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Abstract: A styrylpyridine-containing cyclophane with diethylenetriamine linkers is presented as a
host system whose association with representative nucleotides was examined with photometric and
fluorimetric titrations. The spectrometric titrations revealed the formation of 1:1 complexes with log
Kb values in the range of 2.3–3.2 for pyrimidine nucleotides TMP (thymidine monophosphate), TTP
(thymidine triphosphate) and CMP (cytidine monophosphate) and 3.8–5.0 for purine nucleotides
AMP (adenosine monophosphate), ATP (adenosine triphosphate), and dGMP (deoxyguanosine
monophosphate). Notably, in a neutral buffer solution, the fluorimetric response to the complex
formation depends on the type of nucleotide. Hence, quenching of the already weak fluorescence
was observed with the purine bases, whereas the association of the cyclophane with pyrimidine bases
TMP, TTP, and CMP resulted in a significant fluorescence light-up effect. Thus, it was demonstrated
that the styrylpyridine unit is a useful and complementary fluorophore for the development of
selective nucleotide-targeting fluorescent probes based on alkylamine-linked cyclophanes.

Keywords: fluorescent dyes; nucleotide recognition; heterocycles; host–guest chemistry

1. Introduction

Nucleotides play a crucial role in several biological processes, for example as essen-
tial building blocks in DNA replication and RNA synthesis [1,2]. Furthermore, they are
essential in cell signaling, metabolism, and enzyme reactions as cofactors for NAD+ and
FAD and as energy carriers in the form of triphosphate nucleotides [3,4]. Therefore, the
detection and monitoring of nucleotides are important tasks to contribute to the assessment
and understanding of biochemical processes in living organisms [5–9]. Along these lines,
photometric and electrochemical analysis, as well as 1H NMR spectroscopic analysis, are
routinely used methods for nucleotide detection; however, elaborate protocols, relatively
expensive equipment, and limited sensitivity are drawbacks of these methods [10,11]. For
this purpose, fluorescence spectroscopy is a useful and easily accessible analytical tool
because it enables the efficient and sensitive detection of biologically relevant analytes
with suitable fluorescent probes (chemosensors), which change their emission proper-
ties upon analyte binding [12–20]. Along these lines, fluorescent probes that can detect
nucleotides by means of emission quenching or emission enhancement (light up) have
been reported [21–24]. However, selective chemosensors for particular nucleotides are still
needed, so the development of such fluorescent probes still represents a rewarding and
challenging research field in chemistry [25–27].

The most abundant nucleotide is adenosine triphosphate (ATP), which plays an im-
portant role in the energy transport in living organisms [28,29] and as a main biochemical
component in cancer cells, where it can either enhance or suppress tumor growth, depend-
ing on the concentration [30]. Consequently, several different methods and approaches for
the efficient and selective detection of ATP have been reported [31–38]. On the contrary,
the selective analysis and sensing of other nucleotides has been scarcely reported so far.
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For example, the selective photometric detection of thymidine triphosphate (TTP) relative
to other mono-, di-and triphosphate nucleotides has been realized with gold nanoparticles
and a p-xylylbis(Hg2+-cyclen) complex [39]. Likewise, cytidine triphosphate (CTP) has
been shown to induce selective luminescence quenching of a terbium(III)-organic frame-
work [40], and a polyhydroxy-substituted Schiff base receptor has been reported to be a
selective fluorescent chemosensor for CTP and ATP [41]. More recently, a bisnaphthalimide
receptor with a pyridine spacer has been introduced as a selective fluorescent probe for
CTP [42]. Moreover, anthracene derivatives with two appended imidazolium groups have
been reported whose emission is efficiently quenched by GTP [43].

In this context, fluorescent cyclophanes have been established as useful scaffolds for
the development of host systems for inorganic and organic anions and may be applied in
chemosensing, bioimaging, and drug delivery [44–52]. In particular, several phenyl- [53,54],
naphthalene- [55], anthracene- [56–58], and acridine-based [59] cyclophanes, as well as met-
allocyclophanes [60], have been reported as hosts that strongly bind to nucleotides [25,61].
In seminal work, bisnaphthalenophanes with six amino-functionalities in the linking chains
have been introduced as ideal host molecules for the efficient recognition of organic and
inorganic phosphates [55]. Likewise, it has been shown that similar anthracene- [62] and
pyrene-based [63–65] cyclophanes have the ability to discriminate between different nu-
cleotide triphosphates by the selective complex formation and that these interactions may
be used for fluorimetric detection of nucleotides [44,61]. Besides the recognition of single
nucleotides, cyclophanes are also apt to bind preferentially to nucleobases in mismatched
and abasic site-containing DNA [66–69].

