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Abstract: By employing the HSAB principle and the “assisted self-assembly” approach and us-
ing 2-pyridylaldoximate (pao−) as the primary ligand and pivalate (piv−) as the ancillary co-
ligand, tetranuclear [CoIII

2LnIII
2(NO3)4(pao)4(piv)4] complex polynuclear compounds were isolated

(Ln = Dy, Gd, Tb, Pr, Y). The structure of the Dy(III) complex was determined via single-crystal
X-ray crystallography, revealing a metal topology of two {CoIIIDyIII

2} triangles that shared a common
DyIII . . . DyIII edge. Microanalytical, PXRD (for the two first members)d and spectroscopic (IR, EDX)
data for all complexes provided strong evidence that the complexes were isostructural. The nuclearity
and metal topology of the crystallographically characterized [CoIII

2LnIII
2(NO3)4(pao)4(piv)4] are

new in the previously investigated CoIII/LnIII/pao− chemistry emphasizing utility of the “assisted
self-assembly” approach.

Keywords: 3d/4f coordination complexes; infrared spectroscopy; energy-dispersive X-ray
spectroscopy; single crystal

1. Introduction

Heterometallic first-series transition metal (3d)/rare earth metals (Ln) complexes were
first introduced a century ago [1], but it is in the past two decades that they have been
explored more extensively due to their exciting properties (magnetic, optical, catalytic,
etc.) [2–6], which have been and will be used in diverse applications. The synthesis of
3d/4f-metal complexes has been widely investigated [7–12] but in many cases requires a
proper design. In particular, the synthesis of trivalent cobalt compared to divalent cobalt
compounds is a non-routine event in the field of 3d/4f coordination chemistry. There are
in many cases fewer heterobimetallic complexes of trivalent cobalt compared to divalent
cobalt. In addition, in many cases one-pot routes involving the reaction of 3d- and 4f-metal
starting materials with a polydentate organic ligand often results in the preparation of pure
3d- and 4f-metal complexes. In 1963, Pearson introduced the “Hard and Soft Acids and
Bases” (HSAB) model [13], which afterward was established as a useful synthetic tool for
the synthesis of coordination complexes. Based on this model, the thermodynamically
strongest possible bonding could be promoted by pairing different Lewis acids and bases,
leading to the synthesis of 3d/4f-metal complexes. It is therefore anticipated that the LnIII

ions that behave as hard acids and 3d metals (divalent or sometimes trivalent) that are
less hard (borderline) acids tend to bind to oxygen (hard bases) and nitrogen (borderline)
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donor atoms, respectively. It is thus clear that the choice of the ligands is of paramount
importance for a successful synthetic work.

One route and one strategy (or “designed assembly”) have been popular for the syn-
thesis of 3d/4f-metal compounds [4]. The route is a “one-pot” procedure. This requires
a mixture of simple 3d- and 4f-metal “salts” and a designed polydentate organic ligand
that possesses parts (coordination “components” or “pockets”) for selective capture of
the 4f-metal ion. The strategy, often called the “metal complex as ligand” or “metalloli-
gand” approach, uses isolated mononuclear or dinuclear 3d-metal ion complexes with
uncoordinated (free) O-sites, which can further react with the oxophilic (hard acid) LnIII ion;
alternatively, the metalloligands can be mononuclear or dinuclear 4f-metal ion complexes
with uncoordinated (free) N-sites, which can further react with less oxophilic (borderline
acid) 3d-metal ions [4,14–19]. There is also a third approach named “assisted self-assembly”
in which the introduction of an appropriate co-ligand (e.g., a simple carboxylate or β-
dikeonate ion) provides significant assistance to the self-assembly procedure, often leading
to high-nuclearity coordination polynuclear compounds or coordination polymers [20].

