were
drawn from a widely used intelligence test [17] and appear in Table 2. The method used to
induce DIF for the focal group is described below.

Table 2. Data generating item difficulty parameter values for the two simulated assessments in the
30-item condition.

Item Reference Group Item Difficulty Parameter Values

1 −1.92
2 −0.96
3 −0.55
4 −0.14
5 0.01
6 0.22
7 0.41
8 0.59
9 −0.60
10 0.23
11 0.77
12 0.81
13 0.92
14 0.93
15 1.02
16 1.15
17 1.30
18 1.37
19 1.68
20 1.74

2.1. Manipulated Factors
2.1.1. Number of Items

Prior research has shown that the assessment of DIF/DTF can be influenced by the
test length, with longer tests leaving potentially more items for better matching of groups
for DIF detection [18–21]. For this reason, two test lengths were simulated in this study
(10 and 20 items), representing short- to moderate-length tests. These values are common
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in practice, especially with psychological scales [22–24], and have appeared in previous
simulation studies within this range examining DIF detection [18–20,25].

2.1.2. Percentage, Magnitude, and Type of DIF

The percentage of DIF occurred at three levels, 0%, 10%, and 20%, found in practice [26].
DIF was simulated by adjusting the item difficulty parameter values for the focal group
through manipulation of the area between the item response functions via Raju’s formula.
These differences were employed in order to simulate no DIF (0), small (0.4), and large (0.8)
DIF [21]. The percent of 0% DIF condition was by necessity not crossed with the level of
DIF conditions. As noted above, the item difficulty values used to generate the data for
the reference group appear in Table 2. When DIF was present, the magnitude values listed
above were added to the values for items 2, 3, 6, and 7 (for the appropriate proportion of
items with DIF) in Table 2 for the target items in order to obtain item difficulty parameters
for the focal group. These items were selected randomly. DIF was simulated to be either
additive (all DIF items favored the same group) or non-additive (half of the DIF items
favored the reference group, and half favored the focal group).

2.1.3. Sample Size/Sample Size Ratio

Focal and reference group sample sizes were simulated at a variety of levels, as
seen in Table 1. These values represent both the applied and simulation literature on
DIF [14,21,27,28].

2.1.4. Group Ability Differences (Impact)

Group mean differences in the latent trait are associated with Type I error inflation for
uniform DIF [27,29–31]. Therefore, to ascertain the influence of impact on the performance
of the effect sizes, mean abilities of the focal and reference groups were set to be 0/0,
−0.5/0, or −1/0.

2.1.5. Study Outcomes

The study outcomes of interest were the mean effect size values, the empirical standard
errors for the effect sizes, and the relative estimation bias of the effect size measures. The
empirical standard error is the standard deviation of the 1000 parameter estimates for each
combination of conditions. In other words, for each combination of the study conditions,
the standard deviation of each effect size measure was calculated for the 1000 estimated
values. Likewise, the mean effect size value for each effect size statistic was calculated
across the 1000 parameter estimates for each combination of conditions. The relative bias
was calculated as follows:

RB =
θ̂ − θ

θ
(17)

where
θ = Population parameter value
θ̂ = Parameter estimate
The population parameter effect size values were obtained by generating population

simulations consisting of 20,000,000 individuals in each group under a specific DIF condi-
tion (e.g., 0.8 magnitude with 20% of items containing DIF). To ensure the stability of these
values, this procedure was conducted 3 times for each condition, and it was noted that the
resulting effect size values were virtually identical across these replications. In order to
assess which main effects and interactions of the conditions were related to the relative
bias, analysis of variance (ANOVA), in conjunction with the ω2, was used, where values
above 0.10 singled out factors to examine.

With respect to interpretation of the outcomes, the RB is most useful for comparison
across the various effect size statistics because it accounts for differences in the scale of each
statistic by standardizing it to the population value. In other words, for each effect size
measure, RB reflects the same metric, difference between the estimated and population



Psych 2023, 5 140

values divided by the population value. The empirical standard error is most useful for
comparisons within the same effect size statistic across different simulation conditions. It
is not helpful for comparing across effect size measures because they are calculated on
different scales. Finally, the mean of the raw effect size statistic is also useful for comparison
across simulation conditions within effect size measure and not across effect sizes, again
due to differences in scale.

