
Article

Comparing the MCMC Efficiency of JAGS and Stan for the
Multi-Level Intercept-Only Model in the Covariance- and
Mean-Based and Classic Parametrization

Martin Hecht 1,* , Sebastian Weirich 2 and Steffen Zitzmann 1

����������
�������

Citation: Hecht, M.; Weirich, S.;

Zitzmann, S. Comparing the MCMC

Efficiency of JAGS and Stan for the

Multi-Level Intercept-Only Model in

the Covariance- and Mean-Based and

Classic Parametrization. Psych 2021, 3,

751–779. https://doi.org/10.3390/

psych3040048

Academic Editors: Holmes Finch and

Gongjun Xu

Received: 17 October 2021

Accepted: 25 November 2021

Published: 30 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Hector Research Institute of Education Sciences and Psychology, University of Tübingen,
72072 Tübingen, Germany; steffen.zitzmann@uni-tuebingen.de

2 Institute for Educational Quality Improvement, Humboldt-Universität zu Berlin,
10117 Berlin, Germany; sebastian.weirich@iqb.hu-berlin.de

* Correspondence: martin.hecht@uni-tuebingen.de

Abstract: Bayesian MCMC is a widely used model estimation technique, and software from the BUGS
family, such as JAGS, have been popular for over two decades. Recently, Stan entered the market
with promises of higher efficiency fueled by advanced and more sophisticated algorithms. With this
study, we want to contribute empirical results to the discussion about the sampling efficiency of
JAGS and Stan. We conducted three simulation studies in which we varied the number of warmup
iterations, the prior informativeness, and sample sizes and employed the multi-level intercept-only
model in the covariance- and mean-based and in the classic parametrization. The target outcome
was MCMC efficiency measured as effective sample size per second (ESS/s). Based on our specific
(and limited) study setup, we found that (1) MCMC efficiency is much higher for the covariance- and
mean-based parametrization than for the classic parametrization, (2) Stan clearly outperforms JAGS
when the covariance- and mean-based parametrization is used, and that (3) JAGS clearly outperforms
Stan when the classic parametrization is used.

Keywords: JAGS; Stan; effective sample size; MCMC efficiency; Bayesian SEM

1. Introduction

Bayesian statistics is gaining in popularity in many disciplines and are used for many
different purposes, for instance, to include previous knowledge, to estimate otherwise
intractable models, to model uncertainty (e.g., [1]), and to stabilize parameter estimates
(e.g., [2]).

A popular software platform for Bayesian estimation is the BUGS family including
BUGS [3,4] (see [5] for an overview of the history of BUGS), WinBUGS [6], OpenBUGS [7,8],
JAGS [9], and NIMBLE [10]. Monnahan et al. (p. 339, [11]) even call BUGS the “workhorse
for Bayesian analyses in ecology and other fields for the last 20 years.” More recently, the
software Stan whose development was inspired by the “pathbreaking programs” BUGS
and JAGS (p. 538, [12]) and “motivated by the desire to solve problems that could not be
solved in a reasonable time [. . .] using other packages” (p. 537, [12]) entered the market
with promises of higher computational and algorithmic efficiency. Often, the superiority
of Stan over JAGS, which is a more modern member of the BUGS family, is claimed to
be due to more advanced MCMC algorithms. Whereas JAGS uses conjugate and slice
sampling, Stan uses the No-U-Turn Sampler (NUTS; [13]), which is an adaptive variant of
Hamiltonian Monte Carlo (HMC; [14]). A comprehensive illustration of NUTS and HMC
can be found in the work of Monnahan et al. [11] and more detailed technical descriptions
in the works of Nishio and Arakaw [15] and Betancourt [16].

There has been much debate on efficiency differences between Stan and JAGS, and
some authors have explored this research question by conducting comparison studies. For
instance, Carpenter et al. (p. 10, [17]) found that “Compared to BUGS and JAGS, Stan is

Psych 2021, 3, 751–779. https://doi.org/10.3390/psych3040048 https://www.mdpi.com/journal/psych

https://www.mdpi.com/journal/psych
https://www.mdpi.com
https://orcid.org/0000-0002-5168-4911
https://orcid.org/0000-0002-4493-4601
https://orcid.org/0000-0002-7595-4736
https://doi.org/10.3390/psych3040048
https://doi.org/10.3390/psych3040048
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/psych3040048
https://www.mdpi.com/journal/psych
https://www.mdpi.com/article/10.3390/psych3040048?type=check_update&version=1

Psych 2021, 3 752

often relatively slow per iteration but relatively fast to generate a target effective sample
size.” Monnahan et al. (p. 339, [11]) conclude that “[f]or small, simple models there is
little practical difference between the two platforms, but Stan outperforms BUGS as model
size and complexity grows.” which is in line with Gelman et al.’s (p. 538, [12]) statement
that “Stan is faster for complex models and scales better than Bugs or Jags for large data
sets”. However, Grant et al. [18] compared the performance (total time per effective sample
size) of various software (including StataStan and JAGS) depending on the number of
parameters in the Rasch and hierarchical Rasch model and found that “no one software
option dominated” (p. 350, [18]). Additionally, Merkle et al. (p. 2, [19]) report that the
original Stan implementation in the package blavaan ”was not much faster or more efficient
than the JAGS approach.”, and Wingfeet [20] concluded that ”[n]either JAGS nor Stan
came out clearly on top”. Further, Bølstad [21] reports mixed results depending on the
conjugacy of the priors, with JAGS beating Stan for a fully conjugate hierarchical model.
For a completely non-conjugate model with t-distributions instead of normal distribution,
the effect reversed, with Stan being much faster.

In summary, the competition between JAGS and Stan has not been finally decided
and performance might depend on several factors, for instance, on the model itself, its
complexity, number of parameters, priors, and the parametrization.

Purpose and Scope

The purpose of the present work is to contribute to the discussion about the efficiency
of JAGS and Stan. To this end, we conducted three simulation studies in which we varied
the number of warmup iterations, the informativeness of the prior distributions, the sample
sizes, and the model parametrization, and compared the MCMC efficiency operationalized
as the effective sample size per second (ESS/s) between JAGS and Stan. The targeted
model was the multi-level intercept-only model, which is a popular model in, for example,
psychological research and the building block for many more complex multi-level models.

The article is organized into the following sections. First, we describe our Simulation
Study 1 including the data generation, the simulation design, the analysis approaches
and procedures, and the results of this simulation study. As suggested by anonymous
reviewers, we extended the scope of our work by adding Simulation Study 2 (in which
we explored a small sample scenario) and Simulation Study 3 (in which we used another
model parametrization). Second, we conclude with a discussion of our work. Annotated
JAGS/rjags and Stan/rstan code and an example generated data file are provided in the
Supplementary Material and Appendices A–G.

2. Simulation Study 1

In this simulation study, the MCMC efficiency of estimating the covariance- and
mean-based parametrization of the multi-level intercept-only model with JAGS and Stan
is explored.

2.1. Data Generation

The data generating model was the multi-level intercept-only model with overall
mean µ= 0, level 2 variance σ2

θ = 1, residual variance σ2
ε = 1, J = 1000 level 2 units, and

P = 20 level 1 units:

yjp ∼ N (θj,σ2
ε) , (1)

θj ∼ N (µ,σ2
θ) , (2)

where yjp is the pth value of level 2 unit j, and θj is unit j’s mean parameter. The number
of generated data sets (replications) was Nrepl = 1000. Each of these data sets were analyzed
within all 16 design cells of the simulation design.

Psych 2021, 3 753

2.2. Simulation Design

We varied the following factors in our simulation study: software (JAGS, Stan),
number of warmup iterations (150, 1000), and prior informativeness (ordered categories
A (lower informativeness), B, C, D (higher informativeness)). These factors were fully
crossed, yielding 16 design cells. As priors, we used an inverse gamma distribution IG(α,β)
with shape α and scale β for the variance parameters (σ2

θ, σ2
ε) and a normal distribution

N (0,σ2
p) with variance σ2

p for the mean µ. The levels of the prior informativeness factor
refer to differing degrees of prior informativeness: A: α = β = 0.001, σ2

p = 10,000; B:
α = β = 0.01, σ2

p = 2500; C: α = β = 0.1, σ2
p = 100; D: α = β = 1, σ2

p = 25. Thus, the prior
informativeness ranges from lower (A) to higher (D).

2.3. Analysis

The simulation study was conducted with the statistical software R [22]. For JAGS [23],
the R package rjags [24], and for Stan [25], the R package rstan [26] was used. The analysis
model was similar to the data generating model, but we used the covariance- and mean-
based implementation of the multi-level intercept-only model [27]:

S ∼ WP(Σ, J − 1) , (3)

ȳ ∼ NP(µ,
1
J

Σ) , (4)

where S is the sample scatter matrix, ȳ is the sample mean vector, W is the Wishart
distribution, and where Σ and µ are the model-implied covariance matrix and mean vector:

Σ =

σ2
θ + σ2

ε σ2
θ

. . .
σ2
θ σ2

θ + σ2
ε

 , (5)

µ =
(
µ . . .µ

)′ . (6)

The inverse of Σ is:

C = Σ
−1 =


(P−1)σ2

θ+σ2
ε

ξ −σ2
θ
ξ

. . .

