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Abstract: There is some debate in the psychometric literature about item parameter estimation in
multistage designs. It is occasionally argued that the conditional maximum likelihood (CML) method
is superior to the marginal maximum likelihood method (MML) because no assumptions have to
be made about the trait distribution. However, CML estimation in its original formulation leads
to biased item parameter estimates. Zwitser and Maris (2015, Psychometrika) proposed a modified
conditional maximum likelihood estimation method for multistage designs that provides practically
unbiased item parameter estimates. In this article, the differences between different estimation
approaches for multistage designs were investigated in a simulation study. Four different estimation
conditions (CML, CML estimation with the consideration of the respective MST design, MML with
the assumption of a normal distribution, and MML with log-linear smoothing) were examined using
a simulation study, considering different multistage designs, number of items, sample size, and
trait distributions. The results showed that in the case of the substantial violation of the normal
distribution, the CML method seemed to be preferable to MML estimation employing a misspecified
normal trait distribution, especially if the number of items and sample size increased. However,
MML estimation using log-linear smoothing lea to results that were very similar to the CML method
with the consideration of the respective MST design.

Keywords: multistage testing; Rasch model; marginal maximum likelihood; conditional maximum
likelihood; parameter estimation; log-linear smoothing

1. Introduction

Several studies have shown adaptive test designs such as computerized adaptive
tests (CATs; [1–7]) or multistage tests (MST; [8–13]) are usually more efficient in terms of
shorter test lengths, providing equal or even higher measurement precision and higher
predictive validity, compared to linear fixed-length tests (LFTs; [6,7,14–23]). The advantages
of adaptive tests are particularly evident for more extreme abilities at the lower and upper
end of the measurement scale [6,15,24].

In situations with administration time constraints, CATs can be a good choice and
should be considered. However, a decision in favor of adaptive tests also means that
some disadvantages are taken for granted. Some will be explained in the following. It
should become clear that MST designs, compared to CATs, do not share many of these
disadvantages, which has probably also led to its popularity and use in educational
measurement and, in particular, international large-scale assessments (ILSAs; e.g., [16]).
In recent years, several well-known programs, such as the Programme for International
Student Assessment (PISA; [25]), the Programme for The International Assessment of Adult
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Competencies (PIAAC; [26]), Trends in the International Mathematics and Science Study
collection cycle 2019 on computer-based assessment systems (eTIMSS, TIMSS; [27]), or the
National Assessment of Educational Progress (NAEP; [28,29]), applied MST designs and
might have contributed to its popularity. Besides ILSAs, there are several other areas with
successful applications in the past decade, such as psychological assessment (e.g., [30]), or
classroom assessments [16]. It can be summarized that the application of adaptive testing
currently has become an essential testing method (e.g., [31,32]).

In the following, we refer to MSTs and CATs in their more classical form, even if some
contributions do not separate both designs so strictly from one another. Chang [16], for
example, stated that both designs could be regarded as sequential designs (see also [33–36]
for dynamic multistage designs).

Here, CATs should therefore be understood as adaptive designs on the item level.
Based on one or more item selection algorithms, the best-suited item is selected. The maxi-
mum of information is often defined with a success rate of 50% for this item. If the item
pool is large enough for the desired measurement accuracy, the smallest number of items
is required in CATs. Therefore, the efficiency is theoretically the largest if the item pool is
large enough. Some indices to measure the amount of adaptation in practice were recently
discussed by Wyse and McBride [37].

In MSTs, the decision points are modules. These are collections of items with mostly
related content (see also the comparison to testlets; [6,38]), certain mean item difficulties,
and variances. At the start, test persons receive a routing module and, based on the
performance in this module and performance-related prior information, if available, one
or more additional modules. Each additional module in this routing process describes a
stage in the MST design. Each stage consists of at least two modules (see Figure 1 for an
example). The specific combination of processed modules in the routing process is called a
path. Different groups of modules, stages, and paths are called panels. Panels can be seen
as parallel forms in LFTs. Routing in the MST context is branching from one to the next
module, based on pre-specified rules.

Stage 2

Module 1

Module 3

Path 1

Path 2

Stage 1

Module 2
j > c

j < c

Figure 1. Example of a multistage design with three modules, two stages, and two paths. Note:
j = score in Module 2; c = given cutoff value.

As with all adaptive designs, the selection of items or modules is the central part of the
design, and much research has been performed to serve different needs. In particular, in
CATs, the item selection can become very complex. Additional considerations can refer to,
e.g., content balancing or strategies to avoid overexposure and/or underexposure of items.
Next to the desired purpose of that algorithm, there might also be some disadvantages,
which can negatively impact the validity and the fairness of the test. In particular, in CATs,
the item exposure control can become a challenging task [13,39].

Overexposure might be a problem if the information of those items processed more
often is shared across test persons. This can threaten the validity of the test because the
performance of the test persons can no longer be separable between ability and knowledge.
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Especially with high-stakes tests, it might be a major problem, where industry could
quickly build up to collect the information of items [40]. While simply increasing the
item pool is not the solution [39], additional algorithms must be considered. Concerning
underexposure, economic considerations are probably more in the foreground, as the
construction of items is very expensive. However, this can also lead to problems in
parameter estimation if the sample size per item is low, which subsequently results in the
inaccurate estimation of item parameters and the standard errors. Here, MST designs seem
to show their advantages, as they can be designed and checked before they are applied.
Hence, no additional algorithms are necessary.

1.1. Motivation

An essential factor in every test is the motivation of the test persons (see, e.g., [41–43]).
It has been reported that due to the better match of the item difficulty and the person’s
ability, test persons, especially those with low abilities, are more motivated to proceed,
sometimes less bored, and more committed during the test [44–50]. On the other hand,
there are several contributions concerning CATs that report negative psychological effects
of the demanding item selection. Kimura [51] stated that this could lead to negative test
experience,s as well as lower motivation, lower self-confidence, and increased test anxiety
(see also [52–58]). These psychological variables seem to be an important topic in testing
since they could negatively affect the persons’ test performance [56,59,60]. Motivation is
a key factor in every low-stakes test such as ILSAs since unmotivated participants might
influence the test results and thus the validity of the test (see, e.g., [61]). It seems to be
central and can be deduced from these contributions that the impact on motivation or
boredom, but also anxiety, should not be ignored, as this can significantly influence the test
results [62,63]. Finally, this contributes to standardization and thus to reliable results and
more valid parameter estimates [64,65].

MST designs are conceptualized before the actual application. The items are explicitly
assigned to modules, and every path of that design can be reviewed in advance. Therefore,
these mentioned aspects can be verified before the application, and no additional algorithms
are required during the actual application.

1.2. Test Anxiety

Increased test anxiety among test participants is another reported psychological effect
in CATs [60]. Due to the lack of the possibility to review items that have already been
processed and, if necessary, changed by the test person, test anxiety might also be further
increased [66–70]. An item revision in CATs is not possible [7,71,72], because the item
selection in CATs is based on the responses already given. Hence, changing responses
retrospectively may impact the measurement precision, which results in larger standard
errors [69,73–78]. Therefore, allowing item revision within CATs has been controversially
discussed in the literature, even if some contributions encountered this measurement
problem (see, e.g., [66,77,79–82]). While it can be argued that only a few persons might
change their responses [83], a lack of this ability appears to contribute to increased test
anxiety. However, it is also reported that subsequent changes to given responses are mostly
from wrong to processed correct [83] and thus not only affect the psychological aspects,
but also the validity of the test scores.

Several studies suggested methods to allow a (limited) item review in CATs while
avoiding the negative effects of the lower measurement accuracy or the extension of the test
at the same time [68,75,77,81,82,84]. However, the proposals can also be viewed critically.
For example, Zwick and Bridgeman [85] found that more experienced test persons may
use the review options more often than others. This could again harm the validity of the
test, while the absence of the item review affects all persons across the entire skill range
equally [60]. Next to the possibility of reprocessing the responses in CATs, this option
can also be used to manipulate the test score [84,86]. Wainer [76] described one of these
strategies, in which a test person first gives only incorrect responses to continuously obtain



Psych 2021, 3 282

easier items. At the end of the test, all given responses are then corrected, which results
in large measurement errors. Kingsbury [87] described a strategy in which test persons
recognize whether a subsequent item is easier or more difficult than the one they have just
worked on and obtain information about the given response. If the following item is easier,
which hints that the prior response might be wrong, the response can be changed on this
item; see also [88]. In MSTs, all test persons have the same chance to review their given
responses and change them before taking on a new module. It is, therefore, to be expected
that test anxiety will be lower with MSTs.

1.3. Routing in Adaptive Designs

Item selection algorithms are one of the key factors in CATs, especially when it comes
to maximizing the test economy and thus shortening the test length [16]. Increasing the
test efficiency can also be viewed critically, as we will discuss later. When choosing one
of the selection algorithms, the optimization and the associated negative effects should
be considered. Furthermore, the item selection is also related to considerations regarding
under- and over-exposure, as well as considerations of the safety aspects. Some selection
algorithms can be found in Chang [16].