3. Results
3.1. No DIF

When there was no DIF present in the population, there were no statistically significant
terms associated with the values of effect sizes. Table 3 contains the means and empirical
standard errors of the DTF effect size statistics in the absence of the DIF condition. If
DIF was not present, values of 0 should be observed for these effect sizes. None of these
statistics yielded values that were exactly 0, with all but the sDTF% exhibiting a positive
bias. Note that it is not possible to calculate relative bias in the no DIF condition because it
would require division by 0.

Table 3. DTF effect size statistics and standard error when DIF was absent.

Statistic Mean Standard Error

I2∗
DIF 0.04 0.11

S− DIF−V 0.08 0.04
τ̂2

w 0.003 0.02
R2

∆ 0.001 0.003
d 0.01 0.02
uDTF% 2.08 2.88
sDTF% −0.48 3.23

3.2. DIF Present

When DIF was simulated to be present among the items, ANOVA results revealed that
the interactions of the proportion of DIF items by DIF magnitude (F1,441 = 48.77, p < 0.0001,
ω2 = 0.094), impact by type of DIF (F2,441 = 12.07, p < 0.0001, ω2 = 0.073), and the
interaction magnitude of DIF by type of DIF (F1,441 = 5.74, p = 0.017, ω2 = 0.013)
were associated with relative bias. Table 4 includes the relative bias, effect size means,
and standard errors across simulation replications for the proportion of DIF items by the
magnitude of DIF. Relative biases of τ̂2

w, d, and sDTF% were generally uninfluenced by
the magnitude of DIF or the proportion of items that contained DIF. In contrast, I2∗

DIF,

S − DIF − V, and R2
∆ yielded different levels of relative bias based on DIF magnitude

and proportion. More specifically, I2∗
DIF yielded somewhat higher levels of bias for the

lower DIF magnitude, and S− DIF−V had a higher bias for larger DIF magnitudes. The
R2

∆ effect size yielded higher levels of relative bias for both greater DIF magnitude and a
larger proportion of DIF items. In addition, for each of the effect sizes, mean values were
larger when a greater proportion of items exhibited DIF and when the magnitude of DIF
was greater.

The empirical standard errors by DIF magnitude and proportion of DIF items, as well
as for the No DIF condition, appear in the third panel of Table 4.

For S − DIF − V and R2
∆ the standard errors in the No DIF case were lower than

when DIF was present. In contrast, I2∗
DIF, uDTF% and sDTF% exhibited empirical standard

errors that were equal to or greater than the empirical standard errors when DIF was
present. The standard errors for τ̂2

w and d were not impacted by the presence of DIF. When
DIF was present, the empirical standard errors for I2∗

DIF, uDTF%, and sDTF% were larger
for a higher proportion of DIF items when the magnitude of DIF was 0.4, whereas, for a
magnitude of 0.8, the reverse pattern was in evidence. The results for S− DIF−V were
the opposite of these three variables, and for τ̂2

w, d, and R2
∆ there appeared to be little to
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no relationship between either the DIF magnitude or proportion of DIF items and the
empirical standard error.

Table 4. Effect size values, empirical standard error, and relative estimation bias by magnitude of
DIF and proportion of items with DIF.

Mag DIF Prop DIF I2*
DIF S−DIF−V τ̂2

w R2
∆ d uDTF% sDTF%

0.4 0.1 0.57 0.12 0.02 0.004 0.10 13.40 −13.38
0.2 0.64 0.19 0.06 0.008 0.12 21.64 −17.59

0.8 0.1 0.61 0.22 0.05 0.011 0.11 22.04 −16.80
0.2 0.70 0.25 0.08 0.012 0.14 25.12 −18.85

Empirical standard error

0.4 0.1 0.08 0.06 0.02 0.01 0.02 2.18 2.94

0.2 0.11 0.05 0.01 0.01 0.02 2.78 3.20

0.8 0.1 0.09 0.06 0.02 0.01 0.02 2.66 3.17

0.2 0.07 0.07 0.02 0.01 0.02 2.60 3.15

Relative estimation bias

0.4 0.1 0.02 0.01 0.003 −0.06 −0.01 −0.02 −0.01

0.2 0.02 0.02 0.003 −0.08 −0.01 −0.01 −0.01

0.8 0.1 0.01 0.04 0.003 −0.07 −0.01 −0.01 −0.01

0.2 0.01 0.04 0.002 −0.08 −0.01 −0.02 −0.01

Table 5 includes the relative bias, mean effect size values, and standard errors by DIF
magnitude and type of DIF.

