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Abstract: C3–N1′ bond formation of bisindoles has been a great challenge due to the intrinsic re-
activity of indoles as both C3 and N1-nucleophilic character. Herein, we demonstrate an C3–N1′

cross-coupling reaction of indoles using N-methoxyindoles as N-electrophilic indole reagents in the
presence of Lewis acid. The bisindoles generated in this transformation are latent C3-nucleophile,
allowing them to be used as strategic intermediates in sequential C3–N1′–C3′–N1” triindole forma-
tions. The potential synthetic usefulness of this sequential transformation was highlighted upon
application to the construction of C3–N1 looped polyindoles.
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1. Introduction

C3–N1′ Heterodimeric tryptophan or tryptamine dimers comprising a pyrroloindo-
line skeleton are ubiquitous in biologically active alkaloids and form a class of privileged
components in medicinal chemistry [1–12]. In sharp contrast, construction of C3–N1′

heterodimeric indole skeletons have proven more challenging due to the difficulties as-
sociated with introduction of the indole nitrogen (N1′) in the C3-position of indoles, and
no approaches have been reported to date (Figure 1) [13,14]. In general, a C3–N1′ cross-
coupling reaction between two indole derivatives is one of the most difficult challenges
because the most nucleophilic position is the C3-position of the indole nucleus and the
most electrophilic site is the C2-position [15–19]. Consequently, cross-coupling reactions
take place largely at C2–C3′ due to the intrinsic property. Therefore, in contrast to the
well-established C2–C3′ cross-coupling reactions, the C3–N1′ cross-coupling reactions of
indoles has received much less attention [20–25].
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Figure 1. Structures of C3–N1′ bisindole alkaloids. 
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Figure 1. Structures of C3–N1′ bisindole alkaloids.
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Somei has reported on C3–N1′ bond-forming reactions of N-hydroxy tryptamines
in the presence of excess amounts of strong acids to form C3–N1′ heterodimers in 84%
yield (Scheme 1a) [26–30]. Although it is necessary to use C3-substituted indoles such as
a tryptamine, this strategy contrasts the many indole coupling efforts motivated by the
intrinsic C3- and N1-nucleophilicity. However, umpolung of indole nitrogen constitutes
a rarely developed latent alternative for direct C3–N1′ bond-forming reactions, whereas
electrophilic nitrogen chemistry is well-developed with the leaving group placed at the
amine nitrogen atom [31]. Nonetheless, underlying cross-selectivity challenges using
C3-unsubstituted indoles remain for development (Scheme 1b). Recently, Buchwald and co-
workers described a CuH-catalyzed N-alkylation of C3-unsubstituted N-benzyloxyindoles
via hydroamination, which relies on the polarity reversal strategy triggered by the Cu
catalyst [32]. To date, other than their use as electrophilic indole nitrogen surrogates toward
site-selective alkylation, no general and useful synthetic methods of construction of C3–N1′

bisindoles have been exploited.
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challenge.

Over the past five years, our group has had an intensive focus on the development and
application of umpoled indole surrogates [33–44]. These results led us to find that in situ
generated 3-methoxyindoles act as a C3-electrophilic reagent that can be harnessed for C–N,
C–O, and C–C bond-forming SNAr reactions under indium catalysts [45,46]. In this context,
our group has successfully established indium-mediated C–O bond activation for the SNAr
reaction with a release of MeOH as a leaving group. By analogy to our indium-catalyzed
SNAr reaction, we hypothesized that N-alkoxy indoles might be suitable competent sub-
strate as a N1-electrophilic indole precursor by a Lewis acid activation of alkoxy group
through an elimination of ROH, thereby producing a C3–N1′ bisindole (Scheme 2). In this
hypothesis, N-alkoxyindole is first combined with Lewis acids (LA) to form an LA–indole
complex, which shows an N-electrophilic character by N–O bond activation along with
reducing C3-nucleophilicity by coordinating at the C2–C3 π-bond [47–49]. Thus, the use of
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LA could potentially enhance the rate of C3–N1′ cross-coupling in the use of indoles as a nu-
cleophile [50,51], thus altering the balance between homo- and cross-coupling process. This
bisindole can serve as re-birthed nucleophiles in a sequential protocol to multiple C3–N1′