Anionic 2-pyridyl oximes are ideal candidates for the construction of 3d/4f-metal
complexes [4]. They possess two N atoms that can form a stable 5-membered chelating
ring with the 3d-metal ion and a deprotonated O atom that can bind to one or two LnIII

ions (Scheme 1). Restricting further discussion to the simplest 2-pyridyl oxime (2-pyridyl
aldoxime, paoH) and cobalt, the “one-pot” route [21] and the “metalloligand” approach [22]
have led to dinuclear {CoIIILnIII} and trinuclear {CoIII

2LnIII} complexes. We suspected that
higher nuclearity CoIII/LnIII/pao− complexes may arise by combining the paoH as the
primary ligand with the pivalate (piv−) as the ancillary co-ligand (these are known for their
effective bridging of 3d/4f metal ions) following an “assisted self-assembly” approach. We
were pleased to see that the outcome was a family of {CoIII

2LnIII
2} complex polynuclear

compounds. Preliminary synthetic, structural, and characterization efforts for this family
are described in this paper.
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and pivalic acid (CAS: 75-98-9) used for the preparation of the starting material 
[CoII2(OH2)(piv)4(pivH)4]/Ln(NO3)3·xH2O were of analytical grade. The 2-pyridylaldoxime 
(CAS: 1193-96-0) and the sodium methoxide (CAS: 124-41-4) were of reagent grade with a 
purity >99.9% and >95%, respectively. The purity of the products was checked via carbon, 
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Scheme 1. Crystallographically established coordination modes of the ligand pao− in 3d/4f complex
polynuclear compound chemistry. Harris notation is used to describe these modes. M = a transition
metal ion; LnIII = a trivalent rare earth metal. Coordination bonds are drawn with bold lines.

2. Materials and Methods
2.1. Materials and Spectroscopic–Physical Measurements

All synthetic procedures were performed under aerobic conditions. Distilled wa-
ter was received from the in-house facility. Solvents and reagents were purchased from
Sigma-Aldrich (Tanfrichen, Germany) and Alfa Aesar (Karlsruhe, Germany) and used
as received without further purification. The cobalt(II) carbonate hydrate (CAS: 57454-
67-8) and pivalic acid (CAS: 75-98-9) used for the preparation of the starting material
[CoII

2(OH2)(piv)4(pivH)4]/Ln(NO3)3·xH2O were of analytical grade. The 2-pyridylaldoxime
(CAS: 1193-96-0) and the sodium methoxide (CAS: 124-41-4) were of reagent grade with a
purity >99.9% and >95%, respectively. The purity of the products was checked via carbon,
hydrogen, and nitrogen microanalyses performed by the Instrumental Analysis Center of
the University of Patras. KBr pellets of the complexes were prepared under pressure, and
the FT-IR spectra were recorded using a Perkin-Elmer spectrometer (16PC, Perkin-Elmer,
Waltham, MA, USA). The elemental analyses of the samples were also performed with a
Zeiss ZUPRA 35 VP-FEG instrument (Zeiss, Oberkochen, Germany) operating at 5−20 keV
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and equipped with EDS (Bruker GmbH, Quanta 200) and BSE (K E Developments, Ltd.,
London, UK). The XRD patterns of the samples were recorded with a PANalytical X’Pert
Pro Materials Powder Diffractometer (MPD) system equipped with a Cu Kα source. For
the XRD measurements, the crystals of the samples were isolated and analyzed directly
after their removal from the mother liquor.

2.2. Preparation of the Complexes

The dimer starting material [Co2(OH2)(piv)4(pivH)2] was synthesized based on a
method found in the literature [23].

[CoIII
2DyIII

2(NO3)4(pao)4(piv)4].2MeCN (1·2MeCN): A solution of [Co2(OH2)(piv)4(pivH)4]
(0.190 g, 0.20 mmol) and Dy(NO3)3

.5H2O (0.439 g, 0.60 mmol) in MeCN (15 mL) was added
to a solution of paoH (0.073 g, 0.60 mmol) and NaOMe (0.032 g, 0.60 mmol) in MeCN
(15 mL). The resulting brownish suspension was stirred for 10 min and filtered, and the
filtrate was allowed to slowly evaporate at room temperature. X-ray-quality red crystals of
the product were obtained within 7 d. The crystals were collected via filtration, washed
with cold MeCN (2 × 0.5 mL) and Et2O (2 × 2 mL), and dried in vacuo over anhydrous
CaCl2 (yield: 52%). The sample was satisfactorily analyzed as lattice-MeCN-free. Anal.
Calcd. (%) for C44H56Co2Dy2N12O24: C, 33.45; H, 3.58; N, 10.64. Found (%): C, 33.54; H,
3.54; N, 10.78. IR (KBr, cm−1): 3058 (w), 2958 (w), 2852 (s), 2494 (w), 2250 (w), 1608 (m),
1582 (s), 1562 (m), 1480 (s), 1412 (m), 1372 (w), 1358 (w), 1308 (m), 1228 (m), 1150 (m),
1134 (w), 1112 (w), 1032 (w), 904 (w), 856 (w), 816(w), 776 (m), 746 (w), 680 (m), 660 (w),
568 (w), 516 (w), 468 (m), 418 (w).