−σ2
θ
ξ

(P−1)σ2
θ+σ2

ε

ξ

 , (7)

with ξ = Pσ2
θσ

2
ε + σ4

ε . (8)

This “covariance- and mean-based approach” [27] is conceptually similar to the
“marginal Stan method” [19] as both groups of authors capitalize on the idea of inte-
grating latent variables out of the model likelihood and has, for instance, been shown to be
beneficial for MCMC estimation of continuous-time models [28]. Throughout the paper,
we consistently use the terms “covariance- and mean-based” and “classic” as defined in
the work of Hecht et al. [27], although other labels exist. The former approach is also called
“marginal” approach as parameters are integrated out of the likelihood. Formulating mod-
els for continuous variables in terms of multivariate normal and Wishart distributions has
also previously been described in, for instance, the work of Goldstein [29]. Hecht et al. [27]
created the term “classic” to distinguish approaches that include certain parameters from
the ones in which they are integrated out.

The parametrization of the Wishart distribution differs in JAGS and Stan. Whereas
JAGS’s dwish(Σ

−1, df) function uses the inverse covariance matrix, Stan’s wishart(df, Σ)
function uses the covariance matrix. To make the comparison between JAGS and Stan as
fair as possible, we avoided time-consuming in-software matrix inversion by passing the
parametrization-consistent matrix to the functions, that is, matrix C from Equation (7) for
setting up the model in JAGS and matrix Σ from Equation (5) for setting up the model in

Psych 2021, 3 754

Stan. Avoiding the inverse of large covariance matrices has also been recommended by
Goldstein [29].

Each replication ran on one Intel Xeon E5–2687W (3.0 GHz) CPU of a 64-bit Windows
Server 2008 system with a total of 48 CPUs, on which we ran 36 replications (each on
one core) in parallel. Run times for the following process steps were obtained. For JAGS,
the warmup run time [jags.model()] and the sampling run time [jags.samples()] were
determined by the before-after difference of time stamps obtained from the function
Sys.time(). For Stan, the warmup and sampling run times can be obtained from the
console output of the function sampling() and are also retrievable from the returned results
object (attributes(fitted@sim$samples[[1]])[["elapsed_time"]]). Additionally, we
recorded the time to set up and compile the Stan model [stan_model(), stanc()] and
also the run time of the function sampling() via Sys.time() differences. We report all
run times in seconds. The number of warmup iterations [set via argument n.adapt in
jags.model() and argument warmup in Stan’s sampling()] was varied in the simulation
design (see above), whereas the number of sampling iterations [set via argument n.iter
in jags.samples() and argument iter in Stan’s sampling()] was 100,000. Only these
100,000 sampling iterations served as the basis for computing further statistics (see next
paragraph). Hence, the warmup iterations were excluded from further processing and can
be considered as omitted “burn-in”. Whether omission of additional burn-in was needed or
not was determined by visual inspections of trace plots and based on convergence statistics
(potential scale reduction (PSR)). One chain per parameter was used without thinning.
Starting values were the true parameter values (see Data Generation above).

The effective sample size (ESS) and the PSR were computed with the R package
shinystan [30] for both JAGS and Stan samples. The mode of the converged chain served
as the parameter estimate. As parameter recovery and precision statistics, bias, root mean
squared error (RMSE), and the 95% coverage rate were computed. Our target outcome
variable is the MCMC efficiency, which we calculated as the ratio of the ESS and the run
time (in seconds) of the sampling on one CPU (a similar definition of MCMC efficiency
can be found, for example, in the work of Turek et al. [31]). Carpenter et al. (p. 10, [17])
termed this ESS/s (or its inverse) the “most relevant statistic for comparing the efficiency
of sampler implementations” because the estimation accuracy is governed by the square
root of the ESS, a fact that has also been shown by Zitzmann and Hecht [32] (see also [33]).

2.4. Results

Descriptive statistics (based on the 100,000 sampling iterations) are presented in
Table 1. The maximum PSR value is 1.0002 (JAGS) and 1.0003 (Stan), respectively, indicating
that all chains had converged. Visual inspection of randomly selected trace plots confirmed
trouble-free convergence. Mean ESS values were 74,334 for JAGS and 86,486 for Stan.
Hence, Stan produced a higher ESS than JAGS on average.

Average bias is very close to zero (Mbias,JAGS =−0.0009, Mbias,Stan = 0.0005), RMSEs
are practically equal (MRMSE,JAGS = 0.0297, MRMSE,Stan = 0.0303), and the average coverage
rates nearly hit 0.95 (MCR,JAGS = 0.9608, MCR,Stan = 0.9520). Bias, RMSE, and coverage rates
of JAGS and Stan are very comparable. Thus, both software estimate the parameters of the
multi-level intercept-only model similarly well.

Stan needed on average 0.10 s to set up the model [stan_model()] and 56.83 s for
compilation [stanc()]. For the warmup, Stan [console output from rstan’s function
sampling()] took 0.36 s on average, whereas JAGS [rjags’s function jags.model()] needed
0.87 s on average (however, time to set up the model was included in this warmup run time
for JAGS, but not for Stan). For the sampling of the 100,000 values, JAGS [jags.samples()]
needed 114.99 s and Stan [console output from rstan’s function sampling()] 52.23 s. Thus,
Stan was about twice as fast as JAGS. Considering that a higher ESS was achieved in much
shorter time, Stan clearly samples more efficiently than JAGS on average (in our simulation
setup). However, in addition to warmup and sampling, Stan’s sampling() function took

Psych 2021, 3 755

another 215 seconds on average before returning the samples. Thus, users need to wait
much longer for the results of the sampling process when using rstan instead of rjags.

Table 1. Descriptive statistics of convergence, precision, recovery, accuracy, and run time by software
(Simulation Study 1).

Statistic Software M SD Min Max

Convergence/Precision

PSR JAGS 1.0000 0.0000 1.0000 1.0002
Stan 1.0000 0.0000 1.0000 1.0003

ESS JAGS 74,334 17,950 46,727 100,000
Stan 86,486 17,591 27,583 100,000

Recovery/Accuracy

Bias JAGS −0.0009 0.0016 −0.0030 0.0010
Stan 0.0005 0.0005 −0.0002 0.0010

RMSE JAGS 0.0297 0.0155 0.0101 0.0474
Stan 0.0303 0.0164 0.0096 0.0489

Coverage rate 95% JAGS 0.9608 0.0054 0.9530 0.9670
Stan 0.9520 0.0075 0.9420 0.9620

Run time (s)

Warmup JAGS 0.87 0.81 0.13 21.95
Stan 0.36 0.24 0.08 2.05

Sampling JAGS 114.99 7.48 89.55 155.42
Stan 52.23 8.23 30.18 97.65

Translation Stan 0.10 0.02 0.06 0.37
Compilation Stan 56.83 7.29 42.09 132.18
sampling() Stan 214.65 12.86 185.62 270.97

Note. Run time for rstan’s sampling() function is the additional time that this function runs besides warmup
and sampling.

Figure 1 shows the MCMC efficiency (i.e., the effective sample size produced in one
second) split by the levels of the simulation factors and the model parameters. Additional
to these marginal mean MCMC efficiencies, we present mean MCMC efficiencies for the
simulation factors and model parameters split by software JAGS and Stan in Figure 2 to
investigate interaction effects. The overall mean MCMC efficiency was 1180 ESS/s. Con-
sidering software, the average MCMC efficiency is 649 for JAGS and 1712 for Stan. Thus,
Stan outperforms JAGS by roughly a factor of two and a half on average. Mean MCMC
efficiency is lower for 150 warmup iterations (Mwarmup=150 = 1034) than for 1000 warmup
iterations (Mwarmup=1000 = 1327). From Figure 2 it becomes clear that there is an inter-
action between software and number of warmup iterations. Whereas JAGS’s MCMC ef-
ficiency is approximately equal for 150 and 1000 warmup iterations (Mwarmup=150,JAGS = 652,
Mwarmup=1000,JAGS = 647), Stan profits very much from more warmup iterations
(Mwarmup=150,Stan = 1416, Mwarmup=1000,Stan = 2007). The prior informativeness has practi-
cally no effect on the MCMC efficiency (MA = 1180, MB = 1175, MC = 1181, MD = 1186). With
respect to the three model parameters, the MCMC efficiency differs on average (Mµ = 1243,
Mσ2

θ
= 1053, Mσ2

ε
= 1246), and an interaction with software is evident. Whereas JAGS’s

MCMC efficiency for both variance parameters is equal (Mσ2
θ,JAGS = 539, Mσ2

ε,JAGS = 540), it

is higher for the mean (Mµ,JAGS = 869). For Stan, the picture is different. Here, µ and σ2
θ

show less MCMC efficiency (Mµ,Stan = 1616, Mσ2
θ,Stan = 1567) than the residual variance σ2

ε

(Mσ2
ε,Stan = 1952).

