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Abstract: We investigated the efficient approach of a series of trans-N,N-4,5-substituted-diaminocyclo-
pent-2-enones (trans-DACPs) from furfural and anilines mediated by Gold(III) chloride (HAuCl4).
The present protocol required a low amount of the catalysts, 1.5 mol%, open air conditions, the
absence of any additives, and short reaction times. The desired trans-DACPs were isolated in good
to high yields. The protocol was also applied to secondary amines, leading to the corresponding
4,5-diamino-cyclopent-2-enones in good yields. To the best of our knowledge, this is the first gold-
mediated paradigm as an efficient catalyst for the formation of the cyclopentenones core-bearing C-N
bonds under mild reaction conditions.
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1. Introduction

Gold, either in a homogeneous [1–7] or heterogeneous medium [8–16], can act as a ver-
satile catalyst for a broad range of chemical transformations. The field of homogeneous gold
catalysis began to grow in the first decade of the 21st century, enabling the replacement of
consolidated organic reactions with more simple, selective, and chemically sustainable alter-
natives. Gold catalysis is considered a hot topic in organic synthesis, with applications in the
general topics of the total synthesis of complex molecular architectures [17,18] asymmetric
synthesis [19,20], C-H activation reactions [21,22], and visible photoredox catalysis [23–26].
In the majority of homogeneous Au catalysts, Au exists in the +1 oxidation state and has
a soft Lewis acidity. Unlike Au(I), Au(III) is a hard Lewis acid that preferentially binds to
the lone pairs of heteroatoms such as O, N, and S [27–30]. The oxophilic Au(III) complexes
may be employed to accelerate chemoselective reactions for which piphilic Au(I) complexes
are less efficient [31,32]. Therefore, progression in Au(III) catalysis could expand the overall
scope of homogeneous Au catalysis. Selected examples of Gold(III)-catalyzed reactions
of carbonyl compounds in the presence of amines towards a variety of heterocyclic cores
are given in Scheme 1 [33–38]. In most cases, AuCl3 is proposed to efficiently catalyze the
formation of the heterocyclic core of the desired products (pyrroles, quinolines, furans,
oxazoles, spirochromenes) through tandem amination/annulation and condensation re-
actions (Scheme 1, i–iii) or A3-coupling/multi-component-type reactions (Scheme 1, iv)
where AuBr3 was used as a catalyst.

The use of renewable and bio-based materials has received considerable attention in
the field of green chemistry over recent years. One of the top biomass-derived value-added
chemicals, furfural, has been included by the US Department of Energy [39]. The combi-
nation of the aldehyde group and the aromatic ring makes furfural an appealing starting
material for the synthesis of other N, O-functionalized compounds [40–45]. Among the
most important classes of products derived from furfural, the trans-4,5-diaminocyclopent-
2-enones (trans-DACPs) constitute versatile building blocks in the perfumery industry
or in natural products, as shown in Scheme 1 [46–51]. So far, for the convenient yield of
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trans-DACPs, several homogeneous [52–61] and heterogeneous [62–64] catalytic conditions
were reported; however, heteronuclear Ni(II)2Ln(III)2 (where Ln = Y, Dy) complexes [65–67]
or metal-free systems were also proposed to promote the efficiency formation of the
trans-DACPs (Scheme 1, v) [68–70]. One study using poly(dopamine)-supported gold
nanoparticles on quartz slides as a heterogeneous surface was reported for the construc-
tion determination of a donor–acceptor Stenhouse adduct molecular layer, starting with
a furfuryl-substituted CF3-isoxazolone-based acceptor molecule [71].
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To date, the Lewis acid catalysts that have used in the literature for the efficient
transformation of furfural into the corresponding cyclopentenone core, such as Dy(OTf)3,
Sc(OTf)3, and AlCl3 with 10% mol loading, have the largest ratios in terms of the price
per milligram of the catalyst used in the reaction scale of 0.5 mmol, with Sc(OTf)3 being
the most expensive (Table 1). On the contrary, Cu(OTf)2 and ErCl3·6H2O have the lowest
ratios in terms of the price per milligram of the catalyst used in reaction scale of 1 mmol.
Although HAuCl4 seems expensive, the low loading of the catalyst accompanied by its non-
toxic properties it makes it accessible for the development of the present transformation
(Table S1). Thus, herein, we report—to the best of our knowledge—the first protocol
that utilizes HAuCl4 for the synthesis of an extended library of trans-DACPs under mild
conditions and primary or secondary amines (Scheme 1, v). It is worth noting that, in most
of the above protocols, the reaction scope was limited to secondary amines. Only very
recently our group reported on the polyoxometalate-driven conversion of furfural to the
corresponding trans-DACPs in the presence of anilines [72].