bond formation that are otherwise incompatible with Lewis acid-mediated methods. We
therefore decided to focus on umpolung of N-alkoxy indoles [52,53]. Herein, we report the
successful execution of this hypothesis to enable the construction of C3–N1′ heterodimeric
indole skeletons from simple indoles and N-methoxy indoles. The resulting investigations
offer most concise catalytic protocol for constructing C3-N1′ heterodimeric indole skeletons
developed to date, and shed light on the “old and new” N-methoxyindoles. Notably, this
is the first example of a catalytic SNAr reaction at the nitrogen center of C3-unsubstituted
N-methoxyindoles is performed in the C–N bond formations [26–30,32].
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2. Materials and Methods

High-resolution MS spectra were recorded with a Brucker micrOTOF mass spectrom-
eters (ESI-TOF-MS). The NMR experiments were performed with JEOL JNM-ECZ600R
(1H NMR: 600 MHz, 13C NMR: 151 MHz) spectrometer, Varian 600-MR ASW (1H NMR:
600 MHz, 13C NMR: 151 MHz) spectrometer and Varian 400-MR ASW (1H NMR: 400 MHz,
13C NMR: 100 MHz) spectrometer, and chemical shifts are expressed in ppm (δ) using resid-
ual undeuterated solvent as an internal reference (CDCl3, 1H NMR: δ 7.25, 13C NMR: δ 77.1).
The following abbreviations were used to explain NMR peak multiplicities: s = singlet,
d = doublet, t = triplet, q = quartet, sep = septet, m = multiplet, dd = doublet of doublets,
ddd = doublet of doublet of doublets, br = broad; coupling constants in Hz; integration.
Reactions were monitored by thin layer chromatography (TLC) carried out on a silica gel
plates (60F-254) and visualized under UV illumination at 254 or 365 nm depending on
the compounds. Flash column chromatography was performed on silica gel (WAKO Gel
75–150 mesh, WAKO Co., Ltd., Tokyo, Japan).
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2.1. General Procedure for Synthesis of NMeOINs [54,55]

A solution with the indoline (2 mmol) and Na2WO4·2H2O (0.1 mmol, 0.05 eq) in
MeOH (6 mL) and H2O (0.6 mL) was cooled to 0 ◦C. A total of 30% H2O2 (2.24 mL,
20 mmol) was added dropwise. The mixture was stirred for 5–10 min at room temperature.
Then, (MeO)2SO2 (6 mmol, 3 eq) and K2CO3 (10 mmol, 5 eq) was added to the reaction
mixture and stirred until the complete disappearance of N-hydroxyindolines indicated by
TLC. After H2O (20 mL) was added to the mixture, the whole was extracted with AcOEt
(3 × 20 mL), washed with brine (20 mL). The combined organic layer was dried over
Na2SO4, filtered and concentrated in vacuo. The residue was purified by silica gel column
chromatography (AcOEt/hexane = 1/20–1/5) to give 1.

5-Methyl-1-methoxyindole (1b): 167 mg, 52% yield. colorless oil; 1H NMR (600 MHz,
CDCl3) δ: 7.43 (d, J = 6.0 Hz, 1H), 7.40–7.37 (m, 1H), 7.25 (d, J = 3.0 Hz, 1H), 7.14–7.11 (m,
1H), 6.31 (d, J = 3.0 Hz, 1H), 4.09 (s, 3H), 2.49 (s, 3H); 13C NMR (151 MHz, CDCl3) δ: 130.4,
129.3, 124.7, 124.1, 123.2, 120.9, 108.1, 97.6, 65.8, 21.5; HRMS (ESI) m/z: 162.0920 (Calcd for
C10H12NO [M + H]+: 162.0919).

