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Abstract: Genetic variants identified by three large genome-wide association studies (GWAS) of 

educational attainment (EA) were used to test a polygenic selection model. Weighted and 

unweighted polygenic scores (PGS) were calculated and compared across populations using data 

from the 1000 Genomes (n = 26), HGDP-CEPH (n = 52) and gnomAD (n = 8) datasets. The PGS from 

the largest EA GWAS was highly correlated to two previously published PGSs (r = 0.96–0.97, N = 

26). These factors are both highly predictive of average population IQ (r = 0.9, N = 23) and Learning 

index (r = 0.8, N = 22) and are robust to tests of spatial autocorrelation. Monte Carlo simulations 

yielded highly significant p values. In the gnomAD samples, the correlation between PGS and IQ 

was almost perfect (r = 0.98, N = 8), and ANOVA showed significant population differences in allele 

frequencies with positive effect. Socioeconomic variables slightly improved the prediction accuracy 

of the model (from 78–80% to 85–89%), but the PGS explained twice as much of the variance in IQ 

compared to socioeconomic variables. In both 1000 Genomes and gnomAD, there was a weak trend 

for lower GWAS significance SNPs to be less predictive of population IQ. Additionally, a subset of 

SNPs were found in the HGDP-CEPH sample (N = 127). The analysis of this sample yielded a 

positive correlation with latitude and a low negative correlation with distance from East Africa. This 

study provides robust results after accounting for spatial autocorrelation with Fst distances and 

random noise via an empirical Monte Carlo simulation using null SNPs. 
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1. Introduction 

Over the last decade, population geneticists have recognized that most traits are highly 

polygenic, and hence, have moved away from the study of genetic evolution using the single-gene, 

Mendelian approach, towards models that examine many genes together (i.e. polygenic models). 

Moreover, research into global variations in complex traits shows a significant amount of 

differentiation, for example in height [1], cardiovascular disease [2] and BMI [3,4]. Identifying 

polygenic adaptation is complicated by several factors. First, the presence of hundreds or thousands 

of genetic variants, each having a small effect, implies that signals of genetic differentiation are 

diluted, and that methods that target hard sweeps are not sensitive enough [5,6]. Second, identifying 

a number of SNPs which is sufficient to explain at least 5 or 10% of the total variance in a trait requires 

very large samples, and these have become available only recently (e.g. [7]). Third, environmental 

factors that differ across populations can influence the phenotype, hence masking genetic 

differentiation. 

Signals of polygenic selection can be identified by various methods, such as correlation of allele 

frequencies [5,8–10] and the regression of population average of trait values on polygenic scores 

(PGS) [9]; these have been successfully applied to human stature [3,11,12] and cognitive abilities [9].  

The goal of this paper is to test the predictive power of polygenic scores, independently of spatial 

autocorrelation and noise due to drift and migrations. The prediction is that the polygenic selection 
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model explains average population IQ better than a null model representing only drift and 

migrations. This implies that the frequencies of alleles with positive effect in the GWAS have different 

means across different populations.  

A goal of this study is to replicate the effects found by Piffer [8,9], using evidence from new 

intelligence and educational attainment GWAS published to date.[8,9] analyzed educational 

attainment and intelligence GWAS hits and found a factor that was highly predictive of population 

IQ. The factor analytic method is based on the assumption that polygenic selection acts as a latent 

variable which accounts for commonalities among several genetic variants scattered across the 

genome [8]. The model also includes an error term due to measurement errors in the form of limited 

sample sizes, imperfect coverage or genetic drift, all of which act to increase noise. 

Larger SNP sets become intractable with the factor analytic method; hence, the use of polygenic 

scores is usually preferred. These scores can be unweighted or weighted. Unweighted PGS are 

calculated as the sums of the number of effect alleles found in the genome for all trait-associated 

SNPs. A weighted PGS weights each trait-increasing allele by its odds ratio (for categorical traits) or 

β-value (for quantitative traits).  

The chief limitation of polygenic scores is currently that the GWA studies were carried out on 

overwhelmingly European descent samples and this is responsible for a few issues, chiefly: 1) The 

GWAS will fail to capture population specific variants. This does not necessarily bias the PGS in favor 

of the reference group, as GWAS identify both negative and positive effect variants. For example, a 

recent GWAS carried out on Peruvians found a population-specific variant that reduces height by 

about 2.2 cm [13]. Since this variant is polymorphic only in populations of Native American descent, 

it would have been missed by a European-based GWAS, potentially leading to an overestimation 

(relative to Europeans) of the PGS for the Peruvian population. A similar scenario might happen with 

EA polygenic scores, where population-specific variants with negative or positive effects are missed 

in other populations, leading respectively to over and under-estimations of the non-European 

population polygenic score. However, since population specific variants can also have a positive 

effect, the effects will tend to cancel each other out, thus limiting the potential bias. Evidence 

suggesting that this is the case can be gathered from the polygenic score on height calculated using 

an European-based GWAS [14] which produced very low scores for Peruvians, the second lowest in 

the 1000 genomes samples (see section 3.4). 2)Since most GWAS hits are not causal (so-called “tag 

SNPs”), but are genetically linked with “true” causal variants, and because patterns of LD vary across 

populations (for example, Africans have on average much smaller LD blocks), this will reduce 

predictions for populations that are genetically distant from the GWAS sample. 