Psych 2021, 3 756

649

1712

1034

1327

1180

1175

1181

1186

1246

1053

1243

0 250 500 750 1000 1250 1500 1750 2000 2250

σε
2

σθ
2

µ

prior informativeness D
(higher)

1000 warmup iterations

prior informativeness A
(lower)

prior informativeness B

prior informativeness C

150 warmup iterations

Stan

JAGS

MCMC efficiency (ESS/s)
S

im
ul

at
io

n
fa

ct
or

 le
ve

ls

Simulation factors
Software
Number of warmup iterations

Prior informativeness group
Model parameter

prior informativeness A
 (lower)

Figure 1. Simulation Study 1: ESS performance (ESS/s) of simulation factors software (JAGS/Stan), number of warmup
iterations (150/1000), prior informativeness (A/B/C/D), and model parameters (µ, σ2

θ, σ2
ε). Number of level 2 units:

J = 1000. Number of level 1 units: P = 20. Covariance- and mean-based model parametrization.

Psych 2021, 3 757

1952

540

1567

539

1616

869

1722

649

1711

650

1701

649

1712

649

2007

647

1416

652

0 250 500 750 1000 1250 1500 1750 2000 2250

σε
2

σθ
2

µ

prior informativeness D
(higher)

prior informativeness C

prior informativeness B

prior informativeness A
(lower)

1000 warmup iterations

150 warmup iterations

MCMC efficiency (ESS/s)
S

im
ul

at
io

n
fa

ct
or

 le
ve

ls

Simulation factors
Number of warmup iterations
Prior informativeness group
Model parameter

Software
JAGS
Stan

JAGS

Stan

Figure 2. Simulation Study 1: ESS performance (ESS/s) of number of warmup iterations (150/1000), prior informativeness
(A/B/C/D), and model parameters (µ, σ2

θ, σ2
ε) by software (JAGS/Stan). Number of level 2 units: J = 1000. Number of

level 1 units: P = 20. Covariance- and mean-based model parametrization.

Effect sizes η2 for the simulation factors are presented in Table 2. Software exhibits the
by far highest variance explanation (68.4%). Warmup iterations and parameter explain 5.2%
and 2.0% of the variance in MCMC efficiency, respectively, whereas variance explanation

Psych 2021, 3 758

by prior informativeness is essentially zero. Interactions with above zero variance expla-
nation are Software ×Warmup Iterations (5.4%), Software × Parameter (4.5%), Warmup
Iterations × Parameter (1.0%), and Software ×Warmup Iterations × Parameter (1.0%).

Table 2. Effect size η2 for the simulation factors (Simulation Study 1).

Factor η2

Software 0.684
Warmup Iterations 0.052
Prior Informativeness 0.000
Parameter 0.020
Software ×Warmup Iterations 0.054
Software × Prior Informativeness 0.000
Software × Parameter 0.045
Warmup Iterations × Prior Informativeness 0.000
Warmup Iterations × Parameter 0.010
Prior Informativeness × Parameter 0.000
Software ×Warmup Iterations × Prior
Informativeness 0.000

Software ×Warmup Iterations × Parameter 0.010
Software × Prior Informativeness × Parameter 0.000
Warmup Iterations × Prior Informativeness ×
Parameter 0.000

Software ×Warmup Iterations × Prior
Informativeness × Parameter 0.000

Note. Dependent variable: MCMC efficiency (ESS/s).

In summary, both software estimate the multi-level intercept-only model equally
well, but Stan outperforms JAGS in the production of effective sample size per time
unit. Further, Stan profits from more warmup iterations, the prior informativeness is
practically not related to the MCMC efficiency, and the MCMC efficiency differs between
model parameters.

3. Simulation Study 2: Small Sample Size

In this simulation study, the MCMC efficiency of estimating the covariance- and
mean-based parametrization of the multi-level intercept-only model with JAGS and Stan is
explored for a small sample size scenario. The simulation design and the analysis strategy
were similar to Simulation Study 1. The data generation was similar as well, except that
the number of level 2 units was reduced to J = 100 and the number of level 1 units to P = 5.

The overall mean efficiency in this small sample scenario is 8343 ESS/s and thus
roughly seven times higher than in Simulation Study 1 where sample sizes were larger
(J = 1000, P = 20). Investigating the mean MCMC efficiencies split by the simulation factors,
model parameters, and software (Figure 3) yields basically the same pattern as in Simulation
Study 1. Stan outperforms JAGS; however, JAGS’ underperformance is not as pronounced
as in the large sample scenario. Concerning warmup, the figure again shows that JAGS does
not profit from more warmup iterations, whereas Stan does. Prior informativeness exhibits
no clear effect. An interaction of parameter and software can again be identified. Whereas
JAGS performs better in efficiently estimating µ than σ2

θ and σ2
ε, Stan is approximately

equally efficient in estimating all three model parameters.
In summary, reducing the sample size resulted in higher overall MCMC efficiency, but

software differences in MCMC efficiency remained, although JAGS caught up somewhat
to Stan.

Psych 2021, 3 759

11597

4425

11042

4354

11384

7255

11537

5521

11216

5288

11273

5215

11338

5355

12237

5362

10445

5328

0 2000 4000 6000 8000 10000 12000 14000

σε
2

σθ
2

µ

prior informativeness D
(higher)

prior informativeness C

prior informativeness B

prior informativeness A
(lower)

1000 warmup iterations

150 warmup iterations

MCMC efficiency (ESS/s)

S
im

ul
at

io
n

fa
ct

or
 le

ve
ls

Simulation factors
Number of warmup iterations
Prior informativeness group
Model parameter

Software
JAGS
Stan

JAGS

Stan

Figure 3. Simulation Study 2 (small sample size): ESS performance (ESS/s) of number of warmup
iterations (150/1000), prior informativeness (A/B/C/D), and model parameters (µ, σ2

θ, σ2
ε) by

software (JAGS/Stan). Number of level 2 units: J = 100. Number of level 1 units: P = 5. Covariance-
and mean-based model parametrization.

4. Simulation Study 3: Classic Parametrization

In this simulation study, the MCMC efficiency of estimating the classic parametrization
of the multi-level intercept-only model with JAGS and Stan is explored. The data generation
and the simulation design were similar to Simulation Study 1. For the analysis model, the
classic parametrization was now chosen, in which the parameters of the level 2 units (θj in
Equations (1) and (2)) were part of the model formulation and thus needed to be sampled
(see [27] for further details on the differences between the classic and the covariance- and
mean-based parametrization of the multi-level intercept-only model). With J = 1000 level 2
units, this meant that 1000 additional parameters needed to be sampled (an increase by
a factor of 334 compared to Simulation Study 1). Hence, to keep the simulation within
manageable boundaries, the number of sampling iterations was reduced to 10,000.

Psych 2021, 3 760

Compared to Simulation Studies 1 and 2 (with the covariance- and mean-based
parametrization), two major differences emerged: (1) The overall mean efficiency (137 ESS/s)
is by far lower, and (2) the software rank order reversed: When employing the classic
parametrization, JAGS is much more efficient than Stan (see Figure 4). Again, Stan profits
from more warmup iterations, whereas JAGS does not, and prior informativeness has no
effect on MCMC efficiency. Concerning the parameters, there is no clear differential picture
(i.e., within software, the parameters are estimated with roughly the same efficiency),
although Stan seems to have problems with estimating the residual variance σ2

ε (with just
6 ESS/s).

In summary, choosing the classic instead of the covariance- and mean-based imple-
mentation resulted in lower overall MCMC efficiency, and JAGS clearly outperformed Stan.

23

282

6

256

14

235

24

257

17

255

16

261

17

256

16

259

20

256

14

259

0 50 100 150 200 250 300 350

Mθ

σε
2

σθ
2

µ

prior informativeness D
(higher)

prior informativeness C

prior informativeness B

prior informativeness A
(lower)

1000 warmup iterations

150 warmup iterations

MCMC efficiency (ESS/s)

S
im

ul
at

io
n

fa
ct

or
 le

ve
ls

Simulation factors
Number of warmup iterations
Prior informativeness group
Model parameter

Software
JAGS
Stan

JAGS
Stan

Figure 4. Simulation Study 3 (classic parametrization): ESS performance (ESS/s) of number of
warmup iterations (150/1000), prior informativeness (A/B/C/D), and model parameters (µ, σ2

θ,
σ2
ε) by software (JAGS/Stan). Mθ is the average MCMC efficiency of level 2 units parameters θj.

Number of level 2 units: J = 1000. Number of level 1 units: P = 20. Classic model parametrization.

Psych 2021, 3 761

5. Discussion

With this study, we want to contribute empirical results to the discussion about the
sampling efficiency of JAGS and Stan. In our limited simulations, Stan outperformed (i.e.,
exhibited a higher ESS/s) JAGS for the covariance- and mean-based parametrization of the
multi-level intercept-only model. However, when the classic parametrization was chosen,
JAGS outperformed Stan. Additionally, we found that Stan profited from more warmup
iterations and that prior informativeness had no effect on the MCMC efficiency.

The results from our simulation study most certainly will not generalize to other
models (or model parametrizations), conditions, or other values/levels of our simula-
tion factors.

Our model was a very simple one. Stan is often said to gain in efficiency with
increasing model complexity (e.g., [11,12]). We found higher efficiency (roughly by a factor
of 2.5) already for a simple model. It would be interesting whether Stan outperforms
JAGS even more for more complex multi-level models and other relevant models for
psychological research.