Table 5. Effect size values, empirical standard error, and relative estimation bias by magnitude of
DIF and type of DIF.

Mag DIF DIF Type I2*
DIF S−DIF−V τ̂2

w R2
∆ d uDTF% sDTF%

0.4 Add 0.63 0.18 0.04 0.007 0.12 18.80 −13.39
Non 0.58 0.13 0.04 0.005 0.11 17.59 −7.84

0.8 Add 0.73 0.35 0.09 0.02 0.14 22.98 −17.10
Non 0.57 0.14 0.09 0.02 0.11 21.41 −8.45

Empirical standard error

0.4 Add 0.10 0.05 0.02 0.005 0.02 2.56 3.21
Non 0.09 0.06 0.02 0.006 0.02 2.47 2.91

0.8 Add 0.09 0.05 0.02 0.006 0.02 2.76 3.34
Non 0.05 0.09 0.02 0.009 0.02 2.46 2.91

Relative estimation bias

0.4 Add 0.03 0.02 0.003 −0.07 −0.02 −0.02 −0.01

Non 0.01 0.01 0.003 −0.07 −0.01 −0.01 −0.01

0.8 Add 0.02 0.06 0.003 −0.08 −0.01 −0.02 −0.01

Non 0.01 0.02 0.003 −0.07 −0.01 −0.01 −0.01

When DIF was additive in nature (i.e., all DIF items favored the same group), the
relative bias was consistently higher for I2∗

DIF, S− DIF−V , and uDTF%. This effect was
particularly marked for S− DIF−V in the higher DIF condition. In contrast, relative bias
in τ̂2

w, d, and sDTF% were not affected by either DIF magnitude or type. Finally, R2
∆ yielded

the highest relative bias across conditions.
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With respect to the mean estimates, each effect size yielded larger values when the
magnitude of DIF was larger. This result was demonstrated in both the mean effect size
values as well as the ratios of these values to the no DIF case. When DIF was not additive
(i.e., equal numbers of items favored the two groups), I2∗

DIF, S− DIF−V, and d displayed
little to no differences in the mean values between the two DIF magnitude levels. In
addition, the difference in mean values between DIF magnitudes of 0.4 and 0.8 was less for
uDTF% and sDTF% for non-additive DIF. Finally, τ̂2

w and R2
∆ both appeared to be largely

unaffected by DIF characteristics, such that the relationship of DIF magnitude on the mean
effect size value was similar for both types of DIF.

The empirical standard errors for the effect sizes by DIF magnitude and type also
appear in Table 5. The overall patterns of relative empirical standard error sizes for the No
DIF and DIF conditions by effect size statistic that were discussed with respect to Table 4
are also evident in Table 5 as well. In terms of the combination of DIF magnitude and type,
there was no impact on the empirical standard errors of either τ̂2

w or d. The standard errors
for S− DIF−V and R2

∆ were larger for the non-additive DIF condition, and this pattern
was stronger when the DIF magnitude was 0.8. In contrast, the empirical standard errors
for I2∗

DIF, uDTF% and sDTF% were smaller in the non-additive DIF case, and this difference
with the additive DIF condition was more pronounced for a greater DIF magnitude.

Table 6 includes the relative estimation bias, mean effect size values, and empirical
standard errors by impact and type of DIF.

Table 6. Effect size values, empirical standard error, and relative estimation bias by impact and type
of DIF.