Piffer (2017) [15](also see supplementary material) identified 9 genomic loci that were replicated 

across three of the largest GWAS of educational attainment (EA) [16–18]. The same 9 SNPs were 

successfully used to predict genetic differences in cognitive ability between ancient and modern 

samples [19].  

In addition, the full set of 2411 genome-wide significant SNPs from the latest GWAS of 

educational attainment (henceforth, “EDU3”) [7] will be employed. 

Lee et al. (2018) [7] also reported a set of 127 putatively causal SNPs (posterior inclusion 

probability >0.9). These will be used to provide a polygenic score which is less subject to linkage 

disequilibrium-decay from a theoretical point of view (see discussion). 

Average estimated population IQ will be used as the phenotype of interest and main dependent 

variable in the analyses. This choice can be justified by its privileged status in psychometric research 

and its robust genetic correlation with educational performance [20] and attainment [17]. Moreover, 

the GWAS hits identified by the three educational GWAS also predict general cognitive ability in 

their samples. A re-analysis of the Okbay et al. dataset revealed that the polygenic score also predicts 

general intelligence (3.6%) compared to 2% for the 2013 polygenic score [21]. The latest EDU PGS 

have been estimated to predict between 3.2% to 11–13% of variance in EA, depending on which set 

is used, and about 10% in general cognitive ability [7].  

Height will be used as a control variable due to their highly polygenic nature which is consistent 

with cognitive ability, and because it is the anthropometric trait with the largest amount of GWA 
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studies available. Moreover, height is known to differ among human populations for genetic and 

environmental reasons. 

Finally, socioeconomic variables will be added as predictors to model the effect of genetics and 

environment at the group level. 

2. Materials and Methods  

Lee et al. (2018) [7] reported 2415 SNPs reaching GWAS significance (P 5 × 10−8), and 2411 were 

found in 1000 Genomes. Weighted and unweighted PGS were computed for this sample 

(“EDU3”).Since some of these SNPs are in LD,  PGS was computed also for a set of LD clumped 

(“LD-free”) SNPs (N = 1267) (for clumping algorithm, see Lee et al., 2018[7]). 

One thousand genome VCF files were downloaded from 

Ensembl(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/), (The 1000 Genomes project 

consortium, 2015) [22]. These were converted to BED format using PLINK and into .csv using R. 

Polygenic score computation was carried out on R (code in supplementary files). 

The Genome Aggregation Database (gnomAD) is the largest publicly-available genomic 

database to date [23], comprising 15,708 genomes from 8 populations. These are divided as follows: 

African/African American (4359); Latino/Admixed American (424); Ashkenazi Jewish (145); East 

Asian (780); Finnish (1738); Estonian (2297); North-Western European (4299); Southern European 

(53). 

The SNPs frequencies were downloaded using the gnomAD browser v2.1. 

Polygenic scores for height were calculated using GWAS hits from the largest meta-analysis to 

date [14]. Average height was obtained from the largest meta-analysis (NCD-RisC, 2016). However, 

for sub-populations within countries, separate estimates were retrieved from other sources (e.g. US 

Blacks vs. US Whites; Toscani in Italy; Chinese North vs. South). 

Variables that were found to correlate with height in a previous study were included [24]. Since 

some of these variables can be expected to be correlated with cognitive development (via health, 

education and nutrition), they were included in this analysis. 

For the socioeconomic variables, average protein consumption data was obtained from 

FAOSTAT.org (http://www.fao.org/faostat/en/#home ). The Human Development Index (HDI) ( 

http://hdr.undp.org/sites/default/files/2018_human_development_statistical_update.pdf ) computed 

by the UN and Infant Mortality (deaths/1,000 live births) was obtained from the World Factbook 

produced of the CIA(https://www.cia.gov/library/publications/the-world-factbook/) 

Monte Carlo simulations were performed using a null dataset, consisting of a large sample (N = 

2,411,000) of matched random unlinked SNPs (downloaded from 1000 Genomes, phase 3). Matching 

was carried out using SNPSNAP [25], by feeding the 2411 EA SNPs and setting LD r2 <0.25 (for EUR), 

with maximum allowed deviation for MAF = 5%. Unlinked SNPs were used in order to have a sample 

with independent observations. 

The empirical value p = (r+1)/(n+1) was calculated, where r is the number of runs whose 

Pearson’s correlation coefficient (r x population IQ) was higher than the one found using the actual 

(GWAS-derived) polygenic score; n = total number of runs. The corrected formula was provided by 

[26]. Fst distances were obtained from [9], calculated using Vcftools with 1000 Genomes, phase 3 data. 

Average population IQ estimates were obtained from Piffer (2015) [9]. Previously published scores 

were used also to guarantee that the values were not created post-hoc. In addition, recently published 

estimates of learning/education quality were included [27], based on performance on standardized 

tests of mathematics, reading, and science by 5-year age groups (from 5 to 19 years) for school-aged 

children. 