Besides the model itself, the parametrization of the model is crucial as well. We
showed that with the classic parametrization of the multi-level intercept-only model, JAGS
clearly outperformed Stan. As the classic parametrization is presumably the most intuitive
and easiest to implement for psychologists, the software recommendation clearly leans
towards JAGS here. However, as shown, users can speed up their analyses (i.e., more
efficiently estimate the model parameters) by switching to the covariance- and mean-
based parametrization (a comprehensive tutorial on how to set up this parametrization is
given by Hecht et al. [27]). For this parametrization, Stan clearly outperforms JAGS and
should be the software of choice (if MCMC efficiency is the target criterion). Our results
are in line with Merkle et al.’s [19] results who reported superiority of their “new Stan
approach” which is conceptually similar to Hecht et al.’s [27] covariance- and mean-based
approach. The efficiency of this new approach was even so convincing that the authors of
R package blavaan made it their new default method (p. 12, [19]). However, in contrast
to Hecht et al. ([27], Equations (13) and (14)), Merkle et al. ([19], Equations (5) and (6))
use multivariate normal marginal distributions of the sample value vectors (presumably
because it might be a more flexible and convenient approach, for instance for handling
missing data). Future research could investigate performance differences between the
Wishart and the multivariate normal parametrization. From our experience with JAGS (not
published), multivariate normal modeling of the sample value vectors was much slower
than the Wishart modeling of the sample scatter matrix, but this might be different for Stan.
Future research could compare more parametrizations of multi-level models.

An anonymous reviewer pointed us to an interesting advantage of marginalized
model parametrizations which is detailed in the work of Nielsen et al. [34]. In the classic
parametrization that includes random effects, positive within-cluster correlations are as-
sumed. The covariance-based parametrization, in which random effects are integrated out,
is more general because negative correlations are allowed as well.

Another approach to improve the efficiency of MCMC sampling is to formulate
the model in a way that autocorrelation in the chains is reduced. Various strategies
for various models have been proposed (e.g., [35–37]). According to Monnahan et al.
(p. 344, [11]), “MCMC efficiency for hierarchical models depends on the random effects
parameterization, with the centered and non-centered complementary forms being useful for
a broad class of models”. In our simulations, we solely used the centered form (Equation (2))
because it is presumably the “natural” form researchers obtain when they translate their
model equations into code. In the alternative non-centered form, the random effects
(θj) would not be modeled directly, instead as θj = µ+ σZ with Z ∼ N (0, 1). Results
from Monnahan et al.’s (p. 346, [11]) comparisons of JAGS and Stan suggest that Stan is
“more sensitive to the parameterization of the random effects, suggesting analysts use
non-centered parameterizations to improve performance”. Future research could generate

Psych 2021, 3 762

further evidence on how to improve MCMC efficiency by model reformulations and explore
which software profits most.

Concerning sample sizes, other studies (e.g., [11]) report that Stan’s relative efficiency
over JAGS increases with increasing sample size. Our results are in line with this finding
(for the covariance- and mean-based parametrization); for our small sample size scenario,
Stan did not outperform JAGS as much as in the large sample size scenario. As we only
had two sample size scenarios (and varied sample size only for the covariance- and mean-
based parametrization), generalizations are limited. Future research could investigate the
dependency of sample sizes on the efficiency and the moderating effect of sample size
on the difference in efficiency between both software in more detail, especially also with
respect to the model parametrization. Additionally, the relative performance of different
methods might depend on the ratio of the variance components in the simulation model.

We used a high number of iterations to achieve sensibly sized absolute runtimes and
to obtain reliable ESS estimates [38]. We assume that the MCMC efficiency (ESS/s) is
constant over the course of sampling. Hence, given the chain has converged, the length of
the sampling should have no effect on the MCMC efficiency.

We limited our study to two popular Bayesian software in psychological research, namely
JAGS and Stan. Other Bayesain software packages, for instance, NIMBLE [10], PyMC3 [39],
and LaplacesDemon [40], exist and have been the focus of research (e.g., [38,41–43]). Future
software comparisons should take these packages even more strongly into account.

The effect of the warmup iterations on Stan’s MCMC efficiency is in line with the
functioning of the NUTS algorithm as this algorithm needs to tune the step size to achieve
a target acceptance rate and to tune the mass matrix whose function is to transform the
posterior to have a simpler geometry for sampling (e.g., [11]). As the optimization of
the step size and the mass matrix are mutually dependent, a sufficiently long warmup is
needed [11]. We had only two warmup iteration sizes (150 and 1000), with 150 being the
lowest default size for one warmup cycle (p. 150, [44]). An anonymous reviewer pointed
out that the marginal variances of the parameters in our model are rather small; therefore,
it is not surprising that one warmup cycle was not sufficient for optimization. In future
research, it would be interesting to explore the shape of the functional dependency of the
MCMC efficiency on the number of warmup iterations and determine areas of diminishing
marginal utility to derive rule-of-thumb thresholds for sufficient warmup of the NUTS
algorithm. Additionally, one could facilitate warmup optimization by programming all
parameters “so that they have unit scale and so that posterior correlation is reduced;
[. . .] For Hamiltonian Monte Carlo, this implies a unit mass matrix, which requires no
adaptation as it is where the algorithm initializes.” (p. 266, [45]). Further, the shown
warmup dependency should be taken into consideration when comparing results from
studies that differed in this aspect. Merkle et al. (p. 8, [19])—who used 300 warmup
iterations for Stan—already pointed to this problem and concluded that therefore “the
ESS/s metric is somewhat crude”.

We found no effect of the prior informativeness on the MCMC efficiency. However,
this result is just valid for the specific four variations of prior informativeness (and all other
specifications) in our simulation setup and might not generalize. In fact, in simulation
runs with much lower informativeness (not reported), Stan’s MCMC efficiency was lower.
Future research could investigate the prior informativeness effect on efficiency with a
wider range of informativeness. Additionally, in our simulation, the amount of data was
rather high, marginalizing the effect of the priors. In scenarios with less data, prior effects
might arise.

The conjugacy of priors may play a role in MCMC efficiency as well. Using conjugate
priors is usually considered computationally more efficient than using non-conjugate priors.
Some software/algorithms might even profit from conjugate priors more than others. For
instance, results from Bølstad [21] suggest that JAGS performs better than Stan when priors
are conjugate and worse when priors are non-conjugate. In our simulations, we used
conjugate priors for all parameters in all conditions, leaving prior conjugacy a constant.

Psych 2021, 3 763

Thus, we cannot contribute to the discussion of the effect of prior conjugacy on MCMC
efficiency. Researchers could pick up this interesting topic in the future.

Although Stan was clearly more efficient than JAGS in the sampling phase, the total
time users encounter until samples are returned depends on additional steps. Stan models
need to be compiled into C++ code prior to sampling, which was considerable in our
study (on average, model compilation took longer than the sampling of 100,000 iterations).
Of course, once compiled, models may be reused to avoid the extensive compilation
time. Still, users who run a model for the first time (or are not aware that previously
compiled models may be reused) must afford the compilation time, and rstan’s primary
user-level function stan() that includes all processes may mask the opportunity for reusing
compiled models and contribute to a lengthy user experience. Further, we encountered a
relatively huge consumption of additional time besides warmup and sampling by rstan’s
sampling() function. In fact, the additional time was about twice the time for all other steps
combined. We are not sure what this function needs this additional time for. According to
an anonymous reviewer, the additional time is partly due to calculating ESS and PSR. As
this needs to be done for JAGS as well, fair software comparisons would also need to take
this into account. Maybe future versions of rstan’s sampling() function may include an
option to return the samples directly after sampling or explicitly report the time needed for
additional calculations of convergence and precision statistics.

To conclude, in our specific study setup, the picture concerning MCMC efficiency was
mixed. Stan clearly outperformed JAGS when the covariance- and mean-based parametriza-
tion of the multi-level intercept-only model was used and JAGS clearly outperformed Stan
when the classic parametrization was used. In both software, MCMC efficiency is much higher
for the covariance- and mean-based parametrization than for the classic parametrization.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/psych3040048/s1, The supplementary materials include an exemplary generated data set in
Rdata format, JAGS and Stan code for the multi-level intercept-only model in the covariance- and
mean-based and in the classic parametrization, R code to run the models with rjags and rstan, and R
code to run simulations.

Author Contributions: The authors declare the following contributions (as defined by http://credit.
niso.org (accessed on 30 November 2021)) to this article: M.H.: conceptualization, data curation,
formal analysis, investigation, methodology, project administration, software, supervision, validation,
visualization, writing: original draft, writing—review and editing; S.W.: conceptualization, data
curation, formal analysis, investigation, methodology, software, validation, writing—review and
editing; S.Z.: conceptualization, methodology, supervision, validation, writing—review and editing.
All authors have read and agreed to the published version of the article.

