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Abstract: Bayesian modeling using Markov chain Monte Carlo (MCMC) estimation requires re-
searchers to decide not only whether estimation has converged but also whether the Bayesian
estimates are well-approximated by summary statistics from the chain. On the contrary, software
such as the Bayes module in Mplus, which helps researchers check whether convergence has been
achieved by comparing the potential scale reduction (PSR) with a prespecified maximum PSR, the
size of the MCMC error or, equivalently, the effective sample size (ESS), is not monitored. Zitzmann
and Hecht (2019) proposed a method that can be used to check whether a minimum ESS has been
reached in Mplus. In this article, we evaluated this method with a computer simulation. Specifically,
we fit a multilevel structural equation model to a large number of simulated data sets and compared
different prespecified minimum ESS values with the actual (empirical) ESS values. The empirical
values were approximately equal to or larger than the prespecified minimum ones, thus indicating
the validity of the method.

Keywords: effective sample size; Bayesian modeling; Markov chain Monte Carlo; multilevel
modeling; structural equation modeling

1. Introduction

Bayesian modeling has gained popularity in psychology [1] and related sciences [2]
because Bayesian modeling can be beneficial in several respects; for example, it offers
greater flexibility in modeling (e.g., [3]), fewer estimation problems (e.g., [4]), and more
accurate estimates, (e.g., [5]), particularly when models with latent variables are estimated.
Most software uses Markov chain Monte Carlo (MCMC) methods, which generate samples
from the distribution of the population parameters given the data (i.e., the posterior
distribution). However, Bayesian modeling requires researchers not only to decide which
prior distributions they want to use, a task that is often challenging for researchers (e.g., [6]),
but also to judge whether estimation has converged and whether the Bayesian estimates
are approximated reasonably well by summary statistics from the MCMC chain. To ensure
a high level of precision, the MCMC error needs to be small (e.g., [7]). Software such
as the Bayes module in Mplus [8] routinely monitors convergence by checking whether
a certain value for the potential scale reduction (PSR; [9]) has been reached. This value
can be specified by the user, whereas a value for the amount of the MCMC error or,
equivalently, for the effective sample size (ESS), cannot be specified directly. However,
Zitzmann and Hecht [10] proposed a method that can be used to control the ESS in Mplus,
taking advantage of a correspondence between the ESS and the PSR, which exists when
both coefficients are computed with the help of estimates from the analysis of variance
(ANOVA) literature that are based on the mean squares. By “control”, we mean that users
can specify a minimum ESS and thus a minimum level of precision as the stopping criterion
before the estimation is carried out.
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Because this method was only proposed but not evaluated by the authors, the goal
of the present article is to evaluate the method with a computer simulation. Specifically,
we simulated and analyzed about a thousand data sets from a simple multilevel structural
equation model that is often applied in organizational and educational research, and we
compared different prespecified minimum values of the ESS with the actual empirically
obtained values of the ESS.

2. Zitzmann and Hecht’s Method

Various criteria for monitoring convergence have been suggested in the literature,
most notably the PSR. We consider a single long run of the MCMC sampler, see [7,11].
Then, the PSR for a parameter θ is defined by Gelman and Rubin [9] as:

PSR =
√

σ̂2
θ /W (1)

where σ̂2
θ is the variance of the MCMC chain for θ and is given by an estimate from the

ANOVA literature: σ̂2
θ = (L − 1)W/L + B/L. W = ∑m

j=1

[
∑L

i=1
(
θij − θ̄•j

)2/(L − 1)
]
/m is

the average of the variances within equally long, nonoverlapping sequences of the chain,
where m is the number of sequences, and L is the length of the sequences.
B/L = ∑m

j=1
(
θ̄•j − θ̄••

)2/(m − 1) is the variance between sequences ([3,9]). Mplus uses
the PSR in the following algorithm, which automatically determines when to stop the
estimation:

1. Generate iterative samples for each parameter, which constitute one MCMC chain
per parameter.

2. After every 100th iteration, discard the first half of each chain as burn-in.
3. Compute the PSR for each parameter by using the remaining samples. When the

PSR values of all parameters fall below the prespecified maximum PSR value, then
stop. Otherwise, continue with the estimation. The maximum PSR value can be set
manually, and we will make use of this feature later on.