Impact DIF Type I2*
DIF S−DIF−V τ̂2

w R2
∆ d uDTF% sDTF%

0 Add 0.66 0.24 0.06 0.01 0.13 18.34 −12.80
Non 0.61 0.17 0.06 0.01 0.12 15.30 −5.44

−0.5 Add 0.67 0.25 0.06 0.01 0.12 20.73 −17.07
Non 0.59 0.14 0.05 0.01 0.12 19.01 −11.29

−1.0 Add 0.71 0.29 0.06 0.01 0.13 24.19 −20.68
Non 0.53 0.10 0.05 0.01 0.10 23.59 −17.89

Standard error

0 Add 0.09 0.06 0.02 0.005 0.02 2.45 3.38
Non 0.08 0.07 0.02 0.007 0.02 2.41 2.90

−0.5 Add 0.09 0.05 0.02 0.006 0.02 2.71 3.21
Non 0.07 0.07 0.02 0.007 0.02 2.47 2.88

−1.0 Add 0.11 0.04 0.02 0.005 0.02 2.86 3.26
Non 0.07 0.08 0.02 0.007 0.02 2.56 2.96

Relative estimation bias

0 Add 0.01 0.02 0.01 −0.06 −0.01 −0.01 −0.01

Non 0.01 0.03 0.01 −0.07 −0.01 −0.01 −0.01

−0.5 Add 0.03 0.05 0.01 −0.07 −0.02 −0.02 −0.01

Non −0.01 0.01 0.01 −0.08 −0.01 −0.01 −0.01

−1.0 Add 0.04 0.07 0.01 −0.08 −0.01 −0.03 −0.01

Non −0.02 −0.02 0.01 −0.06 −0.02 −0.01 −0.01

As was evident in Table 5, the relative biases of τ̂2
w, d, and sDTF% were affected

relatively little by the type of DIF, regardless of the level of impact. In contrast, the type
of DIF did influence the values that were obtained for the other statistics to at least some
extent. More specifically, the type of DIF had a greater influence on the relative bias with
greater levels of impact for I2∗

DIF, S− DIF−V and uDTF%. Across conditions, R2
∆ yielded

the highest degree of relative bias from among the effect sizes included in this study.
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A similar overall pattern of results was evident for the mean values of the effect sizes
themselves. For example, R2

∆ was unaffected by the level of impact. Furthermore, τ̂2
w

and d evinced relatively small differences in mean values across the different levels of
impact. In contrast, magnitudes for several of the effect size measures were impacted
differentially by the combination of impact and DIF type. As an example, the values of I2∗

DIF
and S− DIF−V increased concomitantly with greater levels of impact when the type of
DIF was additive. Conversely, when the type of DIF was non-additive, the values of these
two effect sizes decreased with increasing levels of impact. In other words, both I2∗

DIF and
S− DIF−V were less likely to reflect the presence of DIF when there was a larger impact
and when the type of DIF was non-additive, but were more likely to reflect the presence
of more DIF among the items when the type of DIF was additive, and the level of impact
was higher. In contrast to this pattern, the results in Table 6 show that for both uDTF% and
sDTF%, there was an increase in values as the level of impact increased as well. However,
this increase was greater for the non-additive DIF, as reflected in both the means and ratios
to the non-DIF condition.

The empirical standard errors for the effect size statistics by impact and type of DIF
appear in the third panel of Table 6, along with the standard errors when no DIF was
present. As was true in the other tables, there was no relationship between either impact or
the type of DIF and the empirical standard errors for τ̂2

w or d. In addition, the standard errors
for R2

∆ were larger for the non-additive DIF condition, and this result was consistent across
levels of impact. As was the case in Table 4, the empirical standard errors for the additive
DIF condition were larger for both uDTF% and sDTF%, and this difference was larger
for uDTF% when greater amounts of impact were present. Effect size values, empirical
standard errors, and relative estimation bias by sample size (Supplemental Table S1) and
effect size values, empirical standard errors, and relative estimation bias by number of
items (Supplemental Table S2) appear in Supplemental Materials.