[CoIII
2LnIII

2(NO3)4(pao)4(piv)4]·2MeCN (Ln = Gd, 2; Ln = Tb, 3; Ln = Pr, 4; Ln = Y,
5: These complexes, which were in the form of microcrystalline solids, were obtained in
an identical manner to that described above for 1·2MeCN (yields: 44% for 2, 51% for 3,
43% for 4, and 41% for 5). The complexes were analyzed satisfactorily as lattice-MeCN-free.
Anal. Calcd. (%) for C44H56Co2Gd2N12O24 (2): C, 33.68; H, 3.60; N, 10.71. Found (%): C,
33.31; H, 3.75; N, 10.83. Anal. Calcd. (%) for C44H56Co2Tb2N12O24 (3): C, 33.60; H, 3.59; N,
10.69. Found (%): C, 33.72; H, 3.46; N, 10.80. Anal. Calcd. (%) for C44H56Co2Pr2N12O24
(4): C, 34.39; H, 3.67; N, 10.94. Found (%): C, 34.52; H, 3.55; N, 10.73. Anal. Calcd. (%) for
C44H56Co2Y2N12O24 (5): C, 36.89; H, 3.94; N, 11.73. Found (%): C, 36.76; H, 3.74; N, 11.96.
The IR spectra of 2–5 were identical to that of the Dy(III) analogue (1).

2.3. Single-Crystal X-ray Crystallography

Red crystals of 1·2MeCN (0.06 × 0.42 × 0.43 mm) were taken from the mother liquor
and immediately cooled to −113 ◦C. Diffraction measurements were made on a Rigaku
R-AXIS SPIDER Image Plate diffractometer using graphite-monochromated Cu Kα radiation.
Data collection (ω-scans) and processing (cell refinement, data reduction, and numerical
absorption correction) were performed using the CrystalClear program package [24]. Impor-
tant crystallographic data are listed in Table 1. The structure was solved via direct methods
using SHELXS ver. 2013/1 and refined via full-matrix least-squares techniques on F2 with
SHELXL ver. 2014/6 [25,26]. Further experimental crystallographic details for 1·2MeCN:
2θmax = 130◦; reflections collected/unique/used = 19,083/5063 [Rint = 0.1326]/5063;
427 parameters refined; (∆/σ)max = 0.001; (∆ρ)max/(∆ρ)min = 2.033/−2.012 e/Å3; R1/wR2
(for all data) = 0.1245/0.2715. All hydrogen atoms were introduced at calculated positions as
riding on their corresponding bonded atoms. All non-H atoms were refined anisotropically.
The methyl groups of one of the pivalate ligands were found to be disordered and were
refined over two positions with occupation factors 0.54 and 0.46, respectively. Plots of the
structure were drawn using the Diamond 3 program package [27].

Crystallographic data were deposited with the Cambridge Crystallographic Data
Center (No. 2246567). Copies of the data can be obtained free of charge upon ap-
plication to CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK; tel.: +(44)-1223-762910;
fax: +(44)-1223-336033; e-mail: deposit@ccdc.cam.ac.uk; or via http://www.ccdc.cam.ac.
uk/conts/retrieving.html (accessed on 23 March 2023).

http://www.ccdc.cam.ac.uk/conts/retrieving.html
http://www.ccdc.cam.ac.uk/conts/retrieving.html
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Table 1. Crystallographic data for 1·2MeCN.