In this context, deterministic means that persons with the same performance in the
same module m[b] of B modules with b = (1, . . . , B) in the same stage are routed to the
same subsequent module. A decision base can be, e.g., the number of solved items (number-
correct score; NC). Assuming a person θp achieves a score j in the module m[b], this person,
given a cutoff value c, is routed to an easier module in the cases j < c or j ≤ c (that is, once
again, performed deterministically by the test author) and, in the remaining cases, a more
difficult module (see also [6,12]). In this simple case, the decision to route from one module
to the next is only made based on the performance in the module currently being processed.
This can easily be expanded by including the information from all previously processed
modules in the decision. This type of routing should be referred to as the cumulative
number-correct score (cNC; [89,90]). Since the information about the persons’ ability across
modules is used, theoretically, a more valid routing is possible. In addition to the raw
scores, the routing decision can also be made based on specifically processed items. Since
item parameters are known, person parameters can be estimated a priori via the respective
item combinations. This type of routing is referred to in the literature as item response
theory (IRT)-based routing [91]. The decision for a routing strategy in MST is linked to
the efficiency of the proposed design and can also impact the precision of item parameter
estimation [6]. The available strategies can roughly be grouped into deterministic and
probabilistic ones. Svetina et al. [89] compared different routing strategies. The authors
concluded that the IRT-based routing performed best, but the NC-based routing was
not significantly worse when it came to the median of person parameter recovery rates.
An additional argument for NC-based routing is that it is much easier to implement.

In the mentioned probabilistic routing, the routing rule j < c, respectively j ≤ c, is
expanded with an additional probability based on the performance j. This means that
routing into an easier module is not solely based on the cutoff value c, but rather with a
previously defined probability p, depending on the individual score j of person p. With the
counter-probability 1− p and the same score j, the person is routed to a more difficult
module. This type of routing is used, for example, in the PIAAC [32,92,93]. In addition
to the deterministic definition of the cutoff values c, additional thresholds are defined for
each decision stage and score.

A motivation to use probabilistic routing instead of exclusively deterministic is the
possibility of being able to better control the exposure rate so that it is ensured across all
proficiency levels that a minimum number of sufficient responses per item is guaranteed,
even with difficult tasks (see, e.g., [32,93]).

To summarize: MSTs can be seen as a design with advantages from two perspec-
tives. There are fully adaptive item-by-item designs such as CATs with a very high test
economy [14,23,94], on the one hand, and LFTs, on the other [94]. MSTs allow for more
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efficient testing; test persons can review items within modules they have already worked
on and change their responses if necessary. The design can be examined by the test au-
thors concerning the item content regarding content balancing and security concerns,
but also possible differential item functioning. Even overexposure and underexposure
can be controlled more easily [95]. While CATs are tied to the computer, MSTs can also be
administered as paper-pencil tests [19,22,30].

2. Item Parameter Estimation

Item parameter estimation in adaptive designs is an important topic and relates to the
MST’s main component of this contribution. For the calibration of an item pool, with data
obtained by an MST, an item response theory model such as the Rasch model (1PL; [96])
is fitted. Item parameters are typically regarded as fixed, and persons are treated as
either fixed or random (see, e.g., [9,97–100], for a further discussion on this topic). Several
methods are available, which will be briefly discussed in the following.

These are the marginal maximum likelihood method (MML; [101–103]) and the condi-
tional maximum likelihood method (CML; [104,105]). Various considerations can lead to
choosing one of these estimation methods, such as the flexibility of that approach or more
fundamental beliefs about the method.

The MML estimation method can also be applied in MST designs without leading to
biased item parameter estimates (see, e.g., [106–108]). The CML-based parameter estima-
tion in MSTs, without severely biased item parameter estimates [108], is only feasible by
modifying the CML estimation method proposed by Zwitser and Maris [109]. Besides the
relatively newly proposed modification of the CML approach, the normal MML method
and models with non-normal trait [110] are available. It is frequently argued that the
CML estimation method enables the estimation of item parameters independent of the
distribution assumptions of the trait [107–109,111]. Comparisons between CML and MML
estimation in MSTs showed biased item parameter estimates in MML if the distribution as-
sumption deviates severely from the true distribution (see, e.g., [109]). In our contribution,
the estimation methods were systematically examined and compared. In this context, it
seems very interesting that scaling the data using a multigroup model, in which the groups
are represented by the respective paths in the MST design, seems to lead to severely biased
parameter estimates [106].

In the following, we only considered dichotomous item responses and utilized the
1PL model. In the 1PL model, the probability of solving item i with difficulty βi by person
p with ability θp can be expressed as:

P(Xpi = xpi | θp, βi) =
exp[xpi(θp − βi)]

1 + exp(θp − βi)
, (1)

with xpi = 1. Then, the likelihood L(xp | θp, β) with responses xp = (xp1, xp2, . . . , xpI) of
the test person p with ability θp and the item difficulty β = (β1, β2, . . . , β I) can be expressed
as follows:

L(xp | θp, β) =
exp(rpθp −∑I

i=1 xpiβi)

∏I
i=1(1 + exp(θp − βi))

(2)

with rp as the raw score of person p with rp = ∑I
i=1 xpi. Equation (2) can be seen as the

starting point for the following approaches in parameter estimation. The likelihood for the
response matrix X can be expressed as:

L(X | θ, β) =
exp(∑P

p=1 rpθp −∑P
p=1 ∑I

i=1 xpiβi)

∏P
p=1 ∏I

i=1(1 + exp(θp − βi))
(3)
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2.1. Marginal Maximum Likelihood Estimation

For the estimation in the parametric case (see Equation (4)), a distribution G with
probability density function g(θ;α) with a vector α containing the parameters of the latent
ability distribution is introduced for person parameter θ. It is assumed that the persons
are a random sample from this population, e.g., θ ∼ N(µ, σ2). The random variable θ is
integrated out of the marginal log-likelihood function. For parameter estimation in MST
designs, Glas [108] and Zwitser and Maris [109] stated that the distributional assumptions
could be incorrect, and the estimated item parameter estimates can be severely biased.
Therefore, the following simulation should shed some light on this.

Data collected based on the MST design have missing values due to the design.
Mislevy and Sheehan [112], referring to Rubin [113], showed that MML provides consistent
estimates in incomplete designs in general (see also [106]). For MST designs, it can be
shown that MML can also be applied to MST, following this justification [106,109]. Based
on the likelihood function (3), in the MML case, the likelihood for the observed data matrix
X is the product of the integrals of the respective likelihood of the response patterns xi.

LMML(X | β, µ, σ2) =
I

∏
r=0

[∫ exp(rθ −∑I
i=1 siβi)

∏I
i=1(1 + exp(θ − βi))

g(θ;α)dθ

]nr

(4)

with si = ∑P
p=1 xpi the item score of item i, nr as the number of test persons with the raw

score r, and α as a parameters for the distribution G.
For model identification purposes, if a normal distribution is assumed, the mean is

fixed to zero µ = 0, and σ2 is freely estimated. Therefore, the marginal likelihood is no
longer dependent on θ (see Equation (4)). The integral in Equation (4) can be solved by,
e.g., Gauss–Hermite quadrature by summing over a finite number of discrete quadrature
points θq with q = (1, · · · , Q) and the corresponding weights wq = wq (see, e.g., [101,102]).

LMML(X | β, G) =
I

∏
r=0

[
exp(−

I

∑
i=1

siβi)
Q

∑
q=1

(
exp(rθq)

∏I
i=1(1 + exp(θq − βi))

)
wq

]nr

(5)

Marginal Maximum Likelihood with Log-Linear Smoothing

For the specification of the unknown latent ability distribution G in Equation (4), both
parametric and nonparametric strategies are available. Another interesting approach for
the specification, which is flexible and parsimonious in terms of the number of parameters
to be estimated, is the application of log-linear smoothing (LLS; [110,114,115]). In IRT,
this method was used, for example, by Xu and von Davier [110]. They fitted an unsat-
urated log-linear model in the framework of a general diagnostic model (GDM; [116])
to determine the discrete (latent) ability distribution g(θ). The LLS model used here in
the case of the 1PL can be described as log wq ∼= δ0 + ∑M

m=1 δmwm
q [115,117]. Here, log wq

describes the logarithmic weighted quadrature points (θ1, · · · , θQ). The intercept δ0 is a
normalization constant, M the moments to be fitted, and δm the dependent coefficients to
be estimated. The central property of log-linear smoothing is the matching of the moments
of the empirical distribution.

An interesting connection between the MML parameters’ estimation outlined above
in Section 2.1 using a nonparametric approach as described by Bock and Aitkin [101] (also
referred to as a Bock–Aitkin or the empirical histogram (EH) solution) and the LLS is that
the former can be seen as a special case of the LLS method with M = Q− 1 moments.

The LLS is integrated into the EM algorithm [110] to estimate β since the number
of expected persons (expected frequencies) at each quadrature point gq is unobserved.
An LLS with M = 2 moments is equivalent to a discretized (standard) normal distribution
(exactly two parameters are necessary, µ and σ2) (see [117]). The specification of more than
two moments allows, e.g., the specification of skewed latent variables [118].
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Casabianca and Lewis [115] showed in detailed and promising simulation studies that
the LLS method leads to better parameter recovery if the specified distribution deviates
from the true empirical ones. By specifying up to four moments, bimodal distributions
could be captured. It is also worth mentioning that there may be less effort for users to use
this method since only the number of moments has to be specified.

2.2. Conditional Maximum Likelihood Estimation

Unlike the MML method, CML does not require assumptions for the distribution
of the traits. Here, the person parameter is eliminated from the likelihood due to condi-
tioning on the raw scores rp, which is referred to as minimal sufficient statistic for person
parameter θp [96,104,105,119] in Equation (6). Therefore, only item parameters βi, but no
person parameter θp, are estimated, which have to be determined afterwards. In the fol-
lowing, the likelihood for the response matrix X in the CML case is outlined following
Equation (3) again.