The PSR is meant to assess convergence. However, it has been argued that besides
convergence, another condition must be met before Bayesian estimates are computed. The
number of independent samples from the posterior distribution (i.e., the Effective Sample
Size; ESS) must be large to guarantee precise approximations of the estimates (e.g., [7,10,11]).
Therefore, it is generally recommended that the ESS should also be monitored. One possible
way of doing this is by adapting Mplus’ stopping algorithm to check for convergence. The
adapted algorithm proceeds as follows:

1. Run an MCMC chain for each parameter.
2. After every 100th iteration, discard the first half of each chain (burn-in phase).
3. Compute the ESS for each parameter from the remaining samples. When all ESS

values lie above the prespecified minimum ESS value, stop the estimation. Otherwise,
continue with it. It is interesting to note that because of the correspondence between
the ESS and the PSR, this algorithm also ensures that all PSR values will fall below
a certain “implied” maximum PSR value and, thus, that convergence will generally
also be reached.

Mplus provides the algorithm for monitoring the convergence of the chain and an
option to specify the maximum value for the PSR as the stopping criterion, whereas Mplus
does not provide such an algorithm for the ESS. This led Zitzmann and Hecht [10] to
suggest a simple solution.

Linking the PSR and the ESS

The basic idea behind the method is the observation that there is a link between the
ESS and the PSR, which becomes apparent when the estimators from the ANOVA literature
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used by Gelman and Rubin [9] in their PSR coefficient are also used in the computation of
the ESS. For a parameter θ, the ESS can be defined as:

ESS = σ̂2
θ /V̂

(
θ̄•
)

(2)

where σ̂2
θ is the variance of the MCMC chain (see above), and V̂

(
θ̄•
)

is the variance of
the chain mean. V̂

(
θ̄•
)

can be computed as an estimate from the ANOVA literature:
V̂
(
θ̄•
)
= (B/L)/m, where B/L = ∑m

j=1
(
θ̄•j − θ̄••

)2/(m − 1) is the variance between se-
quences, L is the sequence length, and m is the number of sequences. This formula was
also used by Gelman and Rubin [9]. It is important to note that similar to the PSR, the
ESS in Equation (2) is estimated by using estimators from the ANOVA literature. This
approach is also used by some software (e.g., in the batch standard error of the R package
coda; [12]). However, there are other ways of computing the ESS that are more common in
the time-series literature [7]. We will come back to this point later in the article.

To understand how the ESS is related to the PSR, insight can be gained by first
rearranging Equation (2) in such a way that only σ̂2

θ is left on the right-hand side and by
subsequently inserting this expression into Equation (1). Finally, simplifying the equation
yields an expression of the PSR in terms of the ESS. An approximation is given by:

PSR ≈
√

ESS/(ESS − m) (3)

where m is the number of chain sequences. For details on the derivation, we refer readers
to Zitzmann and Hecht [10]. The equation shows that the PSR value decreases when the
ESS increases and that the PSR value increases when the number of sequences increases
as well.

Equation (3) is the key to implementing the ESS stopping criterion in Mplus. The
minimum ESS needs to be chosen first. Because Mplus uses only the third and fourth
quarters of the chain (p. 634, [8]), m must be set to 2 (i.e., two chain sequences). Inserting
the value for the minimum ESS and the number of sequences into Equation (3) then yields
an upper bound for the PSR because the ESS values that are larger than the minimum ESS
can only result in PSR values that are smaller than the obtained one. This means that the
obtained value for the PSR can be used as the maximum PSR in Mplus.

Unless otherwise specified, Mplus determines the maximum value for the PSR in an
automatic fashion by calculating: PSR = 1 + a · 0.05. The a factor depends on the number
of model parameters and can take on values between 1 when there is only one parameter
and 2 when there are many parameters (p. 634, [8]). In order to specify the maximum
PSR obtained from Equation (3) manually, the BCONVERGENCE option must be set equal
to (max. PSR − 1)/a. Because most substantive models include many parameters, it is
reasonable to set a to 2. With this setting, Mplus stops only after the prespecified minimum
ESS value has been reached.

Although Zitzmann and Hecht [10] suggested this method, it has yet to be evaluated.
Therefore, we conducted a computer simulation whose findings are the subject of the
next section.