Formula C48H62Co2Dy2N14O24

F.W. 1661.97
Crystal system Triclinic

Space group P-1
a (Å) 11.1135(2)
b (Å) 11.7919(2)
c (Å) 13.7354(3)
α (◦) 72.622(1)
β (◦) 81.670(1)
γ (◦) 67.216(1)

V (Å3) 1582.94(5)
Z 1

T (◦C) −113
Radiation Cu Kα

ρcalcd (g cm−3) 1.743
µ (mm−1) 17.201

Reflections with I > 2σ(I) 3305
R1

a 0.0964
wR2

a 0.2183
a w = 1⁄[σ2(Fo2) + (αP)2 + bP] and P = [max (Fo

2,0) + 2Fc
2]/3, a = 0.1083, b = 5.8059, R1 = Σ(|Fo|−|Fc|)/Σ(|Fo|),

and wR2 = {Σ[w(Fo
2−Fc

2)2]/Σ[w(Fo
2)2]}1/2.

3. Results and Discussion
3.1. Synthetic Comments

As described in the Introduction, we were interested in using the “assisted self-
assembly approach” in CoII/LnIII/pao− chemistry with the hope to isolate CoIII/LnIII

complexes other than the {CoIIILnIII} and {CoIII
2LnIII} previously obtained using the

“one-pot” [21] and “metalloligand” [22] approaches, respectively. After preliminary ex-
perimentation, it was clear that the ancillary pivalate (piv−) ion could assist the self-
assembly process and result in higher-nuclearity products. A reaction mixture com-
prising [CoII

2(OH2)(piv)4(pivH)4]/Ln(NO3)3
.xH2O/paoH/NaOMe (1:3:3:3) in MeCN re-

sulted in a red solution from which red cubic crystals or microcrystalline powders of
[CoIII

2Ln2(NO3)4(piv)4(pao)4] (Ln = Dy, 1·2MeCN; Ln = Gd, 2; Ln = Tb, 3; and Ln = Pr,
4) were subsequently isolated in moderate to good yields (40–50%) (Equation (1)). The
oxidation of the Co(II) to Co(III) was observed. This was achieved by performing the
reaction under aerobic and alkaline conditions, while the oxime group probably further pro-
moted the oxidation of divalent Co(II). Red crystals of 1·2MeCN suitable for single-crystal
X-ray analysis were obtained from closed vials. Compounds 1 and 2 were characterized
via powder X-ray diffraction measurements and compared with the theoretical PXRD of
1·2MeCN (Figure S1).

2
[
CoII

2 (OH2)(piv)4(pivH)4

]
+ 4Ln(NO3)3·xH2O + 8paoH + 4NaOMe + O2

MeCN→ 2
[
CoIII

2 Ln2(NO3)4(pao)4(piv)4

]
+ 8pivH + 4NaNO3 + 4MeOH

+(4 + 4x)H2O

(1)

The {CoIII
2Y2} complex 5 was also isolated. The addition of the NaOMe base was

important for the isolation of the products since its absence did not result in the complexes.
It was clear that CoII was oxidized to CoIII during the reaction, an effect that is common
in Co/2-pyridyloximate chemistry [4,5]. After the isolation and the determination of the
structure of 1·2 MeCN through single-crystal X-ray crystallography, we also attempted to
isolate the products at a stoichiometric ratio of 1:2:4:2, which successfully led to the same
complexes (microanalytical and IR evidence). However, when we attempted to isolate
the products with a different solvent or mixture of solvents (i.e., MeOH, CH2Cl2, EtOH,
etc.), our efforts were unsuccessful; we did not observe precipitation of the product or any
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other product. This indicated that the co-crystallized MeCN molecules were crucial in the
crystallization of the complexes.