For the estimation of item parameter, the calculation of the elementary symmetric
function (ESF) γ(r, β) of order rp of β1, β2, . . . , β I is the crucial part of the likelihood
in CML. Different methods have been proposed, which differ mainly in accuracy and
speed [120–122].

There are ( I
rp
) different possibilities to obtain the score rp for a person with the ability θp.

The sum over these different possibilities results in γ(r, β) = ∑xi |∑ xi=r exp(−∑I
i=1 xiβi),

with given item difficulty βi, as well as the responses xi for a given score r.

LCML(X | r, β) =
L(X | θ, β)

L(r | β)
(6)

The likelihood of the response vector r can be written as:

L(r | β) =
exp(∑P

p=1 rpθp)∏P
p=1 ∑

rp
xpi exp(−∑I

i=1 xpiβi)

∏P
p=1 ∏I

i=1(1 + exp(θp − βi))
(7)

The likelihood in Equation (6) can then be written using Equations (3) and (7) in the
CML case as follows:

LCML(X | r, β) =
exp(−∑I

i=1 siβi)

∏I
r=0 γ(r, β)nr

(8)

The resulting estimates β̂ are consistent, asymptotically efficient, and asymptotically
normally distributed [99].

CML Approach of Zwitser and Maris (2015)

Glas [108] stated that ignoring the MST design in the CML item parameter estimation
process leads to severely biased estimates (see also [107,111]). Based on these results, it has
long been recommended not to use the CML method for MST designs. The MML method
offered an alternative, or the parameter of the items for each path or module could be
estimated separately using the CML method [123]. The latter has the major disadvantage
that item parameters estimated in this way can no longer be compared. Recently, this
CML estimation problem could be solved for deterministic routing while considering
the respective MST design in the CML estimation process [109]. To solve this problem,
the symmetric function has to be modified, such that only those raw scores are considered,
which can occur due to the specific MST design. This leads to consistent item parameter
estimates. There are currently two R [124] packages for this method: dexterMST [125] and
tmt [126]. The modified CML estimate is outlined in the following. In the deterministic
case, a person with score j is routed from one module m[b] to the next module based on a
cut-score c. Based on the design in Figure 1, the probability of reaching a score of x[1,2] in
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the modules m[1,2] with ability θ, and the number of solved items in the module m[1] being
less than or equal to the cut-score c with X[1]

+ ≤ c, can be described as follows:

Pm[1,2](x[1,2] | θ, X[1]
+ ≤ c) =

Pm[1,2](x[1,2], X[1]
+ ≤ c | θ)

Pm[1,2](X[1]
+ ≤ c | θ)

=
Pm[1,2](x[1,2] | θ)

Pm[1,2](X[1]
+ ≤ c | θ)

(9)

The ESF as described above can be written as γs(m[b]) = ∑x:x[b]+ =s ∏i exp(−x[b]i β
[b]
i )

and rearranged as γx+(m) = ∑i+j+k=x+ γi(m[1])γj(m[2])γk(m[3]). Here, the ESF is first
evaluated for each module separately and then for a specific path of the MST design.
Zwitser and Maris [109] proposed to partition the denominator of the likelihood into the
sum of items j = 0, · · · , c in the first module and x[1,2]

+ − j items in the second module.
Equation (9) can be factored as:

Pm[1,2](x[1,2] | θ, X[1]
+ ≤ c) = Pm[1,2](x[1,2] | x[1,2]

+ , X[1]
+ ≤ c)Pm[1,2](x[1,2]

+ | θ, X[1]
+ ≤ c) (10)

Inserting Equation (10) into the common CML approach results in:

Pm[1,2](x[1,2] | x[1,2]
+ ) =

∏
i

exp(−x[1]i β
[1]
i )∏

j
exp(−x[2]j β

[2]
j )

n[1,2]

∑
j=0

γj(m[1])γ
x[1,2]
+ −j

(m[2])

(11)

The probability of X[1]
+ being less than or equal to c conditional on x[1,2]

+ :

Pm[1,2](X[1]
+ ≤ c | x[1,2]

+ ) =

c

∑
j=0

γj(m[1])γ
x[1,2]
+ −j

(m[2])

n[1,2]

∑
j=0

γj(m[1])γ
x[1,2]
+ −j

(m[2])

(12)

Following Equations (11) and (12), we obtain:

Pm[1,2](x[1,2] | x[1,2]
+ , X[1]

+ ≤ c) =
Pm[1,2](x[1,2], X[1]

+ ≤ c | x[1,2]
+ )

Pm[1,2](X[1]
+ ≤ c | x[1,2]

+ )

=
Pm[1,2](x[1,2] | x[1,2]

+ )

Pm[1,2](X[1]
+ ≤ c | x[1,2]

+ )

=

∏
i

exp(−x[1]i β
[1]
i )∏

j
exp(−x[2]j β

[2]
j )

c

∑
j=0

γj(m[1])γ
x[1,2]
+ −j

(m[2])

(13)

and further:

Pm[1,2](x[1]+ , x[2]+ | θ) =
γ

x[1]+
(m[1])γ

x[2]+
(m[2]) exp

{
(x[1]+ + x[2]+ )θ

}
∑

0≤j+k≤n[1,2]

γj(m[1])γk(m
[2]) exp{(j + k)θ}

(14)
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Taking the same considerations from Equation (14) for the following:

Pm[1,2](x[1,2]
+ | θ, X[1]

+ ≤ c) =
Pm[1,2](x[1,2]

+ , X[1]
+ ≤ c | θ)

Pm[1,2](X[1]
+ ≤ c | θ)

=

∑
j≤c

γj(m[1])γ
x[1,2]
+ −j

(m[2]) exp
{
(x[1,2]

+ )θ
}

∑
0≤j+k≤n[1,2]

j≤c

γj(m[1])γk(m
[2]) exp{(j + k)θ}

(15)

then it follows that:

Pm[1,2](x[1,2] | θ) = Pm[1](x[1] | x[1]+ )Pm[2](x[2] | x[2]+ )Pm[1,2](x[1]+ , x[2]+ | x[1,2]
+ )Pm[1,2](x[1,2]

+ | θ) (16)

Using Equations (13), (15) and (16), Equation (10) follows. Therefore, it can be con-
cluded that after the integration of additional design information in the MST design,
the CML item parameter estimation is justified.

3. Simulation Study

A Monte Carlo simulation was carried out to provide information on the influence
of different trait distributions on the estimation of item parameters in MST designs.
In addition to the different trait distributions (normal, bimodal, skewed, and χ2 with
d f = 1), the test length (I = 15, 35, and 60 items), different MST designs, and sample sizes
(N = 100, 300, 500, and 1000) were considered. All conditions were simulated as MSTs, as
well as fixed-length tests. The simulation and all conditions are explained in detail below.
MST designs can be expanded to more modules, items within modules, and more stages.
It is important to note that, branching on the item level as is the case with CATs, CML
estimation is not possible. As stated by Zwitser and Maris [109] for CATs, the information
about the item parameters is bound in the design and thus not available for CML parameter
estimation. Therefore, CAT designs were not considered here.

3.1. Data Generation

For all MST conditions, a two-stage design was used (see Figure 1). All MST conditions
started with the routing module m[2] and were subsequently routed in one additional
module. The module with easier items was the module m[1] and the module with more
difficult items m[3]. The entire routing was based on the NC score. We chose deterministic
routing for all multistage conditions because no additional random aspects influenced
the routing process. The routing module in the test length condition I = 15 and I = 35
contained five items. The routing model in the condition with I = 60 contained ten items.
The cutoff values for the routing into module m[1] within the first two conditions were
j ≤ 2 and for the third condition j ≤ 5. Item parameters of all models were drawn from
a uniform distribution U(−2, 2), whereby the item parameters for the routing module
m[2] were from U(−1, 1), m1 from U(−2, 1), and m[3] from U(1, 2). In the simulation, four
different types of (standardized) distribution of g(β) were considered (see Figure 2; skew as
skewness and kurt as the kurtosis parameter):

(a) (standard) normal (skew = 0, kurt = 0): θ ∼ N(0, 1);
(b) bimodal (skew = 0.3, kurt = −1.0): θ ∼ 3

5 N(−0.705, 0.254) + 2
5 N(1.058, 0.254);

(c) skewed (skew = −1.5, kurt = 3.2): θ ∼ 1
5 N(−1.259, 1.791) + 4

5 N(0.315, 0.307);
(d) χ2

1 (skew = 2.8, kurt = 12): θ ∼ χ2
1 with one degree of freedom.

The skewed and bimodal distribution parameters were chosen following Casabianca
and Lewis [115]. This study also dealt with parameter recovery for MML with log-linear
smoothing, but solely in LFT designs. The authors reported that they chose theses pa-
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rameter based on their own work [127], as well as other contributions that also dealt with
simulation studies on the same or related topics (see, e.g., [128–133]).

In disciplines such as educational measurement, clinical psychology, or medicine,
there are many situations where the resulting trait distribution might deviate from an
assumed normal distribution (see, e.g., [115,129,132,134,135]). A bimodal trait distribution
might occur, e.g., in clinical and personality psychology, if one aspect of personality or
psychopathology is low for most people and a few people high. One such reported dimen-
sion is, e.g., psychoticism, which tends to be positively skewed towards low scores [136].
Furthermore, in situations where groups of persons are examined, in which a subgroup
has psychopathological symptoms, distributions deviating from a normal distribution are
expected and typically positively skewed [137]. Areas of (large-scale) educational testing,
as well as raw scores of state-wide tests tend to be non-normal distributed [138,139].