5-Chloro-1-methoxyindole (1c): 184 mg, 51% yield. colorless oil; 1H NMR (400 MHz,
CDCl3) δ: 7.56 (d, J = 2.0 Hz, 1H), 7.37 (d, J = 8.4 Hz, 1H), 7.29 (d, J = 3.6 Hz, 1H), 7.20 (dd,
J = 8.4, 2.0 Hz, 1H), 6.31 (d, J = 3.6 Hz, 1H), 4.08 (s, 3H); 13C NMR (100 MHz, CDCl3) δ:
130.2, 125.6, 125.1, 124.2, 122.6, 120.5, 109.3, 97.6, 65.9; HRMS (ESI) m/z: 182.0373, 184.0344
(Calcd for C9H9ClNO [M + H]+: 182.0373, 184.0343).

5-Bromo-1-methoxyindole (1d): 230 mg, 51% yield. colorless oil; 1H NMR (600 MHz,
CDCl3) δ: 7.71 (s, 1H), 7.31–7.31 (m, 2H), 7.25–7.25 (m, 1H), 6.29 (d, J = 3.6 Hz, 1H), 4.07 (s,
3H); 13C NMR (151 MHz, CDCl3) δ:130.5, 125.9, 125.3, 124.1, 123.7, 113.2, 109.7, 97.6, 66.2;
HRMS (ESI) m/z: 225.9867, 227.9847 (Calcd for C9H9rNO [M + H+: 225.9868, 227.9847).

2.2. General Procedure for Synthesis of 1′H-1,3′-Biindole Derivatives (Scheme 3)

To a solution of 1a (1 mmol) and 2 (1 mmol, 1 eq) in MeCN (10 mL, 0.1 M) was
added Al(OTf)3 (0.1 mmol, 10 mol%) at room temperature. The mixture was stirred until
the complete disappearance of starting material indicated by TLC. After H2O (20 mL)
was added to the mixture, the whole was extracted with AcOEt (3 × 20 mL), washed
with brine (20 mL). The combined organic layer was dried over Na2SO4, filtered and
concentrated in vacuo. The residue was purified by silica gel column chromatography
(AcOEt/hexane = 1/20–1/5) to give 3.

1,3′-Bisindole (3ab): 105 mg, 45% yield. colorless solid; 1H NMR (400 MHz, CDCl3) δ:
8.17 (br s, 1H), 7.73–7.71 (m, 1H), 7.49–7.45 (m, 2H), 7.37–7.28 (m, 4H), 7.21–7.13 (m, 3H),
6.71–6.70 (m, 1H); 13C NMR (100 MHz, CDCl3) δ: 137.5, 134.7, 129.6, 128.6, 123.7, 123.1,
122.0, 120.9, 120.5, 120.0, 119.2, 118.6, 117.6, 111.7, 110.9, 102.5; HRMS (ESI) m/z: 233.1079
(Calcd for C16H13N2 [M + H]+: 233.1079).
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Scheme 3. Substrate scope.

2.3. General Procedure for Synthesis of Oligoindoles (Scheme 4)

To a solution of 1a (53.0 mg, 0.36 mmol) and 3ah (73.9 mg, 0.3 mmol) in MeCN (3 mL,
0.1 M) was added Al(OTf)3 (28.5 mg, 0.06 mmol) under reflux. The mixture was stirred
until the complete disappearance of starting material indicated by TLC. After H2O (10 mL)
was added to the mixture, the whole was extracted with AcOEt (3 × 10 mL), washed
with brine (10 mL). The combined organic layer was dried over Na2SO4, filtered and
concentrated in vacuo. The residue was purified by silica gel column chromatography
(AcOEt/hexane = 1/20–1/5) and PTLC (acetone/hexane = 1/5) to give 3ah (24.4 mg, 33%
yield), 4 (16.3 mg, 15% yield), 5 (7.2 mg, 5% yield) and 6 (1.0 mg, 1% yield).