3.2. Characterization of the Products
3.2.1. Vibrational Spectroscopy

The IR spectrum of the complex [CoIII
2Dy2(NO3)4(pao)4 (piv)4] (1) is presented in

Figure 1, while in Figures S2–S6 the IR spectra of complexes 2–5 and the free paoH are shown.
The in-plane (δ(py)) and out-of-plane (γ(py)) deformation vibrations of the 2-pyridyl ring of
free paoH appeared at 627 and 404 cm−1, respectively. These peaks were shifted upwards
at 640 and 468 cm−1, respectively, in 1 suggesting coordination of the ring-N atom [21].
The ν(C=N) and ν(N-O) vibrations of the oximate group in the IR spectrum appeared at
1582 cm−1, and 1150 cm−1, respectively. The contribution of the nitrato ligands was also
apparent in the IR spectrum of the complex. The bands at 1308 cm−1 and 1480 cm−1 were
assigned [21] to the νas(NO2) and ν(N=O) vibrations, respectively; the latter overlapped
with the antisymmetric carboxylate sketch. The stretching vibration ν3(E’)[νd(NO)] was not
present in the spectrum, which was in accordance with the absence of ionic nitrates (D3h)
in the structure of the complex. The considerable separation of the ν(N=O) and νas(NO2)
vibrations (172 cm−1) implied the bidentate ligation of the nitrato ligands [28]. On the other
hand, the presence of the carboxylate ligands was indicated by the bands at 1372 and 1480 cm−1

assigned to νs(CO2) and νas(CO2), respectively, while ∆ = νas(CO2)-νs(CO2) = 108 cm−1

(which was lower than the corresponding ∆ = 220 cm−1 value of the pivalate sodium salt)
also indicated the bridging ligation of the carboxylate anions [29].
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Figure 1. The FT-IR spectrum of a well-dried (i.e., without lattice MeCN) sample of
[CoIII

2Dy2(NO3)4(pao)4(piv)4] (1). The weak broad band at 3392 cm−1 was due to the humidity in
the sample.

3.2.2. Energy-Dispersive X-ray (EDX) and Powder X-ray Diffraction (PXRD) Analysis of
the Complexes

The structure of 1·2MeCN was solved by using single-crystal X-ray crystallography.
Complexes 2–5 were proposed to be analogous with 1·2MeCN based on elemental analyses,
IR spectra (Section 3.2.1, Figures S3–S6), powder XRD patterns (Figure S1), and EDX
measurements (Figure 2). In the EDX spectra of complexes 1–4, the Co/Ln ratio was
calculated to be 1:1 (based on the atomic ratio percentage), which was in accordance with
the crystal structure of 1, indicating analogous composition for the other compounds. Based
on the PXRD, we could observe the similarity of complexes 1 and 2; the XRD diagrams
of 1 and 2 were similar with each other and similar to the theoretical one from X-ray
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diffraction. It is important to note that the IR spectra of all complexes were also similar,
thereby indicating the similar chemical structures, and the EDX analysis of complexes 1–4
indicated the similar chemical composition of these complexes.
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coordination sphere of CoIII ions was of the type {CoIIIN4O2}, the bond lengths had a low-
spin configuration, and the 9-coordinated DyIII centers were found in a muffin-type geom-
etry (MFF-9) (with CShM = 2.08680 calculated by using the SHAPE program [30]. This 
butterfly-type topology was new in the 3d/4f/pao−. The oxidation state assignment for the 
cobalt ions were confirmed by using charge considerations, bond valence sum (BVS) cal-
culations, and interatomic distances (Co-N and Co-O; see Table 2). Interatomic distances 
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Figure 2. The EDX spectra of the samples of [CoIII
2Ln2(NO3)4(pao)4(piv)4] (Ln = Dy, 1·2MeCN (a);

Ln = Pr, 4 (b); Ln = Gd, 2 (c); Ln = Tb, 3 (d)).

3.3. Description of the Structure

Structural aspects of the molecule [CoIII
2Dy2(NO3)4(pao)4(piv)4] are illustrated in

Figure 3. Selected interatomic distances are listed in Table 2. This was a centrosymmetric
molecule with a topology that could be described as two triangles sharing a common edge,
i.e., Dy . . . Dy’ (Figure 3b). The four metal ions were held together through bridging piv−

and pao−ligands adopting three different coordination modes. The CoIII . . . DyIII vectors of
the two triangles were each linked through a 2.11 (Harris notation) pivalate group, while a
3.211 pao− ligand (Figure 3c) bridged the three metal ions of each triangle, and a 2.111 pao−