Fst distances were used to partial out spatial autocorrelation, following the method outlined in 

Piffer (2015) [9] based on the Mantel (1967) [28] test. The method as it is commonly employed seeks 

spatial patterns of genetic variation by comparison of genetic distances, estimated by pairwise Fst, 

with geographic distances. In this study, the PGS distances were employed as the index of genetic 

distance for the EA-relevant polymorphisms, and the Fst distances were used as an index of “spatial” 

clustering due to phylogenetic relationships. Thus, the PGS distances were correlated to the Fst 
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distance matrix. Subsequently, pairwise population IQ differences were regressed on Fst and PGS 

distances to test if the observed relationship appears only because both variables are “spatially” 

structured by intrinsic effects (random drift or migrations) or if the two matrices are “causally” 

related, indicating positive directional selection or diversifying selection. Various forms of the partial 

Mantel test have been widely used in ecological settings using geographic distance and some 

environmental variable such as temperature [29] and its polygenic scores form was devised by Piffer 

(2015) [9] for polygenic evolution modelling.  

HGDP-CEPH data were downloaded from SPSmart [30] and PGS were calculated on R after 

matching effect alleles (code can be found in supplemental files). Fst distances and distance from 

Addis Abeba for HGDP populations were obtained from (Handley et al., 2007) [31], and after removal 

of the non-overlapping samples, 49 matching populations were retained. 

Statistical analyses were run using R (R CoreTeam, 2018) [32].  

3. Results 

3.1. Correlation between Polygenic Scores and Population Iq 

The polygenic scores (Table 1) obtained from the latest GWAS and from Piffer’s previous 

publications were highly inter-correlated, and they were highly correlated to an estimate of average 

population IQ (Figure 1). 

Table 1. Polygenic scores and population IQ. 

Population IQ Learning  

EDU3 

(weighted) 

EDU3 

(Unweighted) 

EDU 3 

(Causal) 

EDU2 

Piffer 

2015[9] 

Afr.Car.Barbados 83 72 −1.30 0.474 0.444 −1.48 −1.25 

US Blacks 85  −1.28 0.475 0.445 −1.07 −1.05 

Bengali 

Bangladesh 

81 69 −0.16 0.488 0.462 0.04 0.03 

Chinese Dai   1.09 0.499 0.472 0.88 0.83 

Utah Whites 99 89 0.76 0.497 0.480 0.40 0.53 

Chinese, Bejing 105  1.61 0.503 0.477 1.54 1.53 

Chinese, South 105 95 1.42 0.501 0.476 1.32 1.32 

Colombian 83.5 66 0.23 0.493 0.477 −0.08 0.02 

Esan, Nigeria 71 64 −1.30 0.474 0.447 −1.45 −1.39 

Finland 101 91 1.10 0.499 0.483 1.08 0.64 

British, GB 100 88 0.59 0.495 0.482 0.78 0.68 

Gujarati Indian, 

Tx 

  0.23 0.492 0.465 0.46 0.33 

Gambian 62 65 −1.30 0.474 0.439 −1.56 −1.57 
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Iberian, Spain 97 86 0.22 0.497 0.480 0.54 0.52 

Indian Telegu, UK  66 0.25 0.492 0.469 0.18 0.27 

Japan 105 94 1.14 0.497 0.484 1.27 1.41 

Vietnam 99.4 82 1.18 0.499 0.477 1.18 1.23 

Luhya, Kenya 74 66 −1.38 0.474 0.441 −1.40 −1.69 

Mende, Sierra 

Leone 

64 65 −1.53 0.472 0.436 −1.40 −1.49 

Mexican in L.A. 88 74 −0.29 0.488 0.481 -0.18 0.04 

Peruvian, Lima 85 70 −0.99 0.483 0.465 -0.60 0.20 

Punjabi, Pakistan 84 68 −0.01 0.489 0.470 0.33 0.16 

Puerto Rican 83.5 73 0.10 0.491 0.474 −0.06 −0.05 

Sri Lankan, UK 79 75 0.05 0.490 0.466 0.13 −0.09 

Toscani, Italy 99 86 0.78 0.497 0.479 0.54 0.45 

Yoruba, Nigeria 71 64 −1.22 0.475 0.440 −1.40 −1.63 

Figure 1. 

Correlation matrix. 

For the Lee et al. (2018) [7] GWAS, weighted and unweighted polygenic scores (EDU3) were 

almost identical (r = 0.98), and they had identical correlation with population IQ (r = 0.89) (Figure 2). 

Hence, the unweighted PGS will be used (Figure 3). In addition, Lee et al. (2018) [7] carried out a joint 

analysis of GWAS results on EduYears, cognitive performance, math ability and highest math using 

MTAG (multi-trait analysis of GWAS). The PGS computed from the EA MTAG derived SNPs was 

almost identical to the classical score (r = 0.997). MTAG also identified SNPs associated with cognitive 
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performance in a smaller sample (N = 257,841). The CP PGS (N = 1597) was highly correlated to the 

EA PGS (r = 0.925) and to population IQ (r = 0.861). 

 

Figure 2. Correlation between EDU3 PGS and population IQ. 

 

Figure 3. Polygenic score by population (GWAS significant hits, N = 2411). 