1”-Methyl-1,3′:1′,3”-terindole (4): 16.3 mg, 15% yield. colorless oil; 1H NMR (600 MHz,
CDCl3) δ: 7.73 (dd, J = 7.8, 1.2 Hz, 1H), 7.57–7.53 (m, 3H), 7.48–7.42 (m, 4H), 7.37–7.34 (m,
2H), 7.26 (ddd, J = 7.8, 6.6, 1.2 Hz, 1H), 7.22–7.16 (m, 4H), 6.73 (dd, J = 3.0, 1.2 Hz, 1H), 3.92
(s, 3H); 13C NMR (151 MHz, CDCl3) δ:137.5, 136.6, 135.7, 129.7, 128.7, 124.5, 124.2, 124.1,
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124.1, 123.1, 123.0, 122.1, 120.9, 120.6, 120.4, 120.0, 118.8, 118.6, 117.5, 115.3, 111.5, 111.0,
109.9, 102.6, 33.3; HRMS (ESI) m/z: 362.1658 (Calcd for C25H20N3 [M + H]+: 362.1657).

1′′′-Methyl-1,3′:1′,3′′:1′′,3′′′-quaterindole (5): 7.2 mg, 5% yield. colorless oil; 1H NMR
(600 MHz, CDCl3) δ: 7.73 (d, J = 7.8 Hz, 1H), 7.66 (s, 1H), 7.63 (s, 1H), 7.62 (d, J = 7.8 Hz,
1H), 7.58–7.53 (m, 3H), 7.50–7.44 (m, 4H), 7.37–7.34 (m, 2H), 7.31–7.27 (m, 2H), 7.24–7.16 (m,
5H), 6.73 (dd, J = 3.0, 0.6 Hz, 1H), 3.93 (s, 3H); 13C NMR (151 MHz, CDCl3) δ: 137.5, 136.6,
136.5, 135.7, 129.7, 128.7, 124.7, 124.3, 124.1, 124.1, 123.4, 123.2, 123.1, 122.1, 120.9, 120.7,
120.4, 120.1, 118.8, 118.6, 117.6, 116.7, 115.2, 111.6, 111.5, 111.0, 110.0, 102.6, 33.3; HRMS
(ESI) m/z: 477.2075 (Calcd for C33H25N4 [M + H]+: 477.2079).

1′′′′-Methyl-1,3′:1′,3′′:1′′,3′′′:1′′′:3′′′′-quinqueindole (6): 1.0 mg, 1% yield. colorless oil; 1H
NMR (600 MHz, CDCl3) δ: 7.76 (s, 1H), 7.74 (d, J = 7.8 Hz, 1H), 7.69 (s, 1H), 7.66–7.64 (m,
3H), 7.60–7.59 (m, 3H), 7.56–7.51 (m, 2H), 7.49–7.46 (m, 3H), 7.39–7.29 (m, 6H), 7.24–7.17 (m,
5H), 6.74 (d, J = 3.0 Hz, 1H), 3.95 (s, 3H); HRMS (ESI) m/z: 592.2505 (Calcd for C41H30N5
[M + H]+: 592.2501).

Detailed synthetic procedure and corresponding analytic data can be found in the
Supplementary Materials.

Chemistry 2023, 5, FOR PEER REVIEW 6 
 

 

trated in vacuo. The residue was purified by silica gel column chromatography (Ac-
OEt/hexane = 1/20–1/5) and PTLC (acetone/hexane = 1/5) to give 3ah (24.4 mg, 33% yield), 
4 (16.3 mg, 15% yield), 5 (7.2 mg, 5% yield) and 6 (1.0 mg, 1% yield). 

 
Scheme 4. Oligomerization. 

1″-Methyl-1,3′:1′,3″-terindole (4): 16.3 mg, 15% yield. colorless oil; 1H NMR (600 MHz, 
CDCl3) δ: 7.73 (dd, J = 7.8, 1.2 Hz, 1H), 7.57–7.53 (m, 3H), 7.48–7.42 (m, 4H), 7.37–7.34 (m, 
2H), 7.26 (ddd, J = 7.8, 6.6, 1.2 Hz, 1H), 7.22–7.16 (m, 4H), 6.73 (dd, J = 3.0, 1.2 Hz, 1H), 3.92 
(s, 3H); 13C NMR (151 MHz, CDCl3) δ:137.5, 136.6, 135.7, 129.7, 128.7, 124.5, 124.2, 124.1, 
124.1, 123.1, 123.0, 122.1, 120.9, 120.6, 120.4, 120.0, 118.8, 118.6, 117.5, 115.3, 111.5, 111.0, 
109.9, 102.6, 33.3; HRMS (ESI) m/z: 362.1658 (Calcd for C25H20N3 [M + H]+: 362.1657). 