Funding: The authors received no financial support for the research, authorship, and/or publication
of this article.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: In this study, only generated data was used. The data generating code
is provided in Appendix G.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/psych3040048/s1
https://www.mdpi.com/article/10.3390/psych3040048/s1
http://credit.niso.org
http://credit.niso.org

Psych 2021, 3 764

Appendix A. rjags Code

###

R code for running the multi-level intercept-only model with JAGS/rjags

###

used R version: 4.0.5 (R Core Team, 2021)

=> get latest version: https://cran.r-project.org/

install JAGS from

https://sourceforge.net/projects/mcmc-jags/files

used JAGS version: 4.3.0 (Plummer, 2017)

load/install packages

used rjags version: 4-10 (Plummer, 2019)

=> get latest rjags version: install.packages("rjags")

library(rjags)

used shinystan version: 2.5.0 (Gabry, 2018)

=> get latest shinystan version: install.packages("shinystan")

library(shinystan)

bugs files

covariance-/mean-based parametrization

bugs.file <- c("https://figshare.com/ndownloader/files/31595090")

for classic parametrization use:

bugs.file <- c("https://figshare.com/ndownloader/files/31595099")

open bugs file

bugs.file <- url(bugs.file)

load simulated example data

(load(url("https://figshare.com/ndownloader/files/31595084")))

D: data matrix in wide format:

rows: level 1 units (e.g., measurement occasions)

columns: level 2 units (e.g., persons)

cells: values

J: number of level 2 units

P: number of level 1 units

#####################

preprocessing

#####################

compute sample mean vector and sample scatter matrix from data

sample mean vector y.bar

y.bar <- matrix(rowMeans(D), P, 1)

column vector of ones

ones.vec <- matrix(1, J, 1)

sample scatter matrix

S <- (D - y.bar %*% t(ones.vec)) %*% t((D - y.bar %*% t(ones.vec)))

Psych 2021, 3 765

data list for JAGS

data.list <- list()

data.list <- c(data.list, list("S"=S))

data.list <- c(data.list, list("y.bar"=y.bar))

data.list <- c(data.list, list("J"=J))

data.list <- c(data.list, list("P"=P))

data.list <- c(data.list, list("D"=D)) # only needed for classic parametrization

function to generate random starting values

(starting values are true values from data generation: mu = 0, var.theta = 1, var.eps = 1)

generate.startval <- function(){

startval <- list()

startval <- c(startval, list("mu" = 0))

startval <- c(startval, list("prec.theta" = 1/1))

startval <- c(startval, list("prec.eps" = 1/1))

return(startval)

}

optional for classic parametrization:

add starting values for parameters of level 2 units (theta)

set starting values for the parameters (one chain each)

inits <- sapply(1:1, function (chain.nr,l) l, generate.startval(), simplify=FALSE)

set seeds for the chain

inits[[1]]$".RNG.name" <- "base::Wichmann-Hill"

inits[[1]]$".RNG.state" <- c(11076, 3733, 19174)

##############

warmup

##############

warmup iterations

warmup.iterations <- 1000

warmup start time

start.time.warmup <- Sys.time()

set up & warm up JAGS model

ini <- jags.model(file=bugs.file, data=data.list,

n.chains=1, n.adapt=warmup.iterations,

inits=inits, quiet=TRUE)

warmup runtime

(runtime.warmup <- Sys.time() - start.time.warmup)

close bugs file

close(bugs.file)

Psych 2021, 3 766

################

sampling

################

sampling iterations

sampling.iterations <- 100000

sampling start time

start.time.sampling <- Sys.time()

sampling

res <- jags.samples(ini, variable.names=c("mu","sigma2.theta","sigma2.eps"),

n.iter=sampling.iterations, thin=1, type='trace', progress.bar = NULL)

optional for classic parametrization:

add "theta" to argument variable.names

sampling runtime

(runtime.sampling <- Sys.time() - start.time.sampling)

set time units of sampling runtime to seconds (needed below to compute ESS/s)

units(runtime.sampling) <- "secs"

######################

postprocessing

######################

create shinystan object

samples <- cbind(matrix(res$mu[1,,1], ncol=1),

matrix(res$sigma2.theta[1,,1], ncol=1),

matrix(res$sigma2.eps[1,,1], ncol=1))

colnames(samples) <- c("mu", "sigma2.theta", "sigma2.eps")

shinystan.obj <- as.shinystan(list(samples))

retrieve effective sample size (ESS)

(ESS <- retrieve(shinystan.obj, "ess"))

calculate MCMC efficiency (ESS/s)

(MCMC.efficiency <- ESS / as.numeric(runtime.sampling))

Psych 2021, 3 767

Appendix B. JAGS Code (Covariance- and Mean-Based Parametrization)

JAGS model code for the multi-level intercept-only model

in the covariance- and mean-based parametrization

model {

distributional assumption of sample scatter matrix (Equation 3)

S ∼dwish(C , J-1)

construction of precision matrix C (Equation 7)

main diagonal

for (p in 1:P){

C[p,p] ←((P-1)*sigma2.theta+sigma2.eps)/ksi

}

lower/upper triangle

for (k in 2:P) {

for (l in 1:(k-1)) {

C[k,l] ←-sigma2.theta/ksi

C[l,k] ←C[k,l]

}

}

ksi (Equation 8)

ksi ←P * sigma2.theta * sigma2.eps + sigma2.eps^2

precision matrix of means

Cm ←J * C

distributional assumption of sample means (Equation 4)

y.bar ∼dmnorm(mu.vec, Cm)

construction of mu vector

for (p in 1:P){

mu.vec[p] ←mu

}

prior distribution for mu

mu ∼dnorm(0, 1/10000)

prior distribution for 1/sigma2.theta

prec.theta ∼dgamma(0.001, 0.001)

sigma2.theta ←1/prec.theta

prior distribution for 1/sigma2.eps

prec.eps ∼dgamma(0.001, 0.001)

sigma2.eps ←1/prec.eps

}

Psych 2021, 3 768

Appendix C. JAGS Code (Classic Parametrization)

JAGS model code for the multi-level intercept-only model

in the classic parametrization

model {

loop over level 2 units

for (j in 1:J) {

loop over level 1 units

for (p in 1:P) {

distributional assumption of observations (Equation 1)

D[p,j] ∼dnorm(theta[j], prec.eps)

}

distributional assumption of the person parameters (Equation 2)

theta[j] ∼dnorm(mu, prec.theta)

}

prior distribution for mu

mu ∼dnorm(0, 1/10000)

prior distribution for 1/sigma2.theta

prec.theta ∼dgamma(0.001, 0.001)

sigma2.theta ←1/prec.theta

prior distribution for 1/sigma2.eps

prec.eps ∼dgamma(0.001, 0.001)

sigma2.eps ←1/prec.eps

}

Psych 2021, 3 769

Appendix D. rstan Code

###

R code for running the multi-level intercept-only model with Stan/rstan

###

used R version: 4.0.5 (R Core Team, 2021)

=> get latest version: https://cran.r-project.org/

load/install packages

used rstan version: 2.21.2 (Stan Development Team, 2020)

=> get latest rstan version: install.packages("rstan")

library(rstan)

used shinystan version: 2.5.0 (Gabry, 2018)

=> get latest shinystan version: install.packages("shinystan")

library(shinystan)

working directory

(!!! needs to include file 02b_multilevel_intonly_model_covmeanbased.stan !!!)

wd <- "SET_YOUR_WORKING_DIRECTORY_HERE___needs_to_include_file___02b_multilevel_intonly_model_covmeanbased.stan"

for classic parametrization include: 02c_multilevel_intonly_model_classic.stan

load simulated example data

(load(url("https://figshare.com/ndownloader/files/31595084")))

D: data matrix in wide format:

rows: level 1 units (e.g., measurement occasions)

columns: level 2 units (e.g., persons)

cells: values

J: number of level 2 units

P: number of level 1 units

#####################

preprocessing

#####################

compute sample mean vector and sample scatter matrix from data

sample mean vector y.bar

y.bar <- matrix(rowMeans(D), P, 1)

column vector of ones

ones.vec <- matrix(1, J, 1)

sample scatter matrix

S <- (D - y.bar %*% t(ones.vec)) %*% t((D - y.bar %*% t(ones.vec)))

Psych 2021, 3 770

data list for Stan

data.list <- list()

data.list <- c(data.list, list("S"=S))

data.list <- c(data.list, list("ybar"=as.vector(y.bar)))

data.list <- c(data.list, list("J"=J))

data.list <- c(data.list, list("P"=P))

data.list <- c(data.list, list("D"=D)) # only needed for classic parametrization

#########################

model translation

#########################

translation start time

start.time.translation <- Sys.time()

translate model

translated <- stanc(file = file.path(wd, "02b_multilevel_intonly_model_covmeanbased.stan"), isystem = wd)

for classic parametrization use: 02c_multilevel_intonly_model_classic.stan

translated <- stanc(file = file.path(wd, "02c_multilevel_intonly_model_classic.stan"), isystem = wd)

translation runtime

(runtime.translation <- Sys.time() - start.time.translation)

#########################

model compilation

#########################

compilation start time

start.time.compilation <- Sys.time()

compile model

compiled <- stan_model(stanc_ret = translated, auto_write = TRUE, isystem = wd)

compilation runtime

(runtime.compilation <- Sys.time() - start.time.compilation)

##

warmup/sampling with function sampling()

##

samplingfunction start time

start.time.samplingfunction <- Sys.time()

warmup/sampling iterations

warmup.iterations <- 1000

sampling.iterations <- 100000

Psych 2021, 3 771

warmup/sampling

res <- sampling(object = compiled, data = data.list, chains = 1, cores = 1,

iter = warmup.iterations+sampling.iterations, warmup = warmup.iterations,

init = list(list(mu = 0, sigma2theta = 1, sigma2eps = 1)),

seed = 12345)

optional for classic parametrization:

add starting values (argument init) for parameters of level 2 units (theta)

samplingfunction runtime

(runtime.samplingfunction <- Sys.time() - start.time.samplingfunction)