A bimodal distribution can be expected when two different groups of examinees are
investigated, e.g., high versus low performer or schools with privileged versus underprivi-
leged students [140].

For the estimation, the following three different estimation approaches were used:

CML/CMLMST: CML estimation with consideration of the respective MST design in the
MST condition (CMLMST);
MMLN: MML estimation, assuming that traits are normally distributed;
MMLS: MML estimation with log-linear smoothing up to four moments.

skewed (skew = −1.5, kurt  = 3.2) χ1
2 (skew = 2.8, kurt  = 12)

normal (skew = 0, kurt  = 0) bimodal (skew = 0.3, kurt  = −1.0)
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Figure 2. Illustration of the latent trait distributions for all conditions. Note: normal = (standard)
normal ability distribution; bimodal: θ ∼ 3

5 N(−0.705, 0.254) + 2
5 N(1.058, 0.254); skewed: θ ∼

1
5 N(−1.259, 1.791) + 4

5 N(0.315, 0.307); χ2
1: θ ∼ χ2

1 with one degree of freedom. All distributions are
transformed such that E(θ) = 0 and Var(θ) = 1.

For each condition, 1000 datasets were generated, and the CML and MML estimation
methods were applied. Thereby, 1000 replications R were conducted in each cell. For the
parameter estimation and the analysis of the simulation study, the open-source software
R [124] was used. For reasons of the comparability of the estimated item parameters
across the different estimation methods, the estimated item parameters were centered
after estimation.
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3.2. Implementation in R

All introduced estimation methods were implemented in R packages. For the conventional
CML estimation, there is a wide variety of packages available. In addition to the well-known
eRm with eRm::RM() [141], these are, for example, the R packages with the respective func-
tions psychotools with psychotools::raschmodel(), immer with immer::immer_cml()
and tmt with the function tmt::tmt_rm(), to name a few representatives [126,141–143]. All
packages allow a user-friendly application, but they differ in terms of speed and the avail-
ability of further analysis options. With regard to CML parameter estimation in MST designs,
two packages are currently available: dexterMST with dexterMST::fit_enorm_mst() and
tmt with the function tmt::tmt_rm(). The two packages differ concerning the specifica-
tion of the MST design to be taken into account. In dexterMST, first, an MST project must
be created with the function dexterMST::create_mst_project(), then the the scoring rules
used with dexterMST::add_scoring_rules_mst() are handed over. Essentially, this is a
list of all items, admissible responses, and assigned scores to each response when grad-
ing. For the estimation, the routing rules were set with dexterMST::mst_rules() and with
dexterMST::create_mst_test(), then the actual test was carried out, created from the spec-
ified rules and the defined modules. Once these steps were executed, the actual data were
added with dexterMST::add_booklet_mst() to the created database. The actual parameter
estimation was realized with dexterMST::fit_enorm_mst(). Furthermore, in the tmt pack-
age, the actual used MST design must be defined. For this purpose, a model language was
developed that could be used to define the modules and routing rules. In the first section,
the modules were defined, in the example below indicated as m1, m2 and m3. Subsequently,
each path of the MST design with the respective rules was specified (in the example below
with p1 and p2). In deterministic routing, the lower and upper limit of the raw scores must
be specified for each module in each path. The parameter estimation was realized with
tmt::tmt_rm() with the specified design as an additional argument.

model <- “
m1 =~c(i01,i02,i03,i04,i05)
m2 =~c(i06,i07,i08,i09,i10)
m3 =~paste0(’i’,11:15)

p1 := m2(0,2) + m1
p2 := m2(3,5) + m3

”

Furthermore, for MML parameter estimation, numerous packages are available. Some
selected examples are ltm with ltm::rasch(), sirt with sirt::rasch.mml2() and TAM
with TAM::tam.mml() or mirt with mirt::mirt(), which also differ in functionality and
speed [144–147]. In contrast to CML estimation, no further steps were necessary to obtained
the unbiased estimates. The log-linear smoothing used here is available in the package
sirt [145]. As already pointed out positively by Casabianca and Lewis [115], only the
desired number of moments needs to be specified additionally. This can also be emphasized
as an advantage compared to the described CML estimation in MST designs, especially
in cases with complex MST designs. To utilize the log-linear smoothing, the package
sirt with the function sirt::rasch.mirtlc() is available. The model type (in our case,
modeltype = “MLC1”) and the trait distribution distribution.trait = “codesmooth4”
were passed as an additional argument (in this example, up to four moments). In the
simulation described here, we utilized the R package sirt [145] for MML estimation and
the R package tmt [126] for CML estimation.

3.3. Outcome Measures

To compare the different estimation methods under the different simulation conditions,
we computed three criteria. The focus was the estimated item parameters β̂ in each
simulation condition. The computed quantities were the bias of the estimates, the accuracy
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measured with the root mean squared error (RMSE), and the average relative RMSE
(RRMSE) as a summary of the bias and variability. The bias represents the absolute
deviation of item parameter estimates from the true item parameter and is reported as the
average absolute bias (ABIAS) overall replication in each condition.

ABIAS(β̂) =
1
I

I

∑
i=1

∣∣∣∣∣ 1
R

R

∑
r=1

β̂ir − βi

∣∣∣∣∣ = 1
I

I

∑
i=1

∣∣Bias(β̂i)
∣∣ (17)

For the evaluation of the overall accuracy of item parameter estimation, the RMSE was
computed. The average RMSE was calculated as the square root of the squared differences
between the estimated and true item parameters. The ABIAS and the ARMSE are reported,
each as the average for each condition and in the MST case for each module separately.

ARMSE(β̂) =
1
I

I

∑
i=1

√√√√ 1
R

R

∑
r=1

(β̂ir − βi)2 =
1
I

I

∑
i=1

RMSE(β̂i) (18)

The RRMSE is defined as follows:

RRMSE(β̂) =
∑I

i=1 RMSE(β̂i)

∑I
i=1 SDre f erence(β̂i)

, (19)

where SDre f erence is the average standard deviation of the item parameters of the CML
method in the fixed-length condition, respectively CMLMST in the MST condition, and
serves hereby as the reference.

4. Results

The results of the simulation study are reported separately for the conditions of the
LFT and MST. In both conditions, the RMSE is reported in the figures and the ABIAS
and RRMSE in the tables. In the simulation, there were no items that all persons did
not or wholly solved. Concerning the persons who solved all items or none of the items,
the average was 2.5% in the fixed-length condition and 2.6% in the multistage condition.
We did not exclude any persons in this regard, but used the default settings of the respective
packages. For the item parameter estimation, this was neither a problem for the CML nor
the MML estimation method (see, e.g., [148]).

4.1. Results for the Linear Fixed-Length Test Condition

The results for the LFT showed across the estimation conditions very minor differences.
Therefore and for a better overview, only the results for the long test condition (I = 60)
are presented (results for all test lengths and sample sizes can be found in Appendix A
Table A1). In Figure 3, the RMSE of all estimation conditions decreased across all trait
distribution conditions. There was no difference between the estimation methods either in
the normal or in the non-normal conditions (bimodal, skewed, χ2

1).
The ABIAS and RRMSE reported in Table 1 show very similar results. In the normal

distribution condition, there was no difference between the different estimation methods
concerning the BIAS of the item parameters. With large sample sizes (N = 1000), the MMLS
method seemed to lead to a slightly smaller RRMSE compared to CML and MMLN. In the
conditions of non-normal distribution, the results were more heterogeneous. In the bimodal
condition, the MMLN method with a small sample size (N = 100) led to smaller bias,
but the difference to CML and MMLS decreased with increasing sample size. The ABIAS
in the conditions skewed and χ2

1 was lower in the CML method, but the difference between
CML and MMLS decreased with increasing sample size. It is noteworthy that in the
condition skewed, the difference between CML and MMLS was lower than in the condition
χ2

1: here, the CML method led to a smaller bias of the item parameters even with larger
sample sizes. Regarding the RRMSE, the MMLS led in both the bimodal, as well as the
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skewed condition for medium and large sample sizes to the smallest RRMSE. In the χ2
1

condition, both the CML and MMLS method led to lower RRMSE compared to MMLN.
However, it can be summarized that even for the MMLN approach, the results showed
compared to the CML and also MMLS condition that the misspecification of the trait
distribution had no (large) influence (see also [149]) for a more detailed discussion on
different trait distributions in the LFT.
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Figure 3. Average root mean squared error (ARMSE) for the fixed-length test condition with 60 items
per trait distribution and sample size N. Note: ARMSE = average root mean squared error; normal
= (standard) normal (skew = 0, kurt = 0): θ ∼ N(0, 1); bimodal (skew = 0.3, kurt = −1.0): θ ∼
3
5 N(−0.705, 0.254) + 2

5 N(1.058, 0.254); skewed (skew = −1.5, kurt = 3.2): θ ∼ 1
5 N(−1.259, 1.791) +

4
5 N(0.315, 0.307); χ2

1 (skew = 2.8, kurt = 12): θ ∼ χ2
1 with one degree of freedom. All distributions are

transformed such that E(θ) = 0 and Var(θ) = 1. CML = conditional maximum likelihood; MMLN
= marginal maximum likelihood estimation (MML) with normal distribution; MMLS = MML with
log-linear smoothing up to four moments.