Although some cyclophanes are already available for fluorimetric nucleotide detection,
there is still room for further development. Specifically, variations of the aromatic unit
appear promising because this part of the host molecule provides an essential binding site
for π stacking with the nucleic base. Surprisingly, most employed aromatic subunits are
fused polycyclic fragments with limited conformational flexibility, such as naphthalene or
anthracene, whereas more flexible scaffolds with resembling π surface, such as stilbenes or
styryl-substituted hetarenes, have not been employed for this purpose, so far. Along these
lines, we proposed that the known 2-styrylpyridine unit may serve as a useful, complemen-
tary aromatic component in nucleotide-binding cyclophanes because it provides a flexible
aromatic surface, which may enable a more variable π stacking, along with a decent dipole,
which may increase the binding affinity by dipole-dipole interactions with the nucleic
base. Herein, we report on the synthesis of a bis-styrylpyridine-based cyclophane, and
demonstrate that it may be used for fluorimetric detection and differentiation of nucleotides
at physiological pH.

2. Results
2.1. Synthesis

The known dibromostyrylpyridine derivative 1 [70] was formylated by lithium-
halogen exchange with n-BuLi and subsequent reaction with DMF to the corresponding
styrylpyridine bis-carbaldehyde 2 in 63% yield (Scheme 1, see Supplementary Materi-
als). Condensation of the latter with diethylenetriamine and subsequent reduction of the
tetraimine intermediate 3 with NaBH4 gave the macrocyclic polyamine 4 in a yield of 23%.
The known derivative 1 was synthesized by a varied procedure and identified by compar-
ison with the literature data [71], and the new compounds 2 and 4 were identified and
fully characterized by NMR spectroscopy (1H, 13C, COSY, HSQC, and HMBC), elemental
analyses, and mass spectrometry (Figures S2–S7). In all cases, the E-configuration of the
alkene units in compounds 1, 2, and 4 were indicated by characteristic coupling constants
of the alkene protons (3JH–H = 16 Hz).
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The data from the photometric titration were used to determine the pKa values of 5.2 
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observed for resembling cyclophanes with the same diethylenetriamine linker [62]; 

Scheme 1. Synthesis of cyclophane 4.

2.2. Solvent and pH-Dependent Absorption and Emission Properties

In the MeOH solution, cyclophane 4 exhibited an absorption maximum at λabs = 314 nm
and a fluorescence maximum at λfl = 379 nm with low emission quantum yield (<0.01) (see
Supplementary Materials).

The pH dependence of the absorption properties of cyclophane 4 was determined
by spectrometric acid-base titrations in Britton-Robinson buffer (Figure 1). At neutral pH,
the absorption maximum was at λabs = 314 nm. The absorbance increased both at lower
(pH < 5) and higher pH (>8) values, with the highest absorbance at pH 2. The absorption
maximum also shifted with varying pH, from λabs = 321 nm at pH 2 to λabs = 314 nm at
pH 7 and to λabs = 318 nm at pH 12. Furthermore, a slight shoulder at λabs = 364 nm was
observed at pH 2, which steadily disappeared with increasing pH.
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Figure 1. Photometric (A) and fluorimetric (B) acid–base titrations of cyclophane 4. Blue line: begin-
ning of titration (pH = 2.0); green line: absorbance and emission at pH 7.2; red line: end of titration
(pH = 12.6). Insets: plot of the absorbance at 320 nm (A) and fluorescence at 414 nm (B) versus pH.
In all cases: c = 10 µM, in Britton-Robinson buffer with 5% DMSO, λex = 313 nm.

The data from the photometric titration were used to determine the pKa values of
5.2 and 9.4. Another pKa value was estimated to be in the range of 2–3, as has been
usually observed for resembling cyclophanes with the same diethylenetriamine linker [62];
however, no adequate fit was obtained for this region, so a more accurate value was
not available.