As an additional check of their predictive validity, the correlation with Learning was computed 

(r = 0.797). 
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The putatively causal PGS was also highly correlated to population IQ (r = 0.82–0.85 for the 

weighted and unweighted PGS, respectively). The EDU3 PGS was negatively correlated to the 

difference between EDU3 and this score (r = –0.62). The PGS computed from the LD-clumped SNPs 

(N = 1220) had a similar correlation to population IQ (0.86), and it was highly correlated to the 

unclumped PGS (r = 0.98).  

3.2. Monte Carlo Simulation 

A Monte Carlo simulation was run using 943 PGS computed from groups of 2411 SNPs taken 

from the random dataset, with random assignment of one allele of each SNP to the “high-attainment” 

category. The average correlation between population IQ and the random polygenic scores was 0.329 

(N = 943); this is shown in figure 4. The slightly positive correlation can be interpreted as an effect of 

spatial/phylogenetic autocorrelation. A test based on a Monte Carlo approach with null SNPs was 

carried out: the corrected (and more conservative) calculation of Monte Carlo p value, where p = 

r+1/n+1 (see Methods) was used, producing p = 0.001 (n = 943, r = 0.886). The polygenic score obtained 

from 9 quasi-replicated SNP yields p = 0.011 (n = 819, r = 0.88). 

 

Figure 4. Correlation between null PGS and population IQ. 

3.3. Controlling for Spatial (Phylogenetic) Autocorrelation  

The presence of spatial autocorrelation in a dataset means that the cases are not independent, 

leading to an overestimation of degrees of freedom and, in the case of positive autocorrelation, a 

possible inflation in the correlation between two or more variables. The source of spatial 

autocorrelation in population genetics datasets is the similarity caused by admixture among 

neighboring populations, and the differences caused by random drift. Demonstrating that the alleles 

predict population-level differences in average phenotypic values above and beyond those predicted 

on the basis of migration, drift etc. provides evidence for a model of polygenic selection (Berg & Coop, 

2014)[10]. 

The positive correlation between the two distance matrices (pairwise Fst distances and pairwise 

EDU 3 differences) was large (Mantel’s r = 0.812, p = 0.001), indicating the presence of SAC. A 
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correlogram confirmed the trend for the correlation between Fst and EDU PGS distances to decrease 

with genetic distance (Figure 5) 

 

Figure 5. Correlogram (EDU 3 and Fst). 

In order to partial out SAC, multiple regression was performed with pairwise PGS differences 

and Fst distances as predictors and pairwise population IQ differences as dependent variable. 

Significant models (respectively for 9 and 161 SNPs and EDU3) were obtained (Adjusted R-squared: 

0.503, F-statistic: 128.5, p < 2.2 × 10−16), (Adjusted R-squared: 0.7251, F-statistic: 30.01, p = 9.514 × 10−7), 

(Adjusted R-squared: 0.510 ,F-statistic: 132.3, p< 2.2 × 10−16) (Table 2). Another way to remove SAC is 

via partial or semi-partial correlation: both yielded significant correlation coefficients (respectively, r 

= 0.506; p = 7.85 × 10−18 and r = 0.409; p = 1.304 × 10−11). 

Using Learning instead of IQ produced significant results, with a significant model (Adjusted 

R-squared: 0.285, F-statistic: 46.94, p < 2.2× 10−16). 

Partial and semi-partial correlation were of similar magnitude (0.466, p = 7.86 × 10−14and 0.443, p 

= 1.59 × 10−12). 

Table 2. Multiple regression of IQ distances on Fst distances and GWAS hits distances 

Variable Beta T Sig VIF 

Model 1     

PS 9 distances 0.524 9.024 <2 × 10−16 1.713 

Fst distances 0.250 4.305 2.4 × 10−5  

Model 2     

PS 161 distances 0.456 7.063 1.61 × 10−11 1.912 
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Fst dist 0.274 4.241 3.14 × 10−5  

Model 3     

EDU3 0.680 9.290 <2 × 10−16 2.761 

Fst dist 0.045 0.615 0.539  

Model 4*     

EDU3 0.772 7.964 7.87 × 10−16 3.026 

Fst dist −0.324 −3.344 0.00096  

* Regressed on Learning index pairwise differences (“distances”). 

ANOVA 

Frequencies of positive effect alleles were computed for one population from each of the 4 super 

populations (AMR was excluded because it contains heavily mixed samples). To assure 

independence between data points, the LD clumped subset was used and 1270 SNPs were found. The 

following values, shown in Figure 6, were obtained: Yoruba = 47.6%; Bengali = 49.5%; Finns = 50.7%; 

Chinese (South) = 50.5%. One-way ANOVA was carried out to test the significance of the allele 

frequency differences between groups. A model with trend towards significance emerged (F = 2.594; 

P = 0.0509). The p value floated around 0.05 depending on the choice of populations from each super-

population.  

 

Figure 6. Average frequencies by population. 

3.4. GWAS Significance and r x IQ 

The relationship between GWAS significance and predictive power was explored using a meta-

correlational approach. In order to maximize variance in p values, the full set of GWAS lead SNPs (N 

= 9552) was used. Polygenic scores were calculated for 39 significance quantiles (p = 0.025 to 0.975 in 
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0.025 steps). The correlation coefficients between each score and the population IQ were computed. 

In turn, the correlation between the correlation coefficient and the quantile was computed, yielding 

a weak but significant correlation (Spearman’s r = −0.34, p = 0.036) (Figure 7). 