4.2. Results for the Multistage Test Condition

The results for the MST condition were more differentiated and therefore discussed
separately. For a better overview, the results are not reported separately by module; these
can be found in the Appendix A in Figure A1 for the RMSE and two separate tables for the
ABIAS in Table A2 and the RRMSE in Table A3. The RMSE in Figure 4 indicates that the
conventional CML estimate (i.e., the CML method without considering the respective MST
design) led to the largest RMSE across all conditions.
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Table 1. Average absolute bias (ABIAS) and relative root mean squared error (RRMSE) for the fixed-length test condition with 60 items as a function of sample size N for each
trait distribution.

Normal Bimodal Skewed χ2
1

Criterion N CML MMLN MMLS CML MMLN MMLS CML MMLN MMLS CML MMLN MMLS

A
BI

A
S

100 0.018 0.018 0.018 0.017 0.015 0.018 0.020 0.025 0.021 0.021 0.027 0.022
300 0.008 0.008 0.008 0.008 0.006 0.008 0.006 0.012 0.007 0.007 0.015 0.009
500 0.004 0.004 0.004 0.004 0.003 0.004 0.005 0.011 0.005 0.005 0.013 0.007
1000 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.009 0.003 0.003 0.012 0.005

R
R

M
SE

100 100.2 100.2 100.3 100.2 100.4 100.3 100.3 100.1 100.2 100.3 99.9 100.1
300 100.1 100.1 100.1 100.1 100.3 100.1 100.1 100.0 99.8 100.1 100.0 100.0
500 100.1 100.1 100.0 100.0 100.2 99.9 100.1 100.1 99.8 100.1 100.2 100.1
1000 100.0 100.0 99.9 100.1 100.2 99.9 100.0 100.4 99.7 100.0 100.8 100.1

Note: ABIAS = average absolute bias; RRMSE = relative root mean squared error with CML as reference; normal = (standard) normal (skew = 0, kurt = 0): θ ∼ N(0, 1); bimodal (skew = 0.3, kurt = −1.0):
θ ∼ 3

5 N(−0.705, 0.254) + 2
5 N(1.058, 0.254); skewed (skew = −1.5, kurt = 3.2): θ ∼ 1

5 N(−1.259, 1.791) + 4
5 N(0.315, 0.307); χ2

1 (skew = 2.8, kurt = 12): θ ∼ χ2
1 with one degree of freedom. All distributions

are transformed such that E(θ) = 0 and Var(θ) = 1. CML = conditional maximum likelihood; MMLN = marginal maximum likelihood estimation (MML) with normal distribution; MMLS = MML with
log-linear smoothing up to four moments.
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Figure 4. Average root mean squared error (ARMSE) for the multistage condition as a function of sample size N and the
number of items for each trait distribution. Note: ARMSE = average root mean squared error; normal = (standard) normal
(skew = 0, kurt = 0): θ ∼ N(0, 1); bimodal (skew = 0.3, kurt = −1.0): θ ∼ 3

5 N(−0.705, 0.254) + 2
5 N(1.058, 0.254); skewed

(skew = −1.5, kurt = 3.2): θ ∼ 1
5 N(−1.259, 1.791) + 4

5 N(0.315, 0.307); χ2
1 (skew = 2.8, kurt = 12): θ ∼ χ2

1 with one degree of
freedom. All distributions are transformed such that E(θ) = 0 and Var(θ) = 1. CML = conditional maximum likelihood
(CML); CMLMST = CML estimation with consideration of the respective MST design; MMLN = marginal maximum
likelihood estimation (MML) with normal distribution; MMLS = MML with log-linear smoothing up to four moments.

4.2.1. Normal Distribution

In Figure 4, the RMSE in the condition with a normal trait distribution was the smallest
for the MMLN method. This result was expected because this was the condition with
the correct distribution specification. The difference between the estimation methods was
small. Concerning the test lengths and sample size, the RMSE of the MMLN method
was smaller for short and medium test lengths (I = 15, 35) and small sample sizes, but
vanished for longer test lengths or sample sizes above N = 300. Overall, the difference
between the estimation methods in the condition normal distribution except for the CML
method seemed to be quite low. With regard to the relative RMSE (RRMSE) in Table 2 at
which all estimation methods were referenced to the CMLMST method, these results can
be confirmed. Relating to ABIAS, the CMLMST method led to a smaller average bias of the
item parameters; however, the difference between CMLMST and MMLN was very small,
especially for sample sizes above N = 100.
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Table 2. Average absolute bias (ABIAS) and relative root mean squared error (RRMSE) for the multistage condition as a function of sample size N and the number of items I for each
trait distribution.

Normal Bimodal Skewed χ2
1

Criterion N I CMLMST CML MMLN MMLS CMLMST CML MMLN MMLS CMLMST CML MMLN MMLS CMLMST CML MMLN MMLS

A
BI

A
S

100
15 0.023 0.410 0.027 0.033 0.022 0.380 0.030 0.022 0.023 0.447 0.079 0.036 0.029 0.464 0.090 0.029
35 0.027 0.582 0.026 0.044 0.022 0.544 0.067 0.027 0.034 0.640 0.131 0.060 0.035 0.658 0.140 0.045
60 0.025 0.314 0.026 0.031 0.027 0.267 0.070 0.025 0.029 0.362 0.126 0.047 0.025 0.368 0.036 0.016

300
15 0.010 0.389 0.010 0.014 0.005 0.356 0.051 0.006 0.006 0.421 0.064 0.013 0.012 0.445 0.081 0.011
35 0.007 0.557 0.009 0.017 0.007 0.520 0.087 0.010 0.010 0.608 0.106 0.033 0.009 0.627 0.114 0.021
60 0.010 0.293 0.009 0.013 0.007 0.245 0.088 0.007 0.008 0.338 0.105 0.025 0.009 0.347 0.026 0.013

500
15 0.004 0.381 0.004 0.006 0.004 0.355 0.052 0.004 0.005 0.420 0.063 0.014 0.006 0.437 0.077 0.007
35 0.007 0.552 0.007 0.010 0.004 0.516 0.091 0.007 0.007 0.602 0.100 0.026 0.005 0.623 0.112 0.019
60 0.006 0.288 0.006 0.008 0.006 0.242 0.090 0.005 0.004 0.334 0.102 0.022 0.005 0.344 0.025 0.016

1000
15 0.002 0.379 0.003 0.003 0.002 0.351 0.054 0.002 0.003 0.416 0.063 0.011 0.005 0.435 0.076 0.008
35 0.005 0.551 0.006 0.007 0.004 0.514 0.092 0.007 0.003 0.596 0.097 0.020 0.004 0.620 0.110 0.016
60 0.005 0.286 0.004 0.005 0.003 0.238 0.094 0.002 0.003 0.332 0.100 0.019 0.004 0.341 0.024 0.017

R
R

M
SE

100
15 100.3 160.4 95.6 97.4 100.2 154.3 96.6 98.3 100.3 166.7 96.4 96.4 100.4 168.3 95.7 95.6
35 100.3 189.5 94.2 95.9 100.2 183.3 96.7 97.3 100.4 196.1 98.5 94.9 100.5 197.8 98.5 93.3
60 100.3 136.3 98.1 101.6 100.4 128.6 101.3 99.9 100.4 145.3 103.9 98.8 100.3 142.0 95.9 98.1

300
15 100.1 236.9 95.0 96.5 100.0 220.8 100.9 98.1 100.0 245.0 99.8 95.4 100.2 252.7 102.9 95.1
35 100.0 290.7 94.1 95.2 100.0 279.2 105.0 97.0 100.1 307.7 106.2 95.4 100.1 308.5 106.5 92.6
60 100.1 186.8 98.1 98.9 100.1 167.8 110.3 99.5 100.1 203.8 112.0 98.6 100.1 198.1 96.7 98.1

500
15 100.0 288.2 96.0 97.0 100.0 274.5 104.0 98.0 100.0 304.7 104.0 96.0 100.1 310.0 107.2 95.0
35 100.1 366.8 94.4 95.1 100.0 353.6 113.0 97.1 100.1 384.3 111.1 93.9 100.0 395.1 115.5 93.4
60 100.1 226.2 98.2 98.8 100.1 200.8 118.9 99.5 100.0 249.6 120.4 99.1 100.0 241.9 97.5 98.4

1000
15 100.0 393.3 95.2 96.4 100.0 372.2 112.4 98.0 100.0 415.7 113.3 95.9 100.1 430.8 120.5 95.4
35 100.1 515.1 94.4 95.3 100.1 491.5 129.4 97.1 100.0 532.4 126.5 95.2 100.0 543.6 133.2 93.3
60 100.1 300.0 97.9 98.4 100.0 260.7 137.8 99.6 100.0 336.0 138.0 99.6 100.0 326.7 99.2 99.2

Note: ABIAS = average absolute bias; RRMSE = relative root mean squared error with CMLMST as reference; normal = (standard) normal (skew = 0, kurt = 0): θ ∼ N(0, 1); bimodal (skew = 0.3, kurt = −1.0):
θ ∼ 3

5 N(−0.705, 0.254) + 2
5 N(1.058, 0.254); skewed (skew = −1.5, kurt = 3.2): θ ∼ 1

5 N(−1.259, 1.791) + 4
5 N(0.315, 0.307); χ2

1 (skew = 2.8, kurt = 12): θ ∼ χ2
1 with one degree of freedom. All distributions

are transformed such that E(θ) = 0 and Var(θ) = 1. CML = conditional maximum likelihood (CML); CMLMST = CML estimation with consideration of the respective MST design; MMLN = marginal
maximum likelihood estimation (MML) with normal distribution; MMLS = MML with log-linear smoothing up to four moments.
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4.2.2. Non-Normal Distributions

In the conditions with a non-normal trait distribution, the MMLN method led nearly
in all conditions to a higher RRMSE compared to CMLMST and MMLS. Exceptions were
the bimodal condition with a small sample size (N = 100) together with a short to medium
test length (I = 15, 35) and the χ2

1 condition with a long test length (I = 60). It should be
emphasized that in all other non-normal distribution conditions, the MMLS method led
to smaller RRMSE regardless of the sample size and test length compared to MMLN and
CMLMST. Concerning the bias of the item parameter in Table 2, the CMLMST method
showed the smallest ABIAS independently of sample size and test length. In the bimodal
distribution condition, the difference between CMLMST and MMLS was comparatively
small, but it should be noted that it was also smaller for the MMLS condition compared
to CMLMST. Concerning the two other non-normal distribution conditions (skewed, χ2

1),
the bias of the item parameter in the CMLMST was smaller regardless of sample size and
test length.