3.3. Empirical Example

In order to demonstrate the use of these effect size statistics in an applied setting,
DIF analysis was conducted for an empirical example, following past examples in this
area [2]. The data used for this purpose were drawn from the verbal aggression dataset
that is included in the difR package [32]. The data include 316 responses to a 24-item verbal
aggression questionnaire. The items asked respondents about four different scenarios (bus
fails to stop for me, miss train because clerk provided faulty information, grocery store
closes as I am about to enter, and operator disconnects me when I used my last 10 cents
for a call). For each scenario, the respondents are also asked whether they would curse,
scold, or shout or would want to (but not act on a) curse, scold, or shout. The combination
of these scenarios (4) and potential actions (6) yields 24 items. For each item, individuals
respond either yes (1) or no (0). Uniform DIF for these items was assessed by both the
Mantel–Haenszel test and logistic regression based on gender, with 243 women and 73 men
in the sample. The effect sizes featured in the simulation study were applied to the verbal
aggression dataset.

Table 7 includes the difficulty parameter estimates, ETS ∆ effect size, ETS DIF classifi-
cation, and the R2

∆ effect size from logistic regression for each item in the verbal aggression
scale. Statistically significant DIF is denoted by *.

Based on these results, items 6, 12, 16, 17, 19, and 20 were identified with statistically
significant uniform DIF by MH. The LR results identified items 4, 6, 14, 16, 17, and 19 as
having gender-based DIF. The difficulty parameter estimates were lower for females on
items 4, 6, and 12, whereas they were higher for females on items 16, 17, 19, and 20. Higher
item difficulty means that an individual needs a higher degree of the latent trait (verbal
aggression) to endorse the item.

The DTF effect size estimates for the verbal aggression data appear in Table 8.
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Table 7. Item difficulty estimates by group, and item level DIF results for verbal anger data.

Item Female Item Difficulty Male Item Difficulty ETS ∆ * MH α Logistic Regression R2
∆

1 −1.26 −1.11 −1.25 1.70 0.007
2 −0.59 −0.49 −1.34 1.77 0.006
3 −0.11 0.02 −0.87 1.45 0.007
4 −1.85 −1.46 −1.56 1.94 0.020 *
5 −0.76 −0.56 −1.61 1.98 0.016
6 −0.18 0.53 −2.49 * 2.88 0.034 *
7 −0.50 −0.64 0.14 0.94 0.000
8 0.86 0.16 0.77 0.72 0.005
9 1.47 1.74 −1.00 1.53 0.008
10 −1.13 −0.95 −1.23 1.69 0.007
11 0.43 0.09 −0.20 1.09 0.000
12 0.96 1.34 −2.00 * 2.35 0.013
13 −1.11 −1.65 0.53 0.80 0.001
14 −0.18 −1.11 1.63 0.50 0.011 *
15 0.89 0.83 −0.38 1.18 0.002
16 −0.62 −1.85 2.67 * 0.32 0.024 *
17 0.34 −0.87 2.31 * 0.38 0.025 *
18 1.59 1.17 0.55 0.79 0.000
19 0.48 −0.64 1.82 * 0.46 0.023 *
20 1.78 0.77 1.76 * 0.47 0.017
21 3.16 2.50 1.06 0.64 0.003
22 −0.55 −1.28 1.03 0.64 0.006
23 0.57 −0.20 1.05 0.64 0.007
24 1.98 2.08 −1.11 1.61 0.004

* Statistically significant (α = 0.05) uniform DIF.

Table 8. DTF effect size statistics for verbal anger data.

Statistic Full Verbal Aggression Data Non-DIF Verbal Aggression Data

I2∗
DIF 0.78 0.54

S− DIF−V 0.17 0.08
τ̂2

w 0.24 0.05
R2

∆ 0.01 0.004
d 0.34 0.01

uDTF% 62.46 34.08
sDTF% −36.29 −16.53

Effect size values were calculated for both the full set of 24 items and for the subset of
17 items that were not found to have statistically significant DIF. The purpose of this latter
analysis was to provide a point of comparison for the two scenarios (with and without
DIF). It is clear from these results that when DIF was present, the effect size values were
larger than when no DIF was present. It should also be noted that these effect sizes are
each designed such that the number of items should not be a factor with respect to their
magnitude. Therefore, differences in effect size value reflect differences in the amount of
collective DIF present in the items.