######################

postprocessing

######################

times reported by rstan

runtimes <- attributes(res@sim$samples[[1]])[["elapsed_time"]]

time for warmup

(runtime.warmup <- runtimes[["warmup"]])

time for sampling

(runtime.sampling <- runtimes[["sample"]])

create shinystan object

samples <- cbind(matrix(res@sim[["samples"]][[1]]$mu[(warmup.iterations+1):(warmup.iterations+sampling.iterations)], ncol=1),

matrix(res@sim[["samples"]][[1]]$sigma2theta[(warmup.iterations+1):(warmup.iterations+sampling.iterations)], ncol=1),

matrix(res@sim[["samples"]][[1]]$sigma2eps[(warmup.iterations+1):(warmup.iterations+sampling.iterations)], ncol=1))

colnames(samples) <- c("mu", "sigma2.theta", "sigma2.eps")

shinystan.obj <- as.shinystan(list(samples))

retrieve effective sample size (ESS)

(ESS <- retrieve(shinystan.obj, "ess"))

calculate MCMC efficiency (ESS/s)

(MCMC.efficiency <- ESS / as.numeric(runtime.sampling))

Psych 2021, 3 772

Appendix E. Stan Code (Covariance- and Mean-Based Parametrization)

// Stan model code for the multi-level intercept-only model

// in the covariance- and mean-based parametrization

data {

matrix[20,20] S; // sample scatter matrix

vector[20] ybar; // sample mean vector

int<lower=1> J; // number of level 2 units

int<lower=1> P; // number of level 1 units

}

parameters {

real<lower=0> sigma2theta;

real<lower=0> sigma2eps;

real mu;

}

transformed parameters {

matrix[20,20] Sigma;

matrix[20,20] SigmaM;

vector[20] muvec;

// construction of covariance matrix Sigma (Equation 5)

// main diagonal

for (p in 1:P){

Sigma[p,p] = sigma2theta + sigma2eps;

}

// lower/upper triangle

for (k in 2:P){

for (l in 1:(k-1)) {

Sigma[k,l] = sigma2theta;

Sigma[l,k] = Sigma[k,l];

}

}

// covariance matrix of means

SigmaM = Sigma/J;

// construction of mu vector

for (p in 1:P){

muvec[p] = mu;

}

}

model {

// distributional assumption of sample scatter matrix (Equation 3)

S ~ wishart(J-1, Sigma);

// distributional assumption of sample means (Equation 4)

ybar ~ multi_normal(muvec, SigmaM);

// prior distribution for mu

mu ~ normal(0, sqrt(10000));

// prior distribution for sigma2theta

sigma2theta ~ inv_gamma(0.001,0.001);

// prior distribution for sigma2eps

sigma2eps ~ inv_gamma(0.001,0.001);

}

Psych 2021, 3 773

Appendix F. Stan Code (Classic Parametrization)

// Stan model code for the multi-level intercept-only model

// in the classic parametrization

data {

int<lower=1> J; // number of level 2 units

int<lower=1> P; // number of level 1 units

matrix[P,J] D; // data matrix

}

parameters {

real<lower=0> sigma2theta;

real<lower=0> sigma2eps;

real mu;

vector[J] theta;

}

model {

// loop over level 2 units

for (j in 1:J) {

// loop over level 1 units

for (p in 1:P) {

// distributional assumption of observations (Equation 1)

D[p,j] ~ normal(theta[j], sigma2eps);

}

// distributional assumption of the person parameters (Equation 2)

theta[j] ~ normal(mu, sigma2theta);

}

// prior distribution for mu

mu ~ normal(0, sqrt(10000));

// prior distribution for sigma2theta

sigma2theta ~ inv_gamma(0.001,0.001);

// prior distribution for sigma2eps

sigma2eps ~ inv_gamma(0.001,0.001);

}

Psych 2021, 3 774

Appendix G. Simulation Code

#####################################

R code for running the simulation

#####################################

used R version: 4.0.5 (R Core Team, 2021)

=> get latest version: https://cran.r-project.org/

used car version: 3.0-10

=> get latest car version: install.packages("car")

require(car)

used rjags version: 4-10 (Plummer, 2019)

=> get latest rjags version: install.packages("rjags")

library(rjags)

used rstan version: 2.21.2 (Stan Development Team, 2020)

=> get latest rstan version: install.packages("rstan")

library(rstan)

function to generate data from the NULL model

v1 21.05.2021

mu.true ... population mean

sigma2theta.true ... between person variance

sigma2eps.true ... within person varianz

J ... number of level 2 units (persons)

P ... number of level 1 units (observations/time points)

value: list of length 2; "y": P x J wide format matrix; "seed": seed

nullmodel_data_generation <- function(mu.true = 0, sigma2theta.true = 1, sigma2eps.true = 1, J = 1000, P = 20, seed=NULL){

seed

if(is.null(seed)) seed <- sample(1:99999999, 1)

set.seed(seed)

data generation

thetaj <- rnorm(J, mu.true, sqrt(sigma2theta.true))

y <- sapply(thetaj, function(mu) rnorm(P, mu, sqrt(sigma2eps.true)), simplify=TRUE)

return

list("y"=y, "seed"=seed)

}

Psych 2021, 3 775

simulation conditions

ss <- 1000 ### sample size

nwarm<- c(150, 1000) ### number of warmups

prior<- c(0.001, 0.01, 0.1, 1) ### priors

iter <- 100000 ### number of iterations

reps <- 1:1000 ### number of replications

res <- expand.grid (nWarmups = nwarm, prior = prior, iter = iter, replication = reps, sampleSize = ss, stringsAsFactors = FALSE)

res <- data.frame (res, sequential_number = 1:nrow(res), stringsAsFactors = FALSE)

define paths, need approx. 45 GB free space on hard disc

dir <- "c:/stan_simulation"

outdir <- file.path(dir, "results")

workdir<- file.path(dir, "work")

create folders if necessary

if(!dir.exists(outdir)) {dir.create(outdir)}

if(!dir.exists(workdir)) {dir.create(workdir)}

jags and stan default model

jags <- scan(url("https://figshare.com/ndownloader/files/31595090"), what="character",sep="\n",quiet=TRUE)

stan <- scan(url("https://figshare.com/ndownloader/files/31595108"), what="character",sep="\n",quiet=TRUE)

R functions to start jags/stan functions from R

S ... sample scatter matrix

y.bar ... sample mean column vector

J ... number of level 2 units (persons)

P ... number of level 1 units (observations/time points)

n.iter ... number of iterations, default: 500

warmup ... number of warmup iterations ("n.adapt"), default: 0

bugs.file ... bugs/jags model syntax as plain text file

inits ... list (chains) of lists (parameters) with init values; "auto" (default) sets inits to mu=0, prec.theta=1, prec.eps=1

time.units ... character vector, time units, e.g. "secs" (default)

value: list; first entry "res": data.frame (1st column "parameter", further columns: iterations)

second entry: named vector with run times for warmup, run, total

third entry "seeds": generated seed for running jags

nullmodel_jags <- function(S, y.bar, J, P, n.iter=500, warmup=0, bugs.file, inits="auto", time.units="secs"){

data list for JAGS

data.list <- list()

data.list <- c(data.list, list("S"=S))

data.list <- c(data.list, list("y.bar"=y.bar))

data.list <- c(data.list, list("J"=J))

data.list <- c(data.list, list("P"=P))

JAGS run parameters

thinning

thin <- 1

starting values

if (inits %in% "auto"){

function to generate random starting values

generate.startval <- function(){

startval <- list()

Psych 2021, 3 776

startval <- c(startval, list("mu" = rnorm(1,0,sqrt(10000))))

startval <- c(startval, list("mu" = 0))

startval <- c(startval, list("prec.theta" = rgamma(1,0.001,0.001)+10^(-20)))

startval <- c(startval, list("prec.theta" = 1/1))

startval <- c(startval, list("prec.eps" = rgamma(1,0.001,0.001)+10^(-20)))

startval <- c(startval, list("prec.eps" = 1/1))

return(startval)

}

generate starting values for the chain

set.seed(1234)

inits <- sapply(1:1, function (chain.nr,l) l, generate.startval(), simplify=FALSE)

}

set seeds for the chain

seeds <- parallel.seeds('base::BaseRNG', 1)

inits <- mapply (function(i,s) c(i,s), inits, seeds, SIMPLIFY=FALSE)

initialize JAGS model

number of chains = 1 (code runs only for one chain)

number of adaptation iterations = 0 (no pre-sampling, just initialization)

start.warmup <- Sys.time()

ini <- jags.model (file=bugs.file, data=data.list, n.chains=1, n.adapt=warmup,

inits=inits, quiet=TRUE)

run time warmup

runtime.warmup <- Sys.time() - start.warmup

units(runtime.warmup)<- time.units

runtime.warmup <- as.numeric(runtime.warmup)

run JAGS model

track <- c("mu","sigma2.theta","sigma2.eps")

start.run <- Sys.time()

res <- jags.samples (ini, variable.names=track, n.iter=n.iter, thin=thin,

type='trace' , progress.bar = NULL)

run time main run

runtime.run <- Sys.time() - start.run

units(runtime.run)<- time.units

runtime.run <- as.numeric(runtime.run)

total run time

runtime <- runtime.warmup + runtime.run

named vector with runtimes

runtimes <- c(runtime.warmup, runtime.run, runtime)

names(runtimes) <- c("runtime.warmup", "runtime.run", "runtime")

results

dfr <- cbind(data.frame("parameter"=names(res)), do.call("rbind", sapply(res, function(x) x[1,,1], simplify=FALSE)))

dfr <- dfr[track,]

rownames(dfr) <- seq(along=rownames(dfr))

return

list("samples"=dfr, "runtimes"=runtimes, "seed"=seeds)