3. Simulation Study

The study was designed to evaluate Zitzmann and Hecht’s solution for using the
ESS as the stopping criterion in Mplus. To this end, we simulated data from a multilevel
structural equation model and analyzed them with the Bayes module in Mplus, using the
proposed method.

3.1. Method

The data-generating model was the multilevel structural equation model in Figure 1.
One latent predictor variable predicted a latent dependent variable. Both variables were
measured with three indicators, each normally distributed and with a standardized
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between-group loading of 0.6 (e.g., [13]). The unstandardized loadings all had values
of 1 because the ones from the first indicators were set equal to 1, and the indicators were
assumed to be parallel. The (unstandardized) within-group regression coefficient was
set equal to 0.2, and the (unstandardized) between-group regression coefficient was 0.7.
It was further assumed that the intraclass correlations (ICCs; i.e., the proportions of the
total variances that were located between groups; [14]) of the dependent variable and the
predictor were 0.3, as were the ICCs of the indicators of these variables. The 0.3 value falls
within the typical range from 0.0 to 0.4 [14,15]. The within- and between-group R2s were
0.04 and 0.49, respectively. All indicators had a within-group error variance of 1.24 and a
between-group error variance of 0.53.

Between

Within

xB,1 xB,2 xB,3

x1 x2 x3

11 1

1 1 1

ξB ηB

ξW ηW

y1 y2 y3

11 1

1 1 1

0.7

0.2

yB,1 yB,2 yB,3

xW,1 xW,2 xW,3 yW,1 yW,2 yW,3

Figure 1. Data-generating model.

Each generated data set consisted of 1000 individuals, who were grouped into 100
groups (10 individuals each). Such a sample size is frequently encountered in multilevel
research [16]. We generated 5000 data sets and then analyzed each of them with the Bayes
module in Mplus 7.1.

To implement the analysis model in Mplus, we specified a multilevel structural equa-
tion model with congeneric indicators with cross-level invariant loadings. To this end, we
fixed the within-group loading of the first indicators to 1 to identify the metric of the latent
predictor, and we allowed the remaining loadings to be estimated under the constraint that
they are equal across the levels (i.e., cross-level invariance). Such constrained models are
often applied in research practice because one would not expect loadings to be different
across the levels; for example, when configural models are fit (see [17], for a discussion).
Notice that the analysis model was slightly more general than the data-generating one
(because the analysis model assumed congeneric indicators, whereas the data-generating
model assumed only parallel indicators). Thus, although the analysis model did not
provide an exact match with the data-generating model, the analysis model covered the
data-generating model. Therefore, the results (e.g., biased point estimates) could not be
attributed to model misspecification.

To estimate the analysis model with the Bayes module, prior distributions needed
to be specified. We adopted the specification from (e.g., Zitzmann et al. [18]) rather than
Mplus’ default (see [19], for the argument that software defaults can bias results). More
specifically, we specified uninformative normal priors with means of 0 and variances of
1000 for the within- and between-group intercepts, loadings, and slope parameters in
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the model, and we specified uninformative inverse gamma priors with shape and scale
parameters of 0.001 for the within-group variances and weakly informative inverse gamma
priors with shape and scale parameters of 0.1 for the between-group variances (see also [4]).

In order to evaluate Zitzmann and Hecht’s method, we specified different minimum
values for the ESS as stopping criteria (i.e., 25, 50, 100, 200, 300, 400, 500, and 1000 samples),
and we computed implied values for the PSR from them with the help of Equation (3),
which were set as stopping criteria via the BCONVERGENCE option in Mplus (see the
Appendix A for the program code).

We compared each of these prespecified minimum ESS values with the actual (empiri-
cal) ESS values from the MCMC chains. We computed the empirical ESS from Equation (2).
This way of computing the ESS uses estimators from the ANOVA literature, and it is also
used in the proposed method. We will refer to this ESS simply as the “ESS”. In order
to be able to compare this way of computing the ESS with other ways of doing so, we
additionally computed it by using an alternative estimate of the variance of the chain
mean, which is given by: V̂

(
θ̄•
)
= λ̂/Ltotal, where λ̂ is the spectral density of the chain at

frequency zero, and Ltotal is the total length of the chain ([12,20]). This ESS is often used in
the time-series literature. We will therefore refer to it as the “time-series ESS”. The third
way of computing the ESS involves computing it from the batch standard error, which uses
a sufficiently large number of nonoverlapping sequences of the chain (i.e., “batches”). We
used 5, 10, and 25 batches. We will refer to this ESS as the “batch ESS”. We expected the
empirical ESS values (estimated by the three methods) to be at least as large if not larger
than the prespecified minimum ESS values, which would validate the proposed method.