2. Materials and Methods
2.1. Chemical Reagents

The solvents, amines, anilines, 5-methyl furfural, and furfural were purchased from
Sigma-Aldrich, Fluorochem, Acros, and TCI and were used without further purification.
For the catalytic reactions, the commercially available AuCl, HAuCl4, AuClPPh3, Au/TiO2,
Au/Al2O3, Au/ZnO, CuCl2, CuCl, NH4Cl, MgCl2, ZnCl2, CoCl2, and FeCl3 were used
without further purification.

2.2. Instrumentations

Thin-layer chromatography was performed on Millipore precoated silica gel plates
(0.20 mm thick, particle size 25 µm). Nuclear magnetic resonance spectra were recorded
on an Agilent 500 (1H NMR (500 MHz), 13C(H) NMR (125 MHz)). Chemical shifts for 1H
NMR were reported as δ values and coupling constants were in hertz (Hz). The following
abbreviations were used for spin multiplicity: s = singlet, br s = broad singlet, d = doublet,
t = triplet, q = quartet, quin = quintet, dd = double of doublets, ddd = double doublet
of doublets, m = multiplet. Infusion experiments were carried out on an Agilent Q-TOF
Mass Spectrometer, G6540B model with Dual AJS ESI-MS. All of the compounds (dissolved
in LC-MS-grade methanol) were introduced into the ESI source of the MS with a single
injection of 15 µL of the sample and with a flow rate of 300 µL/min of 100% methanol
as a solvent in the binary pump. The experiments were run using a Dual AJS ESI source,
operating in a positive ionization mode. The source operating conditions were 330 ◦C Gas
Temp, 8 L/min Gas Flow, Sheath Gas Temp 250 ◦C, Sheath Gas Flow 10 L/min, and 150 V
Fragmentor. Data-dependent MS/MS analysis was performed in parallel with the MS
analysis, in a centroid mode, using different collision energies (10, 20, 30, 40 V). All accurate
mass measurement of the [M+H]+, [M+Na]+ [M-H]+ ions were carried out by scanning
from 100 to 500 m/z. The Q-TOF was calibrated 1 h prior to the infusion experiments using
a calibration mixture. Data were acquired in an external calibration mode.

2.3. Heterogeneous Catalytic Reaction between Furfural and Amines

The appropriate amount of supported gold catalysts 1% w/w (1 mol% based on furfural
amount, ca. 40 mg) was placed in a 4 mL vial, followed by the addition of acetonitrile
(0.4 mL), furfural (0.2 mmol), and the appropriate secondary amine (0.44 mmol). The
reaction was then stirred at room temperature for 1 h. The reaction was monitored by thin-
layer chromatography (TLC, Hexane/EtOAc = 1/1). After completion, the solid catalyst
was separated from the reaction mixture with the use of a centrifuge and the solid residue
washed twice with acetonitrile (ca 2 × 2 mL). The combined organic solvent was evaporated
under vacuum and the crude reaction mixture was determined by 1H NMR spectroscopy.
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2.4. Homogeneous Catalytic Reaction between Furfural and Secondary Amines

The HAuCl4 (1.5 mol%, ca. 2.5 mg) was placed in a 4 mL vial, followed by the
addition of acetonitrile (0.5 mL), furfural (0.5 mmol), and the appropriate secondary amine
(1.2 mmol). The reaction was then stirred at room temperature for the appropriate time.
The reaction was monitored by thin-layer chromatography (TLC, Hexane/EtOAc = 1/1)
and after completion, the crude mixture was concentrated under vacuum and purified by
column chromatography on silica gel using a gradient mixture of EtOAc–Hexane (from
10/1 to 1/1 ratio) to afford the corresponding products in pure forms.

2.5. Homogeneous Catalytic Reaction between Furfural and Substituted Anilines

The HAuCl4 (1.5 mol%, ca. 2.5 mg) was placed in a 5 mL glass reactor (vial), followed
by the addition of acetonitrile (0.5 mL), furfural (0.5 mmol), and the appropriate substituted
aniline (1.2 mmol). The reaction was then stirred at room temperature for 2 h. The reaction
was monitored by thin-layer chromatography (TLC, Hexane/EtOAc = 1/1) and after
completion, the crude mixture was either concentrated under vacuum and purified by
column chromatography on silica gel using a gradient mixture of EtOAc–Hexane (from
10/1 to 1/2 ratio) or precipitated in the solvent systems chloroform/hexane or