The emission spectrum of cyclophane 4 revealed a broad maximum at λfl = 410 nm at
pH 2. With increasing pH to 4, the emission intensity firstly increased by a factor of ca. 2
and reached the highest intensity with a bathochromic shift of ∆λfl = 5 nm. With the further
addition of base (pH > 4), the fluorescence was strongly quenched by about 70% with a
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hypsochromic shift of the emission maximum of ∆λ = 27 nm at pH 8.5. At pH > 9, the
emission intensity remained low, with a slight increase in the emission after pH > 10. Most
notably, at neutral pH, the emission of the styrylpyridine is already sufficiently quenched
so this compound may be used as a fluorescence light-up probe for target nucleotides at a
physiological pH range, that is, under conditions usually found in real biological samples.

2.3. Nucleotide-Binding Properties of 4

The association of the macrocyclic polyamine 4 with selected nucleotides was investi-
gated by photometric and fluorimetric titrations with adenosine monophosphate (AMP),
ATP, deoxyguanosine monophosphate (dGMP), thymidine monophosphate (TMP), TTP,
and CTP in cacodylate buffer solution at pH 7.2, that is, conditions at which the emission
is already very low (Figures 2 and 3). Upon addition of AMP, ATP, and dGMP to 4, the
absorbance (λmax = 314 nm) decreased with the formation of a red-shifted absorption
band (∆λ = 5 nm) and isosbestic points at λ = 323 nm, 320 nm, and 320 nm, respectively
(Figure 2A). In the presence of these nucleotides, the already weak fluorescence of the cy-
clophane 4 was further quenched with different efficiencies, that is, with I/I0 of 0.46 (AMP),
0.59 (ATP), and 0.04 (dGMP) at saturation (Figures 2B and 4A). Moreover, the fluorescence
maximum of styrylpyridine 4 was blue-shifted with ∆λ = 34 nm on the addition of AMP
and ATP, whereas no shift of the fluorescence maximum was observed with dGMP.
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The binding constants were determined from the experimental binding isotherms
of the photometric titrations. Thus, the experimental data were reasonably fitted to a 1:1
binding stoichiometry of nucleotide and 4 with logKb values of 4.1, 5.0, and 3.8 for AMP,
ATP, and dGMP, respectively (Table 1). These values are in the same range of logKb values
for two resembling pyrene-based diethylenetriamine-cyclophanes with logKb values of 3.00
and 4.15 with AMP, 5.48 and 5.55 with ATP and 3.51 and 4.50 with dGMP [63] and slightly
higher than those observed with the resembling anthracene-based cyclophane with a logKb
value of 3.38 with ATP [62]. In comparison with mono- and triphosphate nucleotides,
higher binding constants were also obtained with ATP as compared with AMP [63].

Table 1. Absorption and emission properties of cyclophane 4 and its complexes with nucleotides,
and the corresponding binding constants, logKb.

λabs/nm [a] ∆λabs/nm λfl/nm [a] ∆λfl/nm logKb
[b] I/I0

4 314
(4.67) [c] – 429

(<0.01) [d] – – –

4/TMP 317 3 384 −45 2.8 ± 0.1 2.72
4/TTP 317 3 384 −45 3.2 ± 0.1 2.43
4/CMP 314 – 388 −41 2.3 ± 0.1 1.23
4/AMP 319 5 395 −34 4.1 ± 0.1 0.48
4/ATP 319 5 395 −34 5.0 ± 0.1 0.54

4/dGMP 319 5 429 – 3.8 ± 0.1 0.10
[a] In cacodylate buffer, pH 7.2; T = 20 ◦C. [b] Determined from the analysis of the fluorimetric titration data
with Specfit/32TM with adequate fits for complexes with 4:nucleotide ratio 1:1. K in M−1. [c] Molar extinction
coefficient ε, given as lg ε, ε in cm–1 M–1. [d] Fluorescence quantum yield, relative to naphthalene (φfl = 0.23 in
cyclohexane, ref. [72]), λex = 280 nm, estimated error: ± 10% of the given value.

Titrations of the cyclophane 4 with TMP and TTP decreased the absorbance with red
shifts of ∆λ = 3 nm (Figure 3A). However, in contrast to titrations with the other nucleotides
(see above), the addition of TMP and TTP resulted in a significant increase and blue shift
(∆λ = 45 nm) of the fluorescence band (Figure 3B). The fluorescence light-up effect is more
pronounced with TMP (I/I0 = 2.72) than with TTP (I/I0 = 2.43), respectively (Figure 4A).
Upon the addition of CMP to 4, the absorption band remained essentially unchanged. At
the same time, a fluorescence light-up effect was observed upon the addition of CMP along
with a blue shift of the fluorescence maximum of ∆λ = 41 nm; however, the increase of
the fluorescence intensity (I/I0 = 1.23) was less pronounced than the one with TMP and
TTP (Figure 4). Notably, the increased emission intensity of compound 4 upon complex
formation with the pyrimidine nucleotides can be seen with the naked eye (Figure 4B).
From the fluorimetric titration data, the limit of detection (LOD) of 4 was estimated to be
0.09 µM, 0.02 µM, and 0.04 µM for TMP, TTP, and CMP, respectively (Table S1).