The mean correlation coefficient (between each set and IQ) was r = 0.470, whereas the correlation 

coefficient of the full set was r = 0.868. 

 

Figure 7. Meta-correlation between significance and correlation coefficients. 

Height 

The correlation between Height PGS and EDU3 was r = −0.288 (Figure.8). The Beta (−0.459) in 

the regression controlling for SAC (F = 41.82, p-value: < 2.2 × 10−16) was significant (p < 1.17 × 10−7), 

despite large SAC (Fst Beta = 0.738). 

The correlation between Height PGS and average phenotypic height was r = 0.486. 
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Figure 8. Correlation between EDU3 and Height PGS. 

3.5. Socioeconomic Factors 

Nested models were run with a reduced model having EDU PGS as predictor and full models 

having 1) EDU PGS + Human Development Index; 2) EDU PGS + Total protein consumption; and 3) 

EDU PGS + Child Mortality. The same was done for height. Since there was a high degree of 

multicollinearity, only one extra predictor variable was used in each model. 

A chi-square test (“anova” function in R) was used to test whether the reduction in the residual 

sum of squares was statistically significant (as shown by the p value, Tables 3 and 4, last column). 

Table 3. Nested regression models (EDU). 

EDU PGS HDI Total Protein Child Mortality R^2 Sum of Squares 

0.661*** 0.371**   0.865 473.55 

0.889***    0.782 807.13 

     P = 0.0012 

0.717***  0.354***  0.885 399.97 

0.896***    0.793 759.19 

     P = 3.6 × 10−5 

0.702***   −0.279* 0.842 640.12 

0.906***    0.812 509.24 

     P = 0.031 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 

Table 4. Nested regression models (Height). 

Height PGS HDI Total Protein Child Mortality R^2 Sum of Squares 

0.486*** 0.711***   0.849 85.62 

0.610**    0.343 390.35 

     P = 5.07 × 10−8 

0.238**  0.819**  0.896 58.36 

0.614**    0.346 386.54 

     P = 3.08 × 10−9 
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0.627***   −0.703*** 0.837 366.77 

0.599**    0.327 84.29 

     P = 1.74 × 10−7 

Gnomad 

Among the 2416 GWAS significant SNPs (Lee et al., 2018) [7] 2404 SNPs were found in the 

gnomAD dataset. The polygenic scores are reported in Table 5. Since this is a novel dataset, 

population IQ estimates were generated according to the latest evidence. The correlation between 

PGS (GWAS sig.) and population IQ is r = 0.979 (N = 8). 

Table 5 reports the PGS for the eight gnomAD populations. 

Population IQ PGS (GWAS sig.) PGS Clumped 

Finnish 102 (Dutton and Kirkegaard, 2014)[33] 49.456 50.315 

Ashkenazi 110 (Dunkel et al, 2019)[34] 50.038 50.805 

Southern Europe 97(Lynn & Vanhanen, 2012)[35] 49.119 50.056 

Estonia 101(Becker, 2019)[36] 49.248 50.14 

NW European 100(Dutton and Kirkegaard, 2014)[33] 49.215 50.097 

African (American) 85 47.414 47.656 

Latino 93 (Richwine, 2009)[37] 48.654 49.294 

East Asian 105 (Lynn & Vanhanen, 2012)[35] 49.750 50.076 

The correlation with population IQ is shown in figure 9. 

 

Figure 9. Correlation between EDU PGS (gnomAD) and population IQ. 

One-way ANOVA was carried out after removing the closely related populations from the 

European cluster and the heavily admixed Latino population, thus keeping 4 populations: NW 

European; Ashkenazi Jews; African (American); East Asian. The subset of LD clumped SNPs (N = 

1267) reported in Lee et al. (2018) [7] were used to minimize dependence between data points that is 

present in the full set of GWAS significant lead SNPs. A significant model emerged (F = 2.642; P = 

0.0477).  
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3.6.GWAS Significance and r x IQ (gnomAD) 

Polygenic scores were calculated for 19 significance quantiles (0.05 to 0.95 in 0.05 steps). The 

correlation coefficients between each score and the population IQ were computed. In turn, the 

correlation between the correlation coefficient and the quantile was computed, yielding a weak (but 

not significant) negative correlation (Spearman’s r = −0.33, p = 0.173) (Figure 10). It is evident that the 

subset’s predictive power is lower than that of the full set even at the highest quantiles. 

The mean correlation coefficient (between each set and IQ) was r = 0.601, whereas the correlation 

coefficient of the full set was r = 0.931. 

 

Figure 10. Meta-correlation between significance and correlation coefficients. 

HGDP-CEPH 

The 2411 SNPs (Lee et al., 2018) [7] were searched on the HGDP-CEPH database using the 

SPSmart browser. In total, 127 SNPs were retrieved and polygenic scores were computed for single 

populations and continental clusters (Figures.11 and 12). As a check of the robustness of the PGS 

calculation, a PGS for human height using the latest GWAS (Wood et al., 2014) [38] was computed 

and it was compared to the PGS calculated by Berg and Coop (2014) [10] for height. These were found 

to be highly similar (r = 0.84). A significant amount of SAC was detected (Mantel’s r = 0.372, p = 0.001). 