ligand (Figure 3a) bridged the CoIII ion and one DyIII ion of each triangle. Two bidentate
chelating nitrato groups completed 9-coordination at each DyIII center. The octahedral
coordination sphere of CoIII ions was of the type {CoIIIN4O2}, the bond lengths had a
low-spin configuration, and the 9-coordinated DyIII centers were found in a muffin-type
geometry (MFF-9) (with CShM = 2.08680 calculated by using the SHAPE program [30].
This butterfly-type topology was new in the 3d/4f/pao−. The oxidation state assignment
for the cobalt ions were confirmed by using charge considerations, bond valence sum
(BVS) calculations, and interatomic distances (Co-N and Co-O; see Table 2). Interatomic
distances (Co-O and Co-N) lay in the ranges 1.865–1.944 Å and 1.899 Å, respectively, which
were characteristic for Co(III). Based on the bond valence sum (BVS) calculations using
bond length data from the literature [31] and the interatomic distances, the BVS value for
complex 1·2MeCN was 3.52, typical for Co(III).

The lattice structure of 1 was constructed by using intermolecular interactions of the
C-H . . . O type (Table S1) that were developed between the C-H moieties of the pao− ligands
and the oxygen atoms of the NO3

− groups from neighboring molecules. There were also
intermolecular interactions involving the MeCN solvent molecules and the coordinated
NO3

− ions as well as intramolecular C-H . . . O/N interactions. The intermolecular C-H . . . O
interactions resulted in the formation of a 3D supramolecular network (Figure 4).
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Figure 3. (a) Representation of the structure of the molecule [CoIII
2Dy2(NO3)4(pao)4(piv)4]. The

primes denote atoms generated by symmetry operation 1-x, 2-y, -z. The C atoms of the three Me
groups of each pivalate are not shown for clarity reasons. (b) The two triangles (illustrated in blue
and green) formed in the metal ion bridging topology; (c) the butterfly-type topology through the
linkage of the metal ions; (d) the muffin-type polyhedron of the DyIII center.

Table 2. Selected interatomic distances in 1·2MeCN.

Interatomic Distance (Å) Interatomic Distance (Å)

Co-N(3) 1.865(13) Co-N(1) 1.869(11)
Co-O(5) 1.898(10) Co-O(4) 1.899(9)
Co-N(4) 1.930(11) Co-N(2) 1.944(11)
Dy-O(3′) 2.240(11) Dy-O(6) 2.311(8)
Dy-O(1) 2.370(8) Dy-O(1′) 2.386(8)
Dy-O(2′) 2.403(8) Dy-O(10) 2.408(9)
Dy-O(7) 2.465(9) Dy-O(8) 2.497(9)
Dy-O(12) 2.549(9) Co . . . Dy 4.466(3)
Co . . . Dy’ 4.053(2) Dy . . . Dy’ 4.106(1)

Primed atoms were generated by symmetry (‘) 1−x, 2−y, −z.
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Figure 4. The 3D supramolecular network in the lattice structure of 1·2MeCN due to the intermolecu-
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4. Concluding Comments

The missing {CoIII
2LnIII

2} nuclearity in the Co/LnIII/pao− chemistry; i.e., the butterfly-
type topology, was discovered by using the “assisted self-assembly” process; the ancillary
ligand used was the piv− bridging ligand. This work also demonstrated the flexibility of
the pao− ligand, which adopted the 2.111 and 3.211 coordination modes, both of which
conformed with the HSAB principle. Research efforts are in progress to: (i) prepare other
members of the described CoIII/LnIII/pao− family (e.g., with Ln = Nd, Sm, Eu, Ho, Er, and
Yb) and study their magnetic and optical properties; and (ii) to use the “assisted self-assembly”
approach in systems containing other 2-pyridylaldoximate and carboxylate ligands. The
results described herein presage new families of 3d/4f-metal complexes with several primary
(i.e., pyridine-2,6-dimethanol) and ancillary (i.e., β-diketonate) 3d/4f-metal complexes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/chemistry5020068/s1, Figure S1: Comparison of the theoretical
PXRD diagram with that of 1·2MeCN for the experimental compounds 1 and 2; Figures S2–S6: IR
spectra; Table S1: Intra- and intermolecular interactions in the crystal structure of 1·2MeCN.
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