5. Summary and Discussion

For the estimation of item parameters, alternative estimation methods are available.
While users of the CML method often emphasize that this method comes close

to the idea of person-free assessment [148] required for the postulation of specific
objectivity [150,151] and that no distribution assumption for the person parameters are
required, supporters of the MML method might highlight the flexibility of the approach.

When it comes to MST designs, there was only MML estimation available. If CML
parameter estimation were applied, the estimated item parameters would be severely
biased. Based on the contribution by Zwitser and Maris [109], two implementations in R
packages dexterMST [125] and tmt [126] are available for item parameter estimation using
the CML method in MST designs.

The simulation study was carried out to investigate the influence of trait distributions
on the estimation of item parameters. The results showed a differentiated picture. As the
sample size increased and the number of items increased, the CMLMST method showed
a comparatively small RMSE. As expected, the MMLN method led to a comparatively
large RMSE in all non-normal distribution conditions. It is noteworthy that the MMLS
estimation method provided the smallest RMSE across conditions. The results were very
similar between MMLS and CMLMST, especially with increasing sample sizes and an
increasing number of items, even though the MMLS method objectively led to a smaller
RMSE. Based on the results, it seems favorable for MST designs to either use the CMLMST
or MMLS estimation. Concerning the bias of the item parameter, the CMLMST method
led to the smallest ABIAS independently of sample size and test length in nearly all MST
conditions. However, in the decision for the CMLMST or MMLS method, it should be
considered that the actual distribution used in the MMLS method was assumed to resemble
the true population distribution, which may differ. This might be an advantage of the
CMLMST method since no distribution assumption was made here.

There are also limitations associated with the present study that might limit the
generalizability of the findings. In our research question, we were interested in the influence
of the type of trait distribution on item parameter estimation. The number of items and the
MST design were varied as additional factors. It would be interesting to systematically
study the impact of using more complex MST designs in further studies and perhaps also
consider Bayesian estimation methods (see, e.g., [152]). It was noticeable in the results that
for the 60-item condition with a χ2

1 trait distribution, the difference in the RMSE among
CML, MMLN, and MMLS was smaller than in the two other item conditions (15 and 35).
Next to the different number of items, the MST design in the condition with 60 items
differed in the size of the routing module with ten instead of five items. On the other hand,
the difference between CML and MMLN seemed to increase with an increasing number
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of items, but the same size of the routing module. Therefore, it would be interesting to
investigate more complex MST designs for item parameter estimation in future research.
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1PL one-parameter logistic model
ABIAS average absolute bias
ARMSE average root mean squared error
CAT computerized adaptive tests
CML conditional maximum likelihood
CMLMST CML estimation with consideration of the respective MST design
cNC cumulative number-correct score
ESF elementary symmetric function
GDM general diagnostic model
ILSAs International Large-Scale Assessments
IRT item response theory
LFT linear fixed-length test
LLS log-linear smoothing
MML maximum likelihood method
MMLN MML estimation, assuming that traits are normally distributed
MMLS MML estimation with log-linear smoothing up to four moments
MST multistage test
NAEP National Assessment of Educational Progress
NC number-correct score
PIAAC Programme for the International Assessment of Adult Competencies
PISA Programme for International Student Assessment
RMSE root mean squared error
RRMSE relative root mean squared error
TIMSS Trends in the International Mathematics and Science Study

Appendix A

In Table A1, the results for all test lengths and sample sizes for the linear fixed-length
test condition are reported. The results for the multistage condition separately by module
and in total can be found in Figure A1 for the RMSE, in Table A2 for the ABIAS, and in
Table A3 for the RRMSE.
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Table A1. Average absolute bias (ABIAS) and relative root mean squared error (RRMSE) for the fixed-length test condition as a function of sample size N and the number of items I for
each trait distribution.

Normal Bimodal Skewed χ2
1

Criterion N I CML MMLN MMLS CML MMLN MMLS CML MMLN MMLS CML MMLN MMLS

A
BI

A
S

100
15 0.017 0.016 0.017 0.021 0.019 0.021 0.020 0.028 0.020 0.020 0.032 0.021
35 0.017 0.017 0.018 0.018 0.014 0.018 0.019 0.025 0.020 0.022 0.031 0.023
60 0.018 0.018 0.018 0.017 0.015 0.018 0.020 0.025 0.021 0.021 0.027 0.022

300
15 0.005 0.005 0.005 0.005 0.006 0.005 0.007 0.019 0.007 0.006 0.024 0.006
35 0.008 0.008 0.008 0.008 0.006 0.008 0.007 0.015 0.007 0.008 0.019 0.010
60 0.008 0.008 0.008 0.008 0.006 0.008 0.006 0.012 0.007 0.007 0.015 0.009

500
15 0.003 0.003 0.003 0.004 0.007 0.004 0.003 0.019 0.003 0.004 0.024 0.005
35 0.005 0.005 0.004 0.005 0.004 0.005 0.005 0.013 0.005 0.004 0.016 0.006
60 0.004 0.004 0.004 0.004 0.003 0.004 0.005 0.011 0.005 0.005 0.013 0.007

1000
15 0.002 0.002 0.002 0.003 0.008 0.002 0.002 0.018 0.003 0.003 0.024 0.003
35 0.002 0.002 0.002 0.003 0.005 0.003 0.003 0.012 0.003 0.003 0.016 0.005
60 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.009 0.003 0.003 0.012 0.005

R
R

M
SE

100
15 100.2 100.1 100.2 100.4 100.5 100.5 100.4 99.8 100.1 100.4 99.6 100.1
35 100.2 100.2 100.2 100.3 100.4 100.3 100.3 99.9 100.0 100.4 99.8 100.1
60 100.2 100.2 100.3 100.2 100.4 100.3 100.3 100.1 100.2 100.3 99.9 100.1

300
15 100.0 99.9 99.9 100.1 100.3 100.0 100.1 100.5 99.7 100.1 100.8 99.8
35 100.1 100.1 100.0 100.1 100.3 100.0 100.1 100.1 99.7 100.1 100.3 100.0
60 100.1 100.1 100.1 100.1 100.3 100.1 100.1 100.0 99.8 100.1 100.0 100.0

500
15 100.0 100.0 99.9 100.0 100.5 99.9 100.0 101.2 99.6 100.1 102.0 99.9
35 100.1 100.0 99.9 100.1 100.3 99.9 100.1 100.4 99.6 100.0 100.5 99.9
60 100.1 100.1 100.0 100.0 100.2 99.9 100.1 100.1 99.8 100.1 100.2 100.1

1000
15 100.0 100.0 99.8 100.0 100.8 99.8 100.0 102.7 99.6 100.0 104.8 100.0
35 100.0 100.0 99.8 100.0 100.5 99.8 100.0 100.9 99.6 100.1 101.9 100.0
60 100.0 100.0 99.9 100.1 100.2 99.9 100.0 100.4 99.7 100.0 100.8 100.1

Note: ABIAS = average absolute bias; RRMSE = relative root mean squared error with CML as reference; normal = (standard) normal (skew = 0, kurt = 0): θ ∼ N(0, 1); bimodal (skew = 0.3, kurt = −1.0):
θ ∼ 3

5 N(−0.705, 0.254) + 2
5 N(1.058, 0.254); skewed (skew = −1.5, kurt = 3.2): θ ∼ 1

5 N(−1.259, 1.791) + 4
5 N(0.315, 0.307); χ2

1 (skew = 2.8, kurt = 12): θ ∼ χ2
1 with one degree of freedom. All distributions

are transformed such that E(θ) = 0 and Var(θ) = 1. CML = conditional maximum likelihood; MMLN = marginal maximum likelihood estimation (MML) with normal distribution; MMLS = MML with
log-linear smoothing up to four moments.
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Figure A1. Average root mean squared error (ARMSE) for the multistage condition as a function of sample size N and
the number of items for each module separately and in total for each trait distribution. Note: ARMSE = average root
mean squared error; normal = (standard) normal (skew = 0, kurt = 0): θ ∼ N(0, 1); bimodal (skew = 0.3, kurt = −1.0):
θ ∼ 3

5 N(−0.705, 0.254) + 2
5 N(1.058, 0.254); skewed (skew = −1.5, kurt = 3.2): θ ∼ 1

5 N(−1.259, 1.791) + 4
5 N(0.315, 0.307);

χ2
1 (skew = 2.8, kurt = 12): θ ∼ χ2

1 with one degree of freedom. All distributions are transformed such that E(θ) = 0
and Var(θ) = 1. CML = conditional maximum likelihood (CML); CMLMST = CML estimation with consideration of the
respective MST design; MMLN = marginal maximum likelihood estimation (MML) with normal distribution; MMLS = MML
with log-linear smoothing up to four moments.
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Table A2. Average absolute bias (ABIAS) for the multistage condition as a function of sample size N and the number of items I for each module separately and in total for each
trait distribution.