Positive correlations were found with latitude (r = 0.57) and a weak negative correlation with 

distance from East Africa (r = −0.29). As no reliable estimates of IQ were found for most of the 52 

populations, no attempt was made to include this phenotype in the analysis of the HGDP sample.  
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Figure 11. Polygenic scores for HGDP (ALFRED) populations. 

 

Figure 12. Polygenic scores by continent. 
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4. Discussion 

The calculation of population-level polygenic scores (average allele frequencies with positive 

GWAS beta) is a promising and quick approach to test signals of polygenic adaptation. The results 

clearly showed population differences in PGS (Figure 3), which correlated with estimates of average 

population IQ (Figure 2) and students performance on standardized tests of mathematics, reading 

and science (r = 0.9 and 0.8, respectively). 

The EDU3 polygenic score was the most robust to tests of spatial autocorrelation (Table 2), that 

is, it predicted population IQ also after removing SAC by partial Mantel test via Fst distances [9,28]. 

In fact, when IQ was regressed on the PGS and Fst distances, the latter lost all the predictive value 

(Beta = 0.045, p = 0.539), whereas the former retained high predictive power (Beta = 0.68, p = <2.2e × 

10−16). Additionally, partial and semi-partial correlation were also used as an alternative method to 

remove SAC, and both yielded significant correlation coefficients (respectively, r= 0.506; p = 7.85 × 

10−18and r = 0.409; p = 1.304 × 10−11). Similar results were obtained by using Learning index instead of 

IQ.  

The polygenic score computed for MTAG-derived Cognitive Performance SNPs was highly 

correlated to EDU3 (r = 0.92) and to population IQ (r = 0.86). 

More strength is given to the present findings by the high replicability of the same polygenic 

model from a previous publication (Piffer, 2015 [9]). Piffer (2015) [9] calculated polygenic and factor 

scores for 1000 Genomes population using the data available at the time from GWAS that relied on 

much smaller sample size. Since the correlation between the present study’s EDU3 and previous 

estimates of polygenic scores score are very high (r = 0.95–0.98), and the correlations with the average 

population IQ estimates from the previous study are similarly high (Figure 2), the claim that this 

finding could be post-hoc is ruled out.  

A Monte Carlo simulation using 943 PGS computed from sets of 2411 randomly matched SNP 

showed that none of them reached a correlation with population IQ equal to or higher than EDU’s (r 

= 0.886), corresponding to p = 0.001. 

Height was used as a control variable, due to its similar polygenic nature to cognitive ability. 

The height PGS was positively correlated with average population height but it had a weak negative 

association with EDU PGS and with population IQ (Figure. 8). The lack of a relationship between the 

two PGS and the lack of an association with a phenotype (i.e. IQ) different from the GWAS trait (i.e. 

height) suggests that potential biases (e.g. favoring the European reference population) in the GWAS 

procedure do not drive the correlation between EDU PGS and IQ. Remarkably, whilst East Asians 

scored at the top of the EDU PGS, they also scored at the bottom of the height PGS, in accordance 

with their relatively smaller physical size. 

The results were replicated in a new dataset (gnomAD), comprising a much larger sample of 

individuals, where the correlation between population IQ and PGS was 0.98 (Table 5 and Figure 9). 

This dataset included a sample of 145 Ashkenazi Jewish individuals. The IQ of Ashkenazi Jews has 

been estimated to be around 110 [34]. Remarkably, their EDU polygenic score was the highest in our 

sample, corresponding to a predicted score of about 108, mirroring preliminary results from a smaller 

(N = 53) sample (Dunkel et al., 2019) [34]. 

The large sample of Finnish individuals present in gnomAD also replicated their polygenic score 

advantage found in 1000 Genomes, closely mirroring the advantage over other European populations 

observed in scholastic aptitude and intelligence tests [33]. 

One-way ANOVA found differences in mean allele frequencies between populations both in 

1000 Genomes and gnomAD dataset. 

The overall results were replicated using a larger sample of populations from the HGDP-CEPH 

panel (N = 52), which showed similar population and continental rankings of polygenic scores 

(Figures 11 and 12). A positive correlation with latitude was found (r = 0.57), but a small negative one 

with distance from Eastern Africa (r = −0.29). The latter finding casts doubt on the hypothesis that 

migratory patterns account for population differences in polygenic scores. The positive correlation 

with latitude could reflect selection pressures due to climate, but further evaluating this hypothesis 



 2019, 1, 5 70  

would require exhaustive simulations with null SNPs, using an approach similar to Berg and Coop 

(2014) [10], which are beyond the scope of this paper. 

The much higher East Asian scores (Figure 3 and Table 5) suggests that strong selection pressure 

on East Asians continued after the East Asian-Native American split, about 15 kya at the earliest (the 

earliest estimate of a migration across the Bering strait into the Americas) [8]). This date has been 

disputed. There is evidence from ancient genomes that the split between northeast Asians and Native 

Americans happened 20kya when both were still residing in NE Asia, and there was continued gene 

flow until the Native American group crossed the Bering strait into North America around 15-14 kya 

[39]. It is possible that the extremely low population density in the Americas reduced intraspecific 

competition (hence, selection pressure on cognitive ability was lower), but this topic is widely open 

to debate and speculation. 