}

Psych 2021, 3 777

start simulation

res <- by(data = res, INDICES = res[,"sequential_number"], FUN = function (bed) {

dat <- nullmodel_data_generation(J=bed[["sampleSize"]])

d <- dat[["y"]]

y.bar <- matrix(rowMeans(d), 20, 1) ### mean vector (P = number of time points; D = matrix, persons x time

points)

ones <- matrix(1, ncol(d), 1) ### vector with 1 values

S <- (d - y.bar %*% t(ones)) %*% t((d - y.bar %*% t(ones))) ### S matrix

first: jags. adapt priors in bugs file

if(bed[,"prior"] != 0.001) {

rows <- grep("dgamma", jags)

jags[rows] <- gsub("0.001", bed[,"prior"], jags[rows])

rows2<- grep("dnorm", jags)

jags[rows2] <- gsub("10000", car::recode(bed[,"prior"],"0.01 = 2500; 0.1 = 100; 1 = 25"), jags[rows2])

}

dir.create(file.path(workdir, paste0(bed[,"sequential_number"], "_jags")))

write(jags,file.path(workdir, paste0(bed[,"sequential_number"], "_jags"), "01b_multilevel_intonly_model.bugs"), sep="\n")

fit <- nullmodel_jags (S=S, y.bar=y.bar, J=ncol(d), P=nrow(d), n.iter=bed[1,"iter"], warmup=bed[1,"nWarmups"], bugs.file = file.path(

workdir, paste0(bed[,"sequential_number"], "_jags"), "01b_multilevel_intonly_model.bugs"), inits="auto", time.units="secs")

res.ja<- data.frame (bed, software = "jags", runtime.translate = NA, runtime.compile = NA, runtime.samplingfunction = NA, t(fit[["

runtimes"]]), stringsAsFactors = FALSE)

colnames(fit[["samples"]]) <- car::recode(paste0("c", colnames(fit[["samples"]])), "'cparameter'='prm'")

res.ja<- data.frame (rbind(res.ja,res.ja,res.ja),fit[["samples"]], stringsAsFactors = FALSE)

second: jags (use identical data). adapt priors in bugs file

if(bed[,"prior"] != 0.001) {

rows <- grep("inv_gamma", stan)

stan[rows] <- gsub("0.001", unique(bed[,"prior"]), stan[rows])

rows2<- grep("normal\\(0", stan)

stan[rows2] <- gsub("10000", unique(car::recode(bed[,"prior"],"0.01 = 2500; 0.1 = 100; 1 = 25")), stan[rows2])

}

dir.create(file.path(workdir, unique(paste0(bed[,"sequential_number"], "_stan"))))

write(stan,file.path(workdir, unique(paste0(bed[,"sequential_number"], "_stan")), "02b_multilevel_intonly_model.stan"), sep="\n")

dlist <- list(J = ncol(d), P = nrow(d), S=S, ybar = as.vector(y.bar)) ### stan does not allow points in object names

begin <- Sys.time() ### first step: translate

transl<- stanc(file = file.path(workdir, unique(paste0(bed[,"sequential_number"], "_stan")), "02b_multilevel_intonly_model.stan"),

isystem = file.path(workdir, unique(paste0(bed[,"sequential_number"], "_stan"))))

t1 <- Sys.time() - begin

units(t1) <- "secs"

begin2<- Sys.time() ### second step: compile

comp <- stan_model(stanc_ret = transl, auto_write = TRUE, isystem = file.path(workdir, unique(paste0(bed[,"sequential_number"], "_stan")

)))

t2 <- Sys.time() - begin2

units(t2) <- "secs"

begin3<- Sys.time() ### third step: sampling

fit <- sampling(object = comp, data = dlist, iter = bed[1,"iter"] + bed[1,"nWarmups"], chains = 1, warmup = bed[1,"nWarmups"], init =

list(list(mu=0, prectheta = 1, preceps = 1)), cores = 1)

t3 <- Sys.time() - begin3

units(t3) <- "secs"

tmes <- attributes(fit@sim$samples[[1]])[["elapsed_time"]]

res.st<- data.frame (bed, software="stan", runtime.translate = as.numeric(t1), runtime.compile = as.numeric(t2), runtime.

Psych 2021, 3 778

samplingfunction = as.numeric(t3), runtime.warmup = tmes[["warmup"]], runtime.run = tmes[["sample"]], runtime = tmes[["warmup"]]+

tmes[["sample"]], stringsAsFactors = FALSE)

chains<- as.data.frame(fit@sim[["samples"]][[1]])

chainSelect <- as.data.frame(t(chains[(bed[1,"nWarmups"]+1):nrow(chains),1:3]))

colnames(chainSelect) <- paste0("c", as.character(1:bed[1,"iter"]))

res.st<- data.frame (rbind(res.st,res.st,res.st), chainSelect, stringsAsFactors = FALSE)

res.st[,"prm"] <- car::recode(rownames(chainSelect), "'sigma2theta'='sigma2.theta'; 'sigma2eps'='sigma2.eps'")

resAll<- rbind(res.ja, res.st)

save(resAll, file = file.path(outdir, paste0("results_",bed[,"sequential_number"])))

}

)

References
1. van de Schoot, R.; Winter, S.D.; Ryan, O.; Zondervan-Zwijnenburg, M.; Depaoli, S. A systematic review of Bayesian articles in

psychology: The last 25 years. Psychol. Methods 2017, 22, 217–239. [CrossRef]
2. Zitzmann, S. A computationally more efficient and more accurate stepwise approach for correcting for sampling error and

measurement error. Multivar. Behav. Res. 2018, 53, 612–632. [CrossRef]
3. Gilks, W.R.; Thomas, A.; Spiegelhalter, D.J. A language and program for complex Bayesian modelling. Statistician 1994, 43,

169–177. [CrossRef]
4. Lunn, D.; Jackson, C.; Best, N.; Thomas, A.; Spiegelhalter, D. The BUGS Book; CRC Press: Boca Raton, FL, USA, 2013.
5. Lunn, D.; Spiegelhalter, D.; Thomas, A.; Best, N. The BUGS project: Evolution, critique and future directions. Stat. Med. 2009, 28,

3049–3067. [CrossRef] [PubMed]
6. Lunn, D.J.; Thomas, A.; Best, N.; Spiegelhalter, D. WinBUGS—A Bayesian modelling framework: Concepts, structure, and

extensibility. Stat. Comput. 2000, 10, 325–337. [CrossRef]
7. Spiegelhalter, D.; Thomas, A.; Best, N.; Lunn, D. OpenBUGS Version 3.2.3 User Manual. 2014. Available online: http://www.

openbugs.net/w/Manuals (accessed on 15 May 2021).
8. Thomas, A.; O’Hara, R.; Ligges, U.; Sturtz, S. Making BUGS open. R News 2006, 6, 12–17. Available online: http://cran.r-project.

org/doc/Rnews (accessed on 30 October 2021).
9. Plummer, M. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In Proceedings of the 3rd

International Workshop on Distributed Statistical Computing (DSC 2003), Vienna, Austria, 20–22 March 2003.
10. de Valpine, P.; Turek, D.; Paciorek, C.J.; Anderson-Bergman, C.; Temple Lang, D.; Bodik, R. Programming with models: Writing

statistical algorithms for general model structures with NIMBLE. J. Comput. Graph. Stat. 2017, 26, 403–413. [CrossRef]
11. Monnahan, C.C.; Thorson, J.T.; Branch, T.A. Faster estimation of Bayesian models in ecology using Hamiltonian Monte Carlo.

Methods Ecol. Evol. 2017, 8, 339–348. [CrossRef]
12. Gelman, A.; Lee, D.; Guo, J. Stan: A probabilistic programming language for Bayesian inference and optimization. J. Educ. Behav.

Stat. 2015, 40, 530–543. [CrossRef]
13. Hoffman, M.D.; Gelman, A. The No-U-turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn.

Res. 2014, 15, 1593–1623.
14. Neal, R. MCMC using Hamiltonian dynamics. In Handbook of Markov Chain Monte Carlo; Brooks, S., Gelman, A., Jones, G.L., Meng,

X.-L., Eds.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2011; pp. 116–162.
15. Nishio, M.; Arakawa, A. Performance of Hamiltonian Monte Carlo and No-U-Turn Sampler for estimating genetic parameters

and breeding values. Genet. Sel. Evol. 2019, 51, 1–12. [CrossRef] [PubMed]
16. Betancourt, M. A conceptual introduction to Hamiltonian Monte Carlo. arXiv 2018, arXiv:1701.02434.
17. Carpenter, B.; Gelman, A.; Hoffman, M.D.; Lee, D.; Goodrich, B.; Betancourt, M.; Brubaker, M.; Guo, J.; Li, P.; Riddell, A. Stan: A

probabilistic programming language. J. Stat. Softw. 2017, 76, 1–32. [CrossRef]
18. Grant, R.L.; Furr, D.C.; Carpenter, B.; Gelman, A. Fitting Bayesian item response models in Stata and Stan. Stata J. 2017, 17,

343–357. [CrossRef]
19. Merkle, E.C.; Fitzsimmons, E.; Uanhoro, J.; Goodrich, B. Efficient Bayesian structural equation modeling in Stan. arXiv 2020,

arXiv:2008.07733.
20. Wingfeet. JAGS and Stan. 24 August 2014. Available online: https://www.r-bloggers.com/2014/08/jags-and-stan (accessed on

25 June 2021).
21. Bølstad, J. How Efficient is Stan Compared to JAGS? Conjugacy, Pooling, Centering, and Posterior Correlations. 2 January 2019.