Normal Bimodal Skewed χ2
1

N I Modules CMLMST CML MMLN MMLS CMLMST CML MMLN MMLS CMLMST CML MMLN MMLS CMLMST CML MMLN MMLS

100

15

m1 0.031 0.574 0.037 0.044 0.027 0.525 0.031 0.025 0.028 0.641 0.070 0.048 0.034 0.625 0.135 0.042
m2 0.010 0.081 0.010 0.011 0.010 0.081 0.015 0.009 0.016 0.095 0.051 0.019 0.013 0.091 0.072 0.008
m3 0.028 0.574 0.035 0.044 0.030 0.536 0.045 0.031 0.026 0.606 0.116 0.041 0.040 0.674 0.064 0.038

total 0.023 0.410 0.027 0.033 0.022 0.380 0.030 0.022 0.023 0.447 0.079 0.036 0.029 0.464 0.090 0.029

35

m1 0.030 0.660 0.028 0.049 0.025 0.613 0.070 0.031 0.036 0.733 0.138 0.068 0.037 0.733 0.162 0.051
m2 0.013 0.118 0.012 0.015 0.011 0.118 0.024 0.010 0.016 0.130 0.050 0.019 0.015 0.129 0.064 0.021
m3 0.030 0.659 0.028 0.048 0.022 0.617 0.078 0.029 0.037 0.716 0.150 0.065 0.038 0.758 0.143 0.047

total 0.027 0.582 0.026 0.044 0.022 0.544 0.067 0.027 0.034 0.640 0.131 0.060 0.035 0.658 0.140 0.045

60

m1 0.027 0.351 0.028 0.034 0.029 0.296 0.074 0.026 0.034 0.419 0.138 0.055 0.027 0.389 0.042 0.018
m2 0.011 0.070 0.012 0.012 0.015 0.066 0.024 0.014 0.009 0.054 0.035 0.011 0.011 0.132 0.047 0.015
m3 0.028 0.374 0.030 0.036 0.030 0.319 0.083 0.028 0.033 0.428 0.150 0.053 0.029 0.442 0.026 0.015

total 0.025 0.314 0.026 0.031 0.027 0.267 0.070 0.025 0.029 0.362 0.126 0.047 0.025 0.368 0.036 0.016

300

15

m1 0.012 0.545 0.011 0.017 0.007 0.497 0.051 0.008 0.008 0.609 0.049 0.018 0.014 0.603 0.119 0.017
m2 0.005 0.075 0.005 0.006 0.003 0.070 0.024 0.004 0.003 0.080 0.048 0.005 0.005 0.084 0.070 0.008
m3 0.014 0.546 0.013 0.019 0.005 0.501 0.076 0.004 0.007 0.576 0.095 0.015 0.016 0.648 0.055 0.009

total 0.010 0.389 0.010 0.014 0.005 0.356 0.051 0.006 0.006 0.421 0.064 0.013 0.012 0.445 0.081 0.011

35

m1 0.008 0.632 0.010 0.019 0.006 0.585 0.094 0.010 0.011 0.698 0.112 0.038 0.008 0.698 0.134 0.025
m2 0.004 0.108 0.004 0.005 0.004 0.111 0.024 0.005 0.005 0.118 0.035 0.012 0.008 0.121 0.054 0.013
m3 0.007 0.631 0.009 0.018 0.008 0.590 0.101 0.012 0.011 0.680 0.123 0.035 0.009 0.724 0.115 0.021

total 0.007 0.557 0.009 0.017 0.007 0.520 0.087 0.010 0.010 0.608 0.106 0.033 0.009 0.627 0.114 0.021

60

m1 0.011 0.329 0.011 0.015 0.009 0.273 0.094 0.008 0.008 0.391 0.113 0.029 0.010 0.367 0.023 0.008
m2 0.004 0.061 0.003 0.004 0.003 0.057 0.029 0.004 0.005 0.052 0.033 0.007 0.005 0.124 0.050 0.021
m3 0.011 0.350 0.011 0.015 0.008 0.293 0.105 0.007 0.008 0.401 0.126 0.028 0.009 0.416 0.020 0.015

total 0.010 0.293 0.009 0.013 0.007 0.245 0.088 0.007 0.008 0.338 0.105 0.025 0.009 0.347 0.026 0.013
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Table A2. Cont.

Normal Bimodal Skewed χ2
1

N I Modules CMLMST CML MMLN MMLS CMLMST CML MMLN MMLS CMLMST CML MMLN MMLS CMLMST CML MMLN MMLS

500

15

m1 0.005 0.536 0.005 0.008 0.003 0.492 0.057 0.004 0.008 0.606 0.048 0.020 0.008 0.593 0.110 0.008
m2 0.002 0.071 0.001 0.002 0.004 0.074 0.023 0.004 0.004 0.080 0.047 0.007 0.002 0.078 0.070 0.009
m3 0.006 0.536 0.005 0.009 0.005 0.500 0.077 0.005 0.003 0.574 0.095 0.016 0.009 0.638 0.051 0.004

total 0.004 0.381 0.004 0.006 0.004 0.355 0.052 0.004 0.005 0.420 0.063 0.014 0.006 0.437 0.077 0.007

35

m1 0.007 0.627 0.008 0.011 0.004 0.581 0.098 0.008 0.008 0.691 0.104 0.029 0.005 0.694 0.131 0.022
m2 0.004 0.105 0.002 0.003 0.004 0.111 0.026 0.005 0.004 0.118 0.039 0.008 0.002 0.120 0.054 0.013
m3 0.007 0.626 0.007 0.011 0.004 0.585 0.105 0.008 0.007 0.674 0.117 0.028 0.006 0.719 0.113 0.018

total 0.007 0.552 0.007 0.010 0.004 0.516 0.091 0.007 0.007 0.602 0.100 0.026 0.005 0.623 0.112 0.019

60

m1 0.006 0.323 0.006 0.009 0.006 0.269 0.097 0.005 0.005 0.386 0.111 0.026 0.005 0.363 0.019 0.011
m2 0.004 0.061 0.004 0.004 0.003 0.058 0.027 0.003 0.003 0.047 0.030 0.005 0.003 0.124 0.050 0.020
m3 0.007 0.344 0.006 0.009 0.007 0.289 0.108 0.006 0.004 0.396 0.123 0.025 0.006 0.412 0.020 0.019

total 0.006 0.288 0.006 0.008 0.006 0.242 0.090 0.005 0.004 0.334 0.102 0.022 0.005 0.344 0.025 0.016

1000

15

m1 0.003 0.532 0.003 0.004 0.003 0.489 0.059 0.003 0.003 0.601 0.046 0.015 0.005 0.590 0.107 0.008
m2 0.001 0.071 0.001 0.001 0.002 0.070 0.023 0.002 0.002 0.077 0.049 0.004 0.003 0.081 0.069 0.010
m3 0.002 0.533 0.003 0.004 0.001 0.496 0.080 0.001 0.004 0.571 0.093 0.014 0.006 0.634 0.051 0.006

total 0.002 0.379 0.003 0.003 0.002 0.351 0.054 0.002 0.003 0.416 0.063 0.011 0.005 0.435 0.076 0.008

35

m1 0.006 0.625 0.006 0.008 0.004 0.579 0.099 0.007 0.004 0.685 0.100 0.023 0.005 0.691 0.129 0.019
m2 0.002 0.106 0.002 0.002 0.002 0.109 0.026 0.003 0.003 0.114 0.038 0.005 0.002 0.118 0.054 0.014
m3 0.006 0.625 0.007 0.008 0.005 0.584 0.106 0.008 0.003 0.668 0.113 0.022 0.005 0.716 0.110 0.014

total 0.005 0.551 0.006 0.007 0.004 0.514 0.092 0.007 0.003 0.596 0.097 0.020 0.004 0.620 0.110 0.016

60

m1 0.005 0.321 0.004 0.005 0.003 0.264 0.102 0.003 0.003 0.383 0.108 0.022 0.004 0.360 0.017 0.013
m2 0.003 0.061 0.002 0.002 0.002 0.057 0.027 0.001 0.002 0.048 0.031 0.004 0.002 0.125 0.048 0.019
m3 0.006 0.342 0.005 0.006 0.003 0.285 0.112 0.002 0.003 0.394 0.121 0.022 0.004 0.410 0.020 0.021

total 0.005 0.286 0.004 0.005 0.003 0.238 0.094 0.002 0.003 0.332 0.100 0.019 0.004 0.341 0.024 0.017

Note: ABIAS = average absolute bias; normal = (standard) normal (skew = 0, kurt = 0): θ ∼ N(0, 1); bimodal (skew = 0.3, kurt = −1.0): θ ∼ 3
5 N(−0.705, 0.254) + 2

5 N(1.058, 0.254); skewed
(skew = −1.5, kurt = 3.2): θ ∼ 1

5 N(−1.259, 1.791) + 4
5 N(0.315, 0.307); χ2

1 (skew = 2.8, kurt = 12): θ ∼ χ2
1 with one degree of freedom. All distributions are transformed such that E(θ) = 0 and Var(θ) = 1.

CML = conditional maximum likelihood (CML); CMLMST = CML estimation with consideration of the respective MST design; MMLN = marginal maximum likelihood estimation (MML) with normal
distribution; MMLS = MML with log-linear smoothing up to four moments.
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Table A3. Relative root mean squared error (RRMSE) for the multistage condition as a function of sample size N and the number of items I for each module separately and in total for each
trait distribution.