A limitation of the present study is its reliance on estimates of population IQ as the phenotypic 

variable, which are not perfectly accurate, besides potentially reflecting environmental and economic 

differences between populations. Moreover, the EA GWAS can capture genetic variation that 

contributes to educational attainment via mechanisms other than IQ (i.e. conscientiousness).  

The moderate (11–13%) amount of variance explained at the individual level by the full set and 

the subset of significant hits (3.2%) (Lee et al., 2018) [7] is not an issue of primary importance. Indeed, 

predicting group-level variance is different from predicting variance within a group. The important 

difference between trans-ethnic and within population phenotypic predictions—as measured by the 

amount of variance explained—is that while the latter is maximized by using the full set of GWAS 

SNPs, in the former, using low significance SNPs risks introducing too much noise, such as elements 

of drift or migrations, that would dilute the signal derived from selection pressures on a specific trait. 

Hence, the two problems require different approaches to SNP selection and optimal PGS 

construction. 

Deciding the optimum number of SNPs can be done empirically (by picking the significance 

threshold that results in the highest correlation with the average phenotypic population value). In 

our data, there was degradation of signal across significance quantiles, as shown by a weak trend for 

lower significance SNPs to have lower correlation with population IQ (Figures 7 and 10). More 

remarkably, the PGS generated from most SNP subsets had lower predictive power than that of the 

full set. For example, using the full set of 10k lead SNPs in 1000 Genomes, the average correlation 

coefficient (between each set’s PGS and IQ) was r = 0.470, whereas the correlation coefficient of the 

full set with IQ was r = 0.868. In the gnomAD dataset, 0.61 and the full (clumped) PGS’s correlation 

was 0.93. 

This suggests the presence of a trade-off between quantity and quality of SNPs relative to gains 

in predictive power. That is, a larger number of SNPs increases the signal, yet it introduces more 

noise due to inclusion of lower significance SNPs. The maximal predictive power was reached by 

selecting SNPs which met the conventional GWAS significance threshold (P < 5 ×10−8), whilst picking 

higher significance SNPs reduced the predictive power (due to reduced number of SNPs). Although 

traditionally weighing by effect size is the most commonly employed weighting method, and since 

no increase in predictive accuracy was observed in this study for the effect size weighted PGS vs. the 

unweighted (raw frequency) PGS, p value weighting should be used as a valid alternative for PGS 

computation, particularly when including SNPs that are below the conventional GWAS significance 

threshold. The predictive accuracy of the PGS in this study is saturated by the high correlation with 

population IQ, but methods could be used in other studies to improve PGS construction. Reviewer 2 

suggested the following procedure for optimal PGS construction that could be used in future studies: 

“Start with the quantile that has the most significant SNPs, and then add quantiles in declining order 

of genome-wide significance. Initially, adding quantiles will improve prediction, but after a certain 

point, adding more quantiles will make prediction worse. At that inflection point you have the 

optimal PGS”.  

A persistent issue is that the trans-ethnic validity of PGS is compromised by LD decay. This is 

the decay in linkage disequilibrium with time, meaning that the older the causal polymorphism, the 

lower the level of linkage disequilibrium due to recombination events that occur with constant 
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probability in every generation. As a consequence, linkage patterns can be different in different 

populations, especially those that separated a long time ago and that underwent population 

bottlenecks after separation. 

The effect of LD decay on comparison of risk alleles between populations is still unclear. Since 

most GWAS hits are actually tag SNPs, decay in LD implies that the causal SNPs will be less 

efficiently flagged by the tag SNPs until the tag SNPs will resemble a sample of random SNPs. With 

less significant associations, it is not only more likely that the distance between the GWAS hit and 

the causal polymorphism is larger and linkage is weaker in the European-origin populations that are 

represented in the GWASs, but it is also more likely that the linkage phase is different in different 

races.  

LD is sensitive to coverage and in older studies using low coverage genomic data (e.g. 1000 

Genomes phase 1), it was found to reduce the reproducibility of findings [40]. However, 

contemporary GWAS use higher coverage data (e.g. 1000 Genomes phase 3); hence, this issue is less 

important. 

Moreover, simulations found that the effect of LD decay on true causal variants was null to 

negligible [41]. The present study, by focusing only on the most significant hits (N = 2411), increased 

the likelihood of hitting on or very close to causal variants, hence reducing the artifact of LD decay. 

Moreover, the analysis was replicated using a set of putatively causal SNPs (N = 125) from the Lee et 

al.(2018) [7] paper. The correlation with population IQ was still high (r = 0.82 and 0.85 with the 

weighted and unweighted PGS, respectively) although not as high as that achieved by the larger set: 

this could be caused by the loss of signal due to the much smaller number of SNPs. 

In contrast, Lee et al. (2018) [7] analyzed the association between EDU PGS and years of 

education in an older African American sample. Given their use of all SNPs regardless of significance, 

it is not surprising that the cross-ethnic validity of their scores was drastically reduced [7]. Moreover, 

since the heritability of education among older African Americans is unknown and the predictive 

validity of PGS scores depend on the population specific trait heritability, we do not know if the 

reduction in trans-ethnic validity was due to a reduced heritability. 