The binding isotherms were determined from the fluorimetric titration data as logKb = 2.8,
3.2, and 2.3 for 1:1 complexes with TMP, TTP, and CMP, respectively (Table 1, Figure S1).
For comparison, the reported logKb values of resembling pyrene- and anthracene-based
cyclophanes are 4.77 and 5.16 [63], and 3.60 [62] for complexes with TTP, that is, somewhat
higher than the values for cyclophane 4. Furthermore, the binding constants for cyclophane
4 are higher for the complexes with purine nucleotides than for the pyrimidine nucleotides,
which is in accordance with a literature-known pyrene-based cyclophane [63].

3. Discussion

The pKa values of 2–3, 5.2, and 9.4 for cyclophane 4 are assigned to the eight available
protonation sites, namely the amine and pyridine functionalities. Specifically, the pKa
values of the secondary amines fall in the range of the ones of similar, known amino-
containing macrocyclic structures [63]. Accordingly, the pKa values of the two central
amino groups are estimated to be in the range of 2–3, and the pKa value of 9.4 is assigned to
the four lateral amino groups. In addition, the pKa value of 5.2 relates to the two pyridine
units, which is in accordance with the known pKa value of 5.0 for 2-styrylpyridine [73].
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Overall, the acid-base titrations revealed the expected protolytic equilibrium result-
ing from the protonation of the amino functionalities and the pyridine unit in an acidic
medium (Scheme 2). In particular, as has been shown for resembling fluorophore-containing
polyamine-linked cyclophanes [62,74], the emission of the styrylpyridine is efficiently
quenched by a photoinduced electron transfer (PET) reaction of the electron-donating
amine functionalities with the excited fluorophore, whereas upon protonation this de-
activation pathway is suppressed and the emission intensity increases significantly [75].
Apparently, the pyridine unit does not interfere with this general process; however, under
acidic conditions, the formation of the corresponding pyridinium may be responsible for
the shifts of the emission maximum at lower pH values [76].
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Scheme 2. Protolytic equilibrium of cyclophane 4.

As compared with resembling anthracene- and pyrene-based cyclophanes, which
show a fluorescence light-up effect upon complexation of TTP, CTP, and ATP and fluo-
rescence quenching with GTP [62,63], cyclophane 4 exhibits a different dependence of
the fluorimetric response on the type of nucleotide. Namely, a fluorescence enhancement
occurs upon binding of pyrimidine nucleotides TMP, TTP, and CMP, whereas an effective
quenching of the fluorescence results from association with purine nucleotides AMP, ATP,
and dGMP. This observation may be explained by the specific pH- and structure-dependent
emission properties of the cyclophane 4. Firstly, the amino functionalities of the linker units
quench the emission of such cyclophanes by a PET reaction (see above) [62], which readily
explains the low emission at the applied pH of 7.2. More importantly, cyclophane 4 exhibits
two different emission maxima: a fluorescence maximum at λ = 429 nm in the unbound
state and a blue-shifted one around λ = 384 nm upon complexation of the nucleotides. As
it has been observed already with similar aminoalkyl-linked cyclophanes that these com-
pounds tend to form emitting excimers [63], it is proposed that the red-shifted emission of
4 also originates from an intramolecular excimer formation between the two styrylpyridine
units (Scheme 3). This proposal is in agreement with the excimer formation of resembling
azastilbene-type derivatives, which is accompanied by a red shift of the emission maxi-
mum [77–80]. Upon binding of the pyrimidine nucleobases with the cyclophane 4, the
emission increases as a result of the formation of the host-guest complexes, presumably
because the complexation of the nucleotide involves hydrogen bonding with the amino
functionalities [81,82], which in turn suppresses the PET quenching of the photoexcited
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fluorophore and leads to increased fluorescence intensity. In addition, the accommodation
of the nucleotide in the cavity of the cyclophane also inhibits the excimer formation so
only the blue-shifted monomer emission is detected. In contrast, the binding of purine
nucleobases leads to emission quenching of cyclophane 4. This fluorescence quenching of
cyclophane 4 by purine nucleotides may be explained by a different binding mode of the
purine nucleotides ATP, AMP, and dGMP, as compared with one of pyrimidine nucleotides,
which leads to a fluorescence enhancement upon formation of the cyclophane-nucleotide
complex [83–85]. At the same time, it cannot be excluded that the purine nucleotides bind
in a similar mode as the pyrimidine nucleotides and that the fluorescence quenching by
ATP, AMP, and dGMP is just the result of a stronger quenching efficiency of the purine
bases. Accordingly, the latter have a much lower reduction potential than the pyrim-
idine bases [86,87] and can, therefore, induce an efficient fluorescence quenching by a
photoinduced electron transfer reaction with the excited styrylpyridine.
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To the best of our knowledge, this is the first reported cyclophane-based fluores-
cent probe that can discriminate between purine and pyrimidine nucleobases based on a
clear light-up effect induced by the latter. Nevertheless, a resembling anthracene-based
derivative bearing two imidazolium-containing alkyl chains is known to show these prop-
erties [43]. Because of the significant light-up effect of 4 upon binding to TMP and TTP,
cyclophane 4 may be employed as a fluorescent probe for the detection of thymine-based
nucleotides. Notably, the detection of nucleotides is accomplished under physiological
conditions at pH 7.2, rendering cyclophane 4 also interesting for biological applications. For
comparison, only a few examples of cyclophanes have been explicitly reported that enable
the detection of nucleotides at neutral pH [54,88], so there is still a demand to develop such
recognition systems for nucleotides, that is, as the one reported herein, which operate in a
physiological pH range.