4. Discussion

Assessment fairness and equity is an increasingly important issue in educational and
psychological measurement. In order for scores from such assessments to be meaningful at
the individual and group levels, the measures themselves must perform in the same way
for individuals from across the population. When this is not the case, and an instrument
performs differentially for individuals from different subgroups, the scores cannot be
assumed to be valid reflections of the construct being measured. Traditionally, DIF detection
studies have focused primarily on identifying individual items that might exhibit DIF so
that they can then be edited or removed. Relatively less attention has been paid to assessing
the impact of DIF at the total scale level. Recently, however, authors have suggested such
measures for use in ascertaining the extent of the impact of DIF on the total test score [8,11],
as well as determining guidelines for the size of the effects and when invariance is of
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practical importance [3]. The focus of this study was on comparing the performance
of several such effect sizes in order to gain insights into which of them might provide
measurement professionals the greatest insight into DIF impacts at the test level, and under
what conditions.

The results presented above suggest that several of the effect sizes included in this
study are potentially useful tools for researchers interested in assessing the effect of DIF
across items on an instrument as a whole. In particular, it appears that τ̂2

w, sDTF%, and
d were perhaps the best performers when considering the totality of the evidence. When
DIF was not present, τ̂2

w exhibited the lowest degree of bias from the population value of 0,
with d also demonstrating relatively low bias. In addition, when DIF was present in the
population, these three statistics had relatively low standard errors and low relative bias.
In addition, these effect size statistics were largely impervious to group differences in the
mean of the latent trait being measured by the assessment.

5. Directions for Future Research

Additional research needs to be conducted with an eye toward developing guidelines
for interpreting the effect sizes studied here. Appropriate guidelines in the DIF literature,
and in particular DTF, have been a challenge and will continue to be as new DIF procedures
are proposed. In addition, the guidelines may differ by the type of outcome studied
(e.g., observed vs. latent scores [5]). Future work should focus on a greater array of DIF
magnitudes and proportions of items than were included in the current study. In addition,
researchers may also want to consider developing confidence intervals for these effect sizes.
In particular, a bootstrap approach to estimating standard errors that could then be used
to estimate confidence intervals would be useful in providing researchers with greater
information about the actual impact of DIF on the total assessment. Given the popularity
of polytomous items in the social sciences, the performance of these statistics should
be examined for items beyond the dichotomous case presented here, with appropriate
modifications made where necessary. In this same vein, future research should also include
a greater variety of dichotomous data-generating models, such as the 2-parameter logistic
and 3-parameter logistic. The items selected to have DIF in the current study tended to
be relatively easy, with the most difficult having a population difficulty parameter value
of 0.41. Further simulations with more difficult items exhibiting DIF would be useful for
future studies. Work focused on a different set of DIF magnitude values would also be quite
useful. Although featured in previous research [21], the DIF magnitudes selected for this
study were relatively large. Therefore, it would be useful for practitioners if future research
examined the sensitivity of these effect size statistics to cases when DIF was smaller (e.g.,
0.1 or 0.2).

6. Conclusions

The results presented above demonstrate that there exist multiple useful statistics
for characterizing the effect of DIF at the full assessment level. These effect sizes should
be useful tools for researchers as they consider the impact of DIF on a scale in order to
determine whether, in fact, it is problematic. These results show that three of the statistics
studied here, τ̂2

w, I2∗
DIF, and d may prove to be particularly useful. Therefore, measurement

practitioners are encouraged to use them in practice, and psychometricians are encouraged
to give them further study in order to develop guidelines for interpreting them. These
effect sizes should serve as informative additions to DIF studies by providing information
about the total impact of DIF on the total score taken from a scale. It is hoped that the
current study has provided useful information in that regard, as well as a roadmap for
future work in this area.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/psych5010013/s1. Table S1, Effect size values by sample size
when DIF was present; Table S2, Effect size values by number of items when DIF was present.

https://www.mdpi.com/article/10.3390/psych5010013/s1
https://www.mdpi.com/article/10.3390/psych5010013/s1
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