In fact, it is well known that polygenic scores perform better in European populations, and 

prediction accuracy is reduced by approximately 2 to 5 fold in East Asian and African American 

populations, respectively [42].  

A recent study has replicated the validity of Lee et al. (2018) [7]’s PGS on a sample of African 

Americans; the authors found that a higher EA PGS was associated with higher probability of college 

completion and math performance, although not with reading achievement. There was also a 

negative association with criminal record status. However, there was an attenuation compared to the 

PGS effect among White subjects. The authors attribute this to various potential factors besides LD 

decay: 1) The study used a sample low in socioeconomic status (SES), where shared environment 

plays a bigger role than in high SES environments [43]; and 2) Measures of math and reading 

performance were obtained in early childhood, a developmental period during which the importance 

of genetic influences on intelligence is lower (and that of shared environment is higher) compared to 

young adulthood [43]. Nonetheless, this study provides evidence for the (partial) transferability of 

EA polygenic scores to African Americans. 

Additionally, trans-ethnic GWAS meta-analyses on other traits have also found genetic variants 

with little heterogeneity between ancestry groups [44,45]. A recent GWAS of schizophrenia found 

that approximately 95% of SNPs from a Western GWAS had consistent direction of effect in the 

Chinese sample, and this was significant for about half of those (Li et al., 2017) [46]. 

We postulate that this common core of causal genetic variants with trans-ethnically 

homogeneous effects is what drives the association between average trait values and population IQ 

or height, and the group differences in mean PGS. This would be superimposed on a background of 

heterogeneity of allelic effects, thus adding noise to the data.  

In fact, LD decay is expected (from a theoretical perspective) to create noise and follow drift and 

not to produce a bias necessarily in a direction that favours the hypothesis of this study [40]. Since 

the frequency of the average SNP allele is 50%, the tag SNPs will tend to converge towards an average 
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frequency of 50%, with increasing LD decay. The implication of this for our analysis is that when the 

polygenic scores are below 50%, our estimates will be inflated, and vice-versa for the polygenic scores 

which are above 50%, because LD decay pushes the polygenic scores up (or down) towards the 

background frequency of 0.5. In the present case, the average frequency of alleles with positive effect 

is around 50% (49.7%) for CEU and CHS (49.7% and 50.1%); hence, LD decay should produce only a 

tiny bias in the estimate (upward and downward bias, respectively). However, the allele frequencies 

of causal SNPs in other (non-European) populations that are farther away from 50% will produce a 

stronger bias. For example, the average YRI frequency is 47.5%, so LD decay produces an 

overestimate of the PGS. In other words, the frequency of causal SNPs is expected to be lower than 

47.5%. 

A preliminary test of this hypothesis was carried out by employing 125 candidate causal SNPs 

from the Lee et al. (2018) [7] GWAS. The unweighted EDU3-Causal PGS difference was negatively 

correlated (r = −0.62) to the unweighted EDU3 PGS. In other words, the lower the frequency of the 

EDU3 PGS, the higher the estimate in the larger set than in the set of putatively causal SNPs, 

suggesting that LD decay leads to an overestimation of the PGS in the populations with lower PGS, 

as predicted by theory.  

Adding socioeconomic variables to the model slightly (but significantly) increased the predictive 

power (from 78–80% to 85–89%), although the PGS explained twice as much of the variance (70% vs. 

35%) as those of HDI, average protein consumption or child mortality (Table 3). The reverse was the 

case for height, where socioeconomic factors explained much more of the variance in average height 

than the PGS (Table 4). This is in line with heritability studies which show the importance of the 

shared environment for adult height even in rich Western countries (about 10%) and more so in non-

Western countries [47], and the dramatic secular trend in height. On the other hand, the shared 

environmental impact on IQ or g in adulthood is typically found to be near zero [48], although this 

might not be the case in developing countries or deprived rearing environments. Indeed, the IQ of 

African Americans appears to be higher than what is predicted by the PGS (Figure 2), which suggests 

this cannot be explained by European admixture alone, but it could be the result of enjoying better 

nutrition or education infrastructure compared to native Africans. Another explanation is heterosis 

("hybrid vigor"), that is the increase in fitness observed in hybrid offspring thanks to the reduced 

expression of homozygous deleterious recessive alleles [49]. The Sri Lankan UK population also 

constitute an outlier, because their IQ is lower than that predicted by the PGS. This does not 

contradict the previous statement, because the IQ estimate obtained from Piffer (2015) [9] was based 

on native Sri Lankans, since estimates for Sri Lankans living in the UK were not available. Given the 

moderate impact of environment, it is likely that the IQ of Sri Lankans living in the UK is actually 

higher than that of native Sri Lankans. 

Testing more sophisticated models with larger sets of socioeconomic variables would go beyond 

the scope of this paper but it is an interesting direction for future research. 

Future GWAS studies should be carried out on non-European populations. Indeed, trans-ethnic 

GWASs are a promising resource for the identification of alleles with homogeneous and 

heterogeneous effects and the computation of population-specific polygenic scores. Specifically, they 

would enable us to include SNPs that are polymorphic only in some populations, and to find the 

causal SNPs that have the same causal effect in all populations. 
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