Available online: www.boelstad.net/post/stan_vs_jags_speed (accessed on 1 July 2021).
22. R Core Team. R: A Language and Environment for Statistical Computing (Version 4.0.5) [Software]; R Foundation for Statistical

Computing: Vienna, Austria, 2021. Available online: https://www.r-project.org (accessed on 15 May 2021).
23. Plummer, M. JAGS (Version 4.3.0) [Software]. 2017. Available online: https://sourceforge.net/projects/mcmc-jags/files (accessed

on 15 May 2021).

http://doi.org/10.1037/met0000100
http://dx.doi.org/10.1080/00273171.2018.1469086
http://dx.doi.org/10.2307/2348941
http://dx.doi.org/10.1002/sim.3680
http://www.ncbi.nlm.nih.gov/pubmed/19630097
http://dx.doi.org/10.1023/A:1008929526011
http://www.openbugs.net/w/Manuals
http://www.openbugs.net/w/Manuals
http://cran.r-project.org/doc/Rnews
http://cran.r-project.org/doc/Rnews
http://dx.doi.org/10.1080/10618600.2016.1172487
http://dx.doi.org/10.1111/2041-210X.12681
http://dx.doi.org/10.3102/1076998615606113
http://dx.doi.org/10.1186/s12711-019-0515-1
http://www.ncbi.nlm.nih.gov/pubmed/31823719
http://dx.doi.org/10.18637/jss.v076.i01
http://dx.doi.org/10.1177/1536867X1701700206
https://www.r-bloggers.com/2014/08/jags-and-stan
www.boelstad.net/post/stan_vs_jags_speed
https://www.r-project.org
https://sourceforge.net/projects/mcmc-jags/files

Psych 2021, 3 779

24. Plummer, M. rjags: Bayesian Graphical Models Using MCMC (Version 4–10) [Software]. 2019. Available online: https://cran.r-
project.org/package=rjags (accessed on 15 May 2021).

25. Stan Development Team. Stan (Version 2.27) [Software]. 2021. Available online: https://mc-stan.org (accessed on 21 June 2021).
26. Stan Development Team. rstan: The R Interface to Stan (Version 2.21.2) [Software]. 2020. Available online: https://cran.r-project.

org/package=rstan (accessed on 15 May 2021).
27. Hecht, M.; Gische, C.; Vogel, D.; Zitzmann, S. Integrating out nuisance parameters for computationally more efficient Bayesian

estimation—An illustration and tutorial. Struct. Equ. Model. A Multidiscip. J. 2020, 27, 483–493. [CrossRef]
28. Hecht, M.; Zitzmann, S. A computationally more efficient Bayesian approach for estimating continuous-time models. Struct. Equ.

Model. A Multidiscip. J. 2020, 27, 829–840. [CrossRef]
29. Goldstein, H. Multilevel Statistical Models; John Wiley & Sons: Hoboken, NJ, USA, 2011.
30. Gabry, J. Shinystan: Interactive Visual and Numerical Diagnostics and Posterior Analysis for Bayesian Models (Version 2.5.0)

[Software]. 2018. Available online: http://cran.r-project.org/package=shinystan (accessed on 15 May 2021).
31. Turek, D.; de Valpine, P.; Paciorek, C.J. Efficient Markov chain Monte Carlo sampling for hierarchical hidden Markov models.

Environ. Ecol. Stat. 2016, 23, 549–564. [CrossRef]
32. Zitzmann, S.; Hecht, M. Going beyond convergence in Bayesian estimation: Why precision matters too and how to assess it.

Struct. Equ. Model. A Multidiscip. J. 2019, 26, 646–661. [CrossRef]
33. Zitzmann, S.; Weirich, S.; Hecht, M. Using the effective sample size as the stopping criterion in Markov chain Monte Carlo with

the Bayes module in Mplus. Psych 2021, 3, 336–347. [CrossRef]
34. Nielsen, N.M.; Smink, W.A.C.; Fox, J.-P. Small and negative correlations among clustered observations: Limitations of the linear

mixed effects model. Behaviormetrika 2021, 48, 51–77. [CrossRef]
35. Gelman, A.; Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models; Cambridge University Press: Cambridge,

UK, 2006.
36. Kruschke, J.K. Doing Bayesian Data Analysis: A Tutorial Introduction with R and BUGS, 2nd ed.; Academic Press: Cambridge, MA,

USA, 2015.
37. Papaspiliopoulos, O.; Roberts, G.O.; Sköld, M. A General Framework for the Parametrization of Hierarchical Models. Stat. Sci.

2007, 22. [CrossRef]
38. Paganin, S.; Paciorek, C.J.; Wehrhahn, C.; Rodriguez, A.; Rabe-Hesketh, S.; de Valpine, P. Computational methods for Bayesian

semiparametric Item Response Theory models. arXiv 2021, arXiv:2101.11583.
39. Salvatier, J.; Wiecki, T.V.; Fonnesbeck, C. Probabilistic programming in Python using PyMC3. PeerJ Comput. Sci. 2016, 2. [CrossRef]
40. Statisticat, LLC. LaplacesDemon: Complete Environment for Bayesian Inference [Software]. 2021. Available online: https:

//web.archive.org/web/20150206004624/http://www.bayesian-inference.com/software (accessed on 22 August 2021).
41. Beraha, M.; Falco, D.; Guglielmi, A. JAGS, NIMBLE, Stan: A Detailed Comparison Among Bayesian MCMC Software. arXiv 2021,

arXiv:2107.09357.
42. De Valpine, P. Some Comparisons between NIMBLE, JAGS and Stan for a Couple of Examples from Gelman and Hill (2007). 8

August 2021. Available online: https://nature.berkeley.edu/~pdevalpine/MCMC_comparisons/some_ARM_comparisons/
nimble_ARM_comparisons.html (accessed on 27 August 2021).

43. Ponisio, L.C.; Valpine, P.; Michaud, N.; Turek, D. One size does not fit all: Customizing MCMC methods for hierarchical models
using NIMBLE. Ecol. Evol. 2020, 10, 2385–2416. [CrossRef]

44. Stan Development Team. Stan Reference Manual (Version 2.27). 2021. Available online: https://mc-stan.org/docs/2_27
/reference-manual-2_27.pdf (accessed on 21 June 2021).

45. Stan Development Team. Stan User’s Guide (Version 2.27). 2021. Available online: https://mc-stan.org/docs/2_27/stan-users-
guide-2_27.pdf (accessed on 21 June 2021).

https://cran.r-project.org/package=rjags
https://cran.r-project.org/package=rjags
https://mc-stan.org
https://cran.r-project.org/package=rstan
https://cran.r-project.org/package=rstan
http://dx.doi.org/10.1080/10705511.2019.1647432
http://dx.doi.org/10.1080/10705511.2020.1719107
http://cran.r-project.org/package=shinystan
http://dx.doi.org/10.1007/s10651-016-0353-z
http://dx.doi.org/10.1080/10705511.2018.1545232
http://dx.doi.org/10.3390/psych3030025
http://dx.doi.org/10.1007/s41237-020-00130-8
http://dx.doi.org/10.1214/088342307000000014
http://dx.doi.org/10.7717/peerj-cs.55
 https://web.archive.org/web/20150206004624/http://www.bayesian-inference.com/software
 https://web.archive.org/web/20150206004624/http://www.bayesian-inference.com/software
https://nature.berkeley.edu/~pdevalpine/MCMC_comparisons/some_ARM_comparisons/nimble_ARM_comparisons.html
https://nature.berkeley.edu/~pdevalpine/MCMC_comparisons/some_ARM_comparisons/nimble_ARM_comparisons.html
http://dx.doi.org/10.1002/ece3.6053
https://mc-stan.org/docs/2_27/reference-manual-2_27.pdf
https://mc-stan.org/docs/2_27/reference-manual-2_27.pdf
https://mc-stan.org/docs/2_27/stan-users-guide-2_27.pdf
https://mc-stan.org/docs/2_27/stan-users-guide-2_27.pdf

	Introduction
	Simulation Study 1
	Data Generation
	Simulation Design
	Analysis
	Results

	Simulation Study 2: Small Sample Size
	Simulation Study 3: Classic Parametrization
	Discussion
	rjags Code
	JAGS Code (Covariance- and Mean-Based Parametrization)
	JAGS Code (Classic Parametrization)
	rstan Code
	Stan Code (Covariance- and Mean-Based Parametrization)
	Stan Code (Classic Parametrization)
	Simulation Code
	References