1‴-Methyl-1,3′:1′,3″:1″,3‴-quaterindole (5): 7.2 mg, 5% yield. colorless oil; 1H NMR (600 
MHz, CDCl3) δ: 7.73 (d, J = 7.8 Hz, 1H), 7.66 (s, 1H), 7.63 (s, 1H), 7.62 (d, J = 7.8 Hz, 1H), 
7.58–7.53 (m, 3H), 7.50–7.44 (m, 4H), 7.37–7.34 (m, 2H), 7.31–7.27 (m, 2H), 7.24–7.16 (m, 
5H), 6.73 (dd, J = 3.0, 0.6 Hz, 1H), 3.93 (s, 3H); 13C NMR (151 MHz, CDCl3) δ: 137.5, 136.6, 
136.5, 135.7, 129.7, 128.7, 124.7, 124.3, 124.1, 124.1, 123.4, 123.2, 123.1, 122.1, 120.9, 120.7, 
120.4, 120.1, 118.8, 118.6, 117.6, 116.7, 115.2, 111.6, 111.5, 111.0, 110.0, 102.6, 33.3; HRMS 
(ESI) m/z: 477.2075 (Calcd for C33H25N4 [M + H]+: 477.2079). 

1″″-Methyl-1,3′:1′,3″:1″,3‴:1‴:3″″-quinqueindole (6): 1.0 mg, 1% yield. colorless oil; 1H 
NMR (600 MHz, CDCl3) δ: 7.76 (s, 1H), 7.74 (d, J = 7.8 Hz, 1H), 7.69 (s, 1H), 7.66–7.64 (m, 
3H), 7.60–7.59 (m, 3H), 7.56–7.51 (m, 2H), 7.49–7.46 (m, 3H), 7.39–7.29 (m, 6H), 7.24–7.17 
(m, 5H), 6.74 (d, J = 3.0 Hz, 1H), 3.95 (s, 3H); HRMS (ESI) m/z: 592.2505 (Calcd for C41H30N5 
[M + H]+: 592.2501). 

Detailed synthetic procedure and corresponding analytic data can be found in the 
Supplementary Materials. 

  

+
Al(OTf)3 (20 mol %)

MeCN, reflux, 2 h

1a
1.0 equiv

N
MeO

1.2 equiv

N

N

N

N

N

3ah

N

N

N

N

N

N

N

N

N

Me Me Me

N

N

3ah 4 5 6
Me

Me

33% 15% 5% 1%
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3. Results and Discussion
3.1. Optimization of Reaction Conditions

To investigate the feasibility of the envisaged SNAr reaction, we select N-methoxyindole
(NMeOIN, 1a) and 2-methylindole (2a) as model substrates for optimization. Initially, 1a
and 2a were reacted in the presence of In(OTf)3 [47] in MeCN at room temperature for
1.5 h (Table 1, run 1). We were gratified to observe that the use of indium catalyst enabled
our proposed reactivity, leading to C3-N1′ bisindole 3aa in 72% yield. From the catalysts
tested (InF·3H2O, InBr3, InCl3·4H2O, Ga(OTf)3, La(OTf)3, Bi(OTf)3, AgOTf, Yb(OTf)3,
Cu(OTf)2, Zn(OTf)2, and Al(OTf)3) (runs 2–12), In(OTf)3, Ga(OTf)3, Bi(OTf)3, Cu(OTf)2,
and Al(OTf)3) [50,51] were found to promote the reaction quite well, affording the C3-N1′