In addition, we compared the different prespecified minimum ESS values with respect
to three statistical properties—relative bias, relative root mean squared error (RMSE), and
coverage rate—to replicate the findings from Zitzmann and Hecht [10], who demonstrated
that the quality of estimates can be suboptimal when the precision with which the Bayesian
estimates are approximated is too low because the ESS is too small. For details on how the
statistical properties were computed, we refer readers to Lüdtke et al. [21], Muthén and
Muthén [22], or Zitzmann and Helm [23].

Before we present the results, it is important to mention that for each data set and
analysis, we identified the parameter for which convergence was slowest or, equivalently,
for which the empirical ESS as computed by the first method (i.e., by using estimators from
the ANOVA literature) was smallest. We used this empirical ESS value along with the ESS
values from the other methods in comparison with the prespecified minimum ESS value.
We used the point estimate (mean) and interval estimate of the parameter (2.5th and 97.5th
percentiles) to compute the relative bias, relative RMSE, and coverage rate.

3.2. Results

We focused on the following parameters of the between-model in Figure 1: the
regression coefficient, which is often the most interesting parameter, the variance of the
predictor, and the residual variance. We begin with an inspection of the correspondence
between the empirical and the prespecified minimum ESS, followed by an inspection of
how the statistical properties vary depending on the prespecified minimum ESS.

3.2.1. Comparison between the Prespecified ESS and the Empirical ESS

To facilitate the comparison, we created a series of plots that visually represent the
results for the three parameters. The plots can be found in Figure 2. They show the average
empirical ESS values (averaged across data sets) for the different prespecified minimum
ESS values. We added bisectors to the plots (grey lines) because they help assess how much
the prespecified minimum ESS and the empirical ESS differed. Points that are close to a
bisector indicate that the empirical ESS was close to the prespecified minimum ESS. Points
situated above the bisector indicate that the empirical ESS was larger than the prespecified
minimum ESS, and points below the bisector indicate that the empirical ESS was smaller
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than the prespecified minimum ESS. Furthermore, we added the implied maximum PSR
and the empirical PSR.
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Figure 2. Empirically obtained effective sample size (ESS) and the empirically obtained potential
scale reduction (PSR) as a function of the prespecified minimum effective sample size. The grey lines
are the bisectors, indicating the identities of the prespecified minimum ESS and the empirical ESS.

A first look at Figure 2 reveals that most of the points were situated above the bisectors,
indicating that the empirical ESS values were larger than the prespecified minimum ESS
values. In particular, this also means that the empirical values were not smaller than the



Psych 2021, 3 342

prespecified minimum ones. Because the method is aimed at ensuring that the empirical
ESS values will be at least as large as the prespecified ESS values, this finding speaks for the
validity of the method. The empirical ESS values were closest to the prespecified minimum
ESS values in the low ESS range and they deviated more from the prespecified minimum
ESS values in the upper ESS range. Moreover, there was a tendency for the three different
methods that we used to compute the ESS to yield different results. More specifically, the
method that uses estimates from the ANOVA literature (denoted as “ESS” in the figure)
yielded the smallest ESS values, which were very close to the prespecified minimum ESS
values. This is not very surprising and could have been expected because the proposed
method is based on this way of computing the ESS. The different specifications of the batch
ESS provided different results, with the batch ESS with 25 batches providing results similar
to the time-series ESS. In addition to this overall validation, the figure shows that a larger
ESS value was associated with a smaller PSR value.

3.2.2. Statistical Properties

Figure 3 shows a series of plots that compare the statistical properties of the differ-
ent prespecified minimum ESS values. Although the analysis model covered the data-
generating model, the MCMC method provided substantially biased estimates of the three
parameters from the between-model (i.e., they exhibited relative biases of more than ±0.1).
The estimates of the regression coefficient were positively biased, whereas the estimates
of the variance of the predictor and the residual variance were both negatively biased.
However, given that samples of 100 groups with 10 individuals each are rather small, and
given that the estimates will be unbiased only when samples are large, these biases could
have been expected.

The estimates were least accurate (i.e., they exhibited the largest relative RMSEs) when
the prespecified minimum ESS was small (i.e., <400) but tended to become more accurate
when the prespecified minimum ESS increased up to a large value (i.e., 1000).

A similar picture emerged with regard to the coverage rate. Some of the coverage rates
were unacceptably low (i.e., <91%) with a small prespecified minimum ESS, particularly
those of the variance estimates. However, they tended to become acceptable when the
prespecified minimum ESS increased, thus supporting Zitzmann and Hecht’s (2019) claim
that the ESS must be large enough to guarantee good statistical properties.
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Figure 3. Cont.
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Figure 3. Relative bias, relative root mean squared error (RMSE), and coverage rate for the different
prespecified minimum effective sample sizes.

4. Discussion

Many researchers who employ latent variable modeling fit these models with Mplus.
There might be multiple reasons for this practice. Mplus is specifically written for latent vari-
able models. Moreover, models can be specified very easily, and the Bayes module in Mplus
seems to be very efficient [18]. However, although Mplus monitors convergence by rou-
tinely checking the PSR, it does not monitor the ESS. Therefore, Zitzmann and Hecht [10]
proposed a method that can be used to control the ESS in Mplus. This article validated the
proposed method with the help of a computer simulation. The main findings can be sum-
marized as follows. First and foremost, our results showed that the empirical ESS values
were larger but not smaller than the prespecified minimum ESS values, indicating the valid-
ity of the method. It is interesting that the different methods for computing the ESS tended
to yield different results—which deserves some attention. Only recently, Vehtari et al. [24]
proposed another way of computing the ESS, which might be more trustworthy than the
other methods. However, empirical support for this speculation is lacking so far. Moreover,
the results showed that the statistical properties of the point and interval estimates were
suboptimal when the ESS was too small, which demonstrated once more the importance of
specifying software in such a way that the ESS will be large and, thus, that the precision
with which the Bayesian estimates are approximated is sufficiently high [10]. Fewer than
400 samples are generally not recommended, and 1000 samples are optimal [10]. Note that,
overall, the autocorrelation was relatively high (>0.8), indicating that the ESS was much
smaller than the number of iterations. More informative priors will likely result in a lower
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autocorrelation and thus a larger ESS per second (ESS/s), reducing the time needed to
achieve an ESS that is large enough [25].

The stopping algorithm for checking the ESS can also be implemented in other soft-
ware. For example, Hecht et al. ([26]; see also [27]) implemented a very similar algorithm
for JAGS [12], which also uses MCMC but is freely available. The algorithm is automated,
meaning that the algorithm automatically decides when to stop. This may be an improve-
ment for many researchers. A detailed description of the algorithm can be found in Hecht
et al.’s article. For the program code, see their Supplemental Material. However, it should
be noted that the authors used the ESS from Shinystan [28], which differs from ours.

In future research, it would be interesting to also investigate the solution in situations
in which convergence and precise approximations will be difficult to achieve with MCMC
methods when the abovementioned prior distributions are adopted (e.g., inverse gamma
priors with shapes and scales of 0.1 for between-group error variances). Such a situation
will likely arise when shared-and-configural models are estimated and strong factorial in-
variance holds across higher level units; that is, the between-group error variances are equal
to zero, see [29]. The shared-and-configural model was proposed by Stapleton et al. [17]
as a way to separate the “objective” shared factor from a nuisance factor. Because inverse
gamma priors with shapes and scales larger than 0.001 (a) do not allow variance estimates
that are negative, (b) avoid estimates that are close to zero, and (c) give particular weight
to variances that are substantial (e.g., [30,31]), the sampler will struggle in this case. Fur-
thermore, it would be interesting to compare Vehtari et al.’s method for computing the ESS
with other existing methods by means of extensive simulation in order to verify whether
their method can outperform the other methods.

Most of the software that provides Bayesian modeling uses MCMC methods. However,
the application of these methods is not without its challenges. We discussed one such
challenge here and validated a solution to this challenge. We hope that our findings will
provide confidence in the method and that the article will contribute to the use of software
such as Mplus in an informed way.
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Appendix A. Mplus Code

The following code can be used to fit the analysis model with the Bayes module in
Mplus with a prespecified minimum ESS of 1000.

Title: Analysis model

Data: File is
filename.dat;

Variable: Names are y_1 y_2 y_3 x_1 x_2 x_3 g;
Usevariables are y_1 y_2 y_3 x_1 x_2 x_3 g;
Cluster is g;

Analysis: Type is twolevel;
Estimator is bayes;
Chains = 1;
Biterations = 2000000;
Point = mean;
Bconvergence = 0.0005007513; ! corresponds with minimum ESS = 1000

Model: %within%

y1 by y_1;
y1 by y_2(l1yy2)*0.0; ! Param 1
y1 by y_3(l1yy3)*0.0; ! Param 2

x1 by x_1;
x1 by x_2(l1xx2)*0.0; ! Param 3
x1 by x_3(l1xx3)*0.0; ! Param 4
x1(varx1)*0.5; ! Param 13

y_1(var1yy1)*0.5; ! Param 5
y_2(var1yy2)*0.5; ! Param 6
y_3(var1yy3)*0.5; ! Param 7
x_1(var1xx1)*0.5; ! Param 8
x_2(var1xx2)*0.5; ! Param 9
x_3(var1xx3)*0.5; ! Param 10

y1 on x1(b1)*0.0; ! Param 11
y1(vare1)*0.5; ! Param 12

%between%

y2 by y_1;
y2 by y_2(lyy2)*0.0; ! Param 1
y2 by y_3(lyy3)*0.0; ! Param 2
x2 by x_1;
x2 by x_2(lxx2)*0.0; ! Param 3
x2 by x_3(lxx3)*0.0; ! Param 4
x2(varx2)*0.5; ! Param 29

[y_1](myy1)*0.0; ! Param 14
[y_2](myy2)*0.0; ! Param 15
[y_3](myy3)*0.0; ! Param 16

[x_1](mxx1)*0.0; ! Param 17
[x_2](mxx2)*0.0; ! Param 18
[x_3](mxx3)*0.0; ! Param 19

y_1(var2yy1)*0.5; ! Param 20
y_2(var2yy2)*0.5; ! Param 21
y_3(var2yy3)*0.5; ! Param 22
x_1(var2xx1)*0.5; ! Param 23
x_2(var2xx2)*0.5; ! Param 24
x_3(var2xx3)*0.5; ! Param 25

y2 on x2(b2)*0.0; ! Param 27
[y2](my)*0.0; ! Param 26
y2(vare2)*0.5; ! Param 28
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Model Priors: l1yy2 ~ N( 0, 1000 );
l1yy3 ~ N( 0, 1000 );
l1xx2 ~ N( 0, 1000 );
l1xx3 ~ N( 0, 1000 );
varx1 ~ IG(0.001 , 0.001);

var1yy1 ~ IG(0.001 , 0.001);
var1yy2 ~ IG(0.001 , 0.001);
var1yy3 ~ IG(0.001 , 0.001);
var1xx1 ~ IG(0.001 , 0.001);
var1xx2 ~ IG(0.001 , 0.001);
var1xx3 ~ IG(0.001 , 0.001);

b1 ~ N( 0, 1000 );
vare1 ~ IG(0.001 , 0.001);

varx2 ~ IG(0.1, 0.1);

myy1 ~ N( 0, 1000 );
myy2 ~ N( 0, 1000 );
myy3 ~ N( 0, 1000 );
mxx1 ~ N( 0, 1000 );
mxx2 ~ N( 0, 1000 );
mxx3 ~ N( 0, 1000 );

var2yy1 ~ IG(0.1, 0.1);
var2yy2 ~ IG(0.1, 0.1);
var2yy3 ~ IG(0.1, 0.1);
var2xx1 ~ IG(0.1, 0.1);
var2xx2 ~ IG(0.1, 0.1);
var2xx3 ~ IG(0.1, 0.1);

b2 ~ N( 0, 1000 );
my ~ N( 0, 1000 );
vare2 ~ IG(0.1, 0.1);
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