4. Conclusions

The spectroscopic investigation of the nucleotide-binding properties of the cyclo-
phane 4 revealed that purine bases AMP, ATP, and dGMP are binding upon fluorescence
quenching, whereas in contrast, with pyrimidine bases TMP, TTP, and CMP, a clear, distin-
guishable fluorescence light-up effect was observed. Overall, we have demonstrated that
the styrylpyridine unit is a useful and complementary fluorophore for the development of
selective nucleotide-targeting fluorescent probes based on alkylamino-linked cyclophanes,
especially considering the observation that this probe operates at the physiological pH
range. Therefore, further studies of the particular binding modes as well as systematic
variations of the substitution pattern, should enable the development of efficient chemical
sensors for bioanalytical applications.

5. Materials and Methods

The commercially available chemicals (Alfa, Merck, Fluorochem, or BLDpharm) were
of reagent grade and used without further purification. Nucleotides ATP (adenosine-5′-
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triphosphate disodium salt) and CMP (cytidine-5′-monophosphate disodium salt) were
purchased from Feinbiochemika (Heidelberg, Germany), and nucleotides TMP (thymidine-
5′-monophosphate disodium salt hydrate), TTP (thymidine-5′-triphosphate tetrasodium
salt), AMP (adenosine-5′-monophosphate sodium salt) and dGMP (2′-deoxyguanosine-
5′-monophosphate sodium salt hydrate) were purchased from Sigma-Aldrich (St. Louis,
MO, USA). 1H NMR spectra were recorded with a JEOL ECZ 500 (1H: 500 MHz and
13C: 125 MHz) and a Varian VNMR S600 (1H: 600 MHz and 13C: 150 MHz) at T = 25 ◦C. The
1H NMR and 13C{1H} NMR spectra were referenced to an internal standard in CDCl3 [TMS:
δ(1H) = 0.00 ppm, δ(13C) = 0.00 ppm]. Structures were assigned with additional information
from gCOSY, gHSQC, and gHMBC experiments, and the spectra were processed with
the software MestreNova. The mass spectra were recorded with a Finnigan LCQ Deca
(driving current: 6 kV, collision gas: argon, capillary temperature: 200 ◦C, support gas:
nitrogen) and an Orbitrap mass spectrometer Thermo Fisher Exactive (driving current:
3.5 kV, capillary temperature: 300 ◦C, capillary voltage: 45 V, injection rate: 5 µL/min,
scanning range: 150−750 m/z, and resolution: ultra-high) and processed with the software
Xcalibur. The CHNS analysis data were determined in-house with a HEKAtech EuroEA
combustion analyzer. The melting points were measured with a melting point apparatus
BÜCHI 545 (Büchi, Flawil, CH) and are uncorrected. The absorption spectra were recorded
on a Varian Cary 100 Bio absorption spectrometer with Hellma quartz glass cuvettes 110-QS
(layer thickness d = 10 mm). The emission spectra were recorded on a Varian Cary Eclipse
fluorescence spectrometer with Hellma quartz glass cuvettes 115 FQS (layer thickness
d = 10 mm). All measurements were recorded at T = 20 ◦C as adjusted with a thermostat
if not stated otherwise. The sample solutions in the titration experiments were mixed
with a reaction vessel shaker Top-Mix 11118 (Fisher Bioblock Scientific). E-Pure water was
obtained with an ultrapure water system D 4632-33 (Wilhelm Werner GmbH, Leverkusen,
D) with filters D 0835, D 0803, and D 5027 (2×).