bisindole 3aa in 72%, 79%, 60%, 72%, and 83 % yields, respectively. The highest isolated
yield 87% was obtained from the reaction with Al(OTf)3 (run 12). Among the aluminum
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catalysts (Al(OTf)3, AlCl3, and Al(OiPr)3), Al(OTf)3 proved to be the best catalyst (runs
12–14). Next, to investigate the effect of the solvent with Al(OTf)3, additional optimization
was performed (runs 15–17). To our surprise, different solvents showed a notable effect on
the Al(OTf)3-catalyzed reaction. Chlorobenzene (PhCl) showed the same effects as CHCl3
(runs 15 and 17), while 1,4-dioxane led to low conversion (run 16). When performed in the
presence of TfOH, the reaction gave 3aa in 54% yield (run 18). Finally, the reaction failed to
proceed in the absence of catalyst or solvent (runs 19 and 20). In our cases, Al(OTf)3 could
not be recovered after the reactions [51]. Based on the above results, the optimized reaction
conditions were determined (10 mol% of Al(OTf)3, MeCN, and room temperature).

Table 1. Optimization of reaction conditions.
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15 Al(OTf)3 PhCl 1.5 69
16 Al(OTf)3 1,4-dioxane 1.5 43
17 Al(OTf)3 CHCl3 1.5 71
18 TfOH MeCN 1.5 54
19 — MeCN 24 nr
20 Al(OTf)3 — 24 0
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3.2. Scope and Limitations

With the optimized reaction conditions in hand, we investigated a range of indoles 2
and NMeOIN 1a to assess the generality of this transformation (Scheme 3). Unsubstituted
indole afforded bisindole 3ab in 45% yield. The presence of electron-withdrawing group
was found to have a negative influence on the reaction (3ac, 3ad, 3ag vs. 3ae, 3af), which
might be due to the lack of nucleophilicity. Next, we focused on the reactivity of N-
substituted indoles. N-Methylindole reacted well with NMeOIN 1a yielding product 3ah
in 64% yield. Further investigations revealed that some N-alkylindoles were applicable to
deliver the N-alkylated bisindoles bearing the ethyl (3ai), isopropyl (3aj), n-nonyl (3ak),
and cyclohexylmethylene (3al) groups. Additionally, the reaction of benzyl-substituted
indole afforded 3am in 53% yield. However, the reaction of Ts-indole with 1a resulted in
no reaction due to its low nucleophilicity.

The scope of the NMeOIN 1 was also investigated. With the electro-donating group
attached to the indole-ring, the reaction proceeded smoothly, leading to 3ba in 45% yield.
Interestingly, in contrast to 3ba, the presence of electron-withdrawing group attached to the
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indole-ring was found to have a positive effect, increasing in yields (3ca: 87%, 3da: 89%).
From the scope and limitation experiments, we conclude that this transformation is quite
sensitive to substituents on the indole-ring. In addition, the preferential C3–N1′ reactivity
of NMeOIN in all cases can be rationalized based on the both N-activated and C2–C3
deactivated abilities of Al(OTf)3 toward 1a. This observed selectivity can prove helpful in
synthetic application such as C3–N1′-type bisindole alkaloids and polyindoles [13,14].

3.3. Synthesis of Oligoindoles

To probe the feasibility of a formation of oligoindoles, we tested the reaction of
bisindole 3ah with 1a (Scheme 4). As construction of oligoindoles through C3–N1′ bond
formation is unprecedented [56–59]; we hope this transformation will promote further
progress in the material sciences [60–64]. After intensive investigations, we found that a
reaction using 20 mol% of Al(OTf)3 under reflux conditions plays a crucial role in delivering
previously untapped C3–N1′ homologs such as trimer 4, tetramer 5, and pentamer 6 in
one-pot protocol.

3.4. Scalability of the Aluminum-Catalyzed Cross Selective C3–N1′Cross-Coupling Reaction

Considering the potential synthetic utility, we next scaled-up synthesis of 3. The
synthesis of bisindole 3 could be scalable; as shown in Scheme 5, we efficiently prepared
large quantities of a representative bisindole 3ab from NMeOIN (10 mmol) with indole.
Notably, our transformation could be scaled up to 10 mmol with an acceptable loss of
efficiency for 3ab (38% yield vs. 45% yield).
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