Normal Bimodal Skewed χ2
1

N I Modules CMLMST CML MMLN MMLS CMLMST CML MMLN MMLS CMLMST CML MMLN MMLS CMLMST CML MMLN MMLS

100

15

M1 100.4 178.6 96.1 97.9 100.2 170.2 98.9 98.7 100.3 181.1 89.0 97.3 100.5 198.0 107.2 96.6
M2 100.1 109.6 94.5 96.0 100.1 109.6 93.4 96.0 100.2 109.9 97.5 94.9 100.1 109.2 98.8 93.9
M3 100.3 175.7 95.7 97.9 100.3 168.8 96.4 99.3 100.3 189.5 103.9 96.3 100.5 177.9 84.6 95.9

total 100.3 160.4 95.6 97.4 100.2 154.3 96.6 98.3 100.3 166.7 96.4 96.4 100.4 168.3 95.7 95.6

35

M1 100.3 199.0 94.6 96.5 100.2 192.2 98.2 97.6 100.4 198.2 94.6 95.9 100.5 217.6 106.6 94.2
M2 100.2 115.7 91.4 92.2 100.1 115.6 89.9 92.4 100.3 115.0 93.4 90.2 100.2 116.1 95.2 89.3
M3 100.3 196.7 94.4 96.1 100.2 190.3 96.8 98.2 100.5 212.6 104.1 95.0 100.4 197.0 92.3 93.4

total 100.3 189.5 94.2 95.9 100.2 183.3 96.7 97.3 100.4 196.1 98.5 94.9 100.5 197.8 98.5 93.3

60

M1 100.3 141.9 98.5 102.5 100.4 133.6 102.8 100.0 100.4 149.5 101.4 99.4 100.4 157.6 102.2 99.0
M2 100.1 108.3 96.4 98.1 100.2 108.4 95.7 98.0 100.1 105.3 99.5 96.9 100.1 117.6 99.9 96.6
M3 100.3 138.4 98.2 101.7 100.4 129.5 101.5 100.2 100.4 151.4 107.5 98.7 100.2 136.4 90.7 97.8

total 100.3 136.3 98.1 101.6 100.4 128.6 101.3 99.9 100.4 145.3 103.9 98.8 100.3 142.0 95.9 98.1

300

15

M1 100.2 276.8 95.4 97.1 100.1 255.8 102.3 98.8 100.0 276.2 90.9 96.4 100.3 308.2 115.9 96.1
M2 100.0 118.4 94.1 95.0 100.0 116.9 95.7 95.7 100.0 119.6 102.1 94.1 100.0 121.2 108.1 93.5
M3 100.2 276.9 95.3 96.9 100.0 256.3 103.1 99.1 100.0 295.3 108.3 95.0 100.2 281.7 89.0 95.1

total 100.1 236.9 95.0 96.5 100.0 220.8 100.9 98.1 100.0 245.0 99.8 95.4 100.2 252.7 102.9 95.1

35

M1 100.0 310.2 94.6 95.8 100.0 299.8 107.1 97.4 100.1 315.4 102.0 96.2 100.1 343.4 115.7 93.2
M2 100.0 129.2 89.7 90.1 100.0 133.0 90.9 91.9 100.0 134.3 96.1 90.9 100.1 137.7 101.7 90.6
M3 100.0 309.6 94.6 95.8 100.1 292.8 106.2 97.8 100.1 340.0 113.3 95.4 100.1 312.5 99.4 92.5

total 100.0 290.7 94.1 95.2 100.0 279.2 105.0 97.0 100.1 307.7 106.2 95.4 100.1 308.5 106.5 92.6

60

M1 100.2 200.3 98.5 99.1 100.1 179.9 113.0 99.7 100.0 212.4 109.3 99.2 100.1 227.7 101.7 98.6
M2 100.0 116.0 96.8 97.2 100.0 114.1 98.1 97.9 100.0 111.1 102.5 97.1 100.1 138.7 104.5 97.4
M3 100.1 193.1 98.1 99.2 100.0 171.4 111.2 99.8 100.1 219.9 117.2 98.5 100.0 190.1 91.4 97.8

total 100.1 186.8 98.1 98.9 100.1 167.8 110.3 99.5 100.1 203.8 112.0 98.6 100.1 198.1 96.7 98.1
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Table A3. Cont.

Normal Bimodal Skewed χ2
1

N I Modules CMLMST CML MMLN MMLS CMLMST CML MMLN MMLS CMLMST CML MMLN MMLS CMLMST CML MMLN MMLS

500

15

M1 100.1 343.5 96.7 98.0 100.0 326.4 105.9 98.3 100.1 349.7 92.8 96.4 100.1 384.1 121.7 96.0
M2 100.0 125.8 94.2 94.7 100.1 128.2 95.9 96.1 100.0 129.3 106.4 95.2 100.0 128.6 115.0 93.5
M3 100.0 342.4 96.5 97.6 100.0 320.9 107.5 99.1 100.0 373.3 115.2 96.1 100.1 352.6 90.4 95.1

total 100.0 288.2 96.0 97.0 100.0 274.5 104.0 98.0 100.0 304.7 104.0 96.0 100.1 310.0 107.2 95.0

35

M1 100.1 392.6 94.8 95.5 100.0 383.3 115.2 97.3 100.1 392.8 106.0 95.0 100.0 448.0 127.7 94.2
M2 100.0 146.8 91.8 91.8 100.0 149.5 94.7 93.7 100.0 147.3 98.6 89.0 100.0 152.2 105.1 90.0
M3 100.1 391.2 94.7 95.4 100.0 372.1 115.0 97.7 100.1 432.0 120.0 93.9 100.0 400.3 107.2 93.3

total 100.1 366.8 94.4 95.1 100.0 353.6 113.0 97.1 100.1 384.3 111.1 93.9 100.0 395.1 115.5 93.4

60

M1 100.1 246.9 98.5 99.0 100.1 216.8 122.6 99.6 100.0 262.6 118.0 99.9 100.1 282.9 102.2 99.0
M2 100.0 121.5 96.7 97.0 100.0 120.9 99.7 97.9 100.0 114.5 104.1 96.9 100.0 156.6 108.6 98.1
M3 100.1 235.7 98.3 99.2 100.1 208.2 120.7 99.8 100.0 272.7 127.2 99.0 100.0 232.0 91.8 98.0

total 100.1 226.2 98.2 98.8 100.1 200.8 118.9 99.5 100.0 249.6 120.4 99.1 100.0 241.9 97.5 98.4

1000

15

M1 100.0 476.3 95.4 96.8 100.0 449.5 113.5 98.8 100.0 483.0 97.4 96.4 100.1 546.2 140.2 96.1
M2 100.0 144.0 93.8 94.3 100.0 143.9 99.1 95.2 100.0 148.0 116.3 94.5 100.1 152.2 132.6 94.1
M3 100.0 481.4 96.1 97.5 100.0 449.9 120.4 99.2 100.1 524.6 129.5 96.4 100.0 498.4 96.5 95.5

total 100.0 393.3 95.2 96.4 100.0 372.2 112.4 98.0 100.0 415.7 113.3 95.9 100.1 430.8 120.5 95.4

35

M1 100.1 554.3 94.7 95.8 100.1 536.0 132.8 97.5 100.0 549.1 120.1 96.2 100.1 618.9 149.8 94.1
M2 100.0 178.9 91.7 91.8 100.0 179.9 97.7 92.6 100.0 180.9 106.5 90.4 100.0 187.5 117.5 90.9
M3 100.1 553.4 94.7 95.8 100.1 520.7 133.3 97.9 100.0 596.3 138.5 95.2 100.0 551.4 122.2 93.0

total 100.1 515.1 94.4 95.3 100.1 491.5 129.4 97.1 100.0 532.4 126.5 95.2 100.0 543.6 133.2 93.3

60

M1 100.1 328.6 98.0 98.4 100.0 285.1 144.1 99.7 100.0 355.6 135.2 100.4 100.1 386.6 103.0 99.5
M2 100.1 138.5 97.1 97.3 100.0 134.0 103.9 97.8 100.0 125.2 109.5 96.2 100.0 198.1 117.4 99.3
M3 100.1 316.8 98.0 98.6 100.0 273.6 141.5 99.9 100.0 372.5 148.5 99.7 100.0 312.8 92.6 99.0

total 100.1 300.0 97.9 98.4 100.0 260.7 137.8 99.6 100.0 336.0 138.0 99.6 100.0 326.7 99.2 99.2

Note: RRMSE = relative root mean squared error with CMLMST as reference; normal = (standard) normal (skew = 0, kurt = 0): θ ∼ N(0, 1); bimodal (skew = 0.3, kurt = −1.0): θ ∼ 3
5 N(−0.705, 0.254) +

2
5 N(1.058, 0.254); skewed (skew = −1.5, kurt = 3.2): θ ∼ 1

5 N(−1.259, 1.791) + 4
5 N(0.315, 0.307); χ2

1 (skew = 2.8, kurt = 12): θ ∼ χ2
1 with one degree of freedom. All distributions are transformed such

that E(θ) = 0 and Var(θ) = 1. CML = conditional maximum likelihood (CML); CMLMST = CML estimation with consideration of the respective MST design; MMLN = marginal maximum likelihood
estimation (MML) with normal distribution; MMLS = MML with log-linear smoothing up to four moments.
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