Synthesis of (12E,25E)-11,3,6,9,141,16,19,22-Octaazapentacyclo-1,14(3,6)-dipyridina-11,24(1,4)-
dibenzenacyclo-hexacosaphane-12,25-diene (4)

Under an argon gas atmosphere, a solution of 2 (100 mg, 420 µmol) in CH2Cl2 (15 mL)
and MeCN (55 mL) was added dropwise to a solution of ethylentriamine (45.4 µL, 43.5 mg,
420 µmol) in MeCN (30 mL) at room temperature, and the mixture was stirred for 4 d at
room temperature. Approximately half the volume of the solvent was removed under re-
duced pressure, and the precipitated solid was filtered off, washed with MeCN (2 × 10 mL),
dried under reduced pressure (0.5 mbar, 1 h), and suspended in a mixture of CH2Cl2 (5 mL)
and MeOH (2.5 mL). NaBH4 (100 mg, 2.66 mmol) was added, and the mixture was stirred at
room temperature for 3 h under an argon gas atmosphere. The solvent was removed under
reduced pressure, and the remaining residue was dissolved in aqueous NaOH (20 mL,
1.0 M) and extracted with CHCl3 (3 × 20 mL). The combined organic layers were dried
with K2CO3 and filtered, and the solvent was removed under reduced pressure. The crude
product was dissolved in CHCl3 (5 mL), precipitated with hexane (25 mL), filtered off
and recrystallized from toluene to give the product 4 as light yellow amorphous solid
(60 mg, 97 µmol, 23%); mp 184–187 ◦C.-1H NMR (500 MHz, CDCl3): δ = 1.74 (br s, 6H,
6 × NH), 2.76–2.82 (m, 8H, 4 × CH2, γ-H, δ-H, fornumbering, see Scheme 1), 2.83–2.92 (m,
8H, 4 × CH2, β-H, ε-H), 3.77 (s, 8H, 4 × CH2, α-H, ζ-H), 7.11, 7.12 (2 × d, 3J = 16 Hz, 2H,
1′-H), 7.16, 7.23 (2× d, 3J = 8 Hz, 2H, 5-H), 7.26, 7.28 (2× d, 3J = 8 Hz, 4H, 2′′-H, 4′′-H), 7.43,
7.45 (2 × d, 3J = 8 Hz, 4H, 1′′-H, 5′′-H), 7.52–7.57 (m, 2H, 4-H), 7.57, 7.60 (2 × d, 3J = 16 Hz,
2H, 2′-H), 8.52 (s, 2H, 2-H).-13C NMR (125 MHz, CDCl3): δ = 48.3, 2 × 48.4 (4 × C, Cγ,
Cδ), 48.8, 2 × 48.9 (4 × C, Cβ, Cε), 51.0 (2 × C, Cζ), 53.6 (2 × C, Cα), 121.8, 121.9 (2 × C,
C5), 127.1, 127.2 (4 × C, C1′′, C5′′), 127.4, 127.5 (2 × C, C1′), 2 × 128.4 (4 × C, C2′′, C4′′),
132.0, 132.1 (2 × C, C2′), 2 × 134.2 (2 × C, C3), 2 × 135.4 (2 × C, C6′′), 136.2, 136.3 (2 × C,
C4), 140.7, 140.8 (2 × C, C3′′), 2 × 149.4 (2 × C, C2), 154.5, 154.6 (2 × C, C6).-MS (ESI+):
m/z (%) = 617 (100) [M + H]+.-El. Anal. for C38H48N8 × H2O calc. (%): C 71.89, H 7.94, N
17.65, found: C 72.11, H 7.68, N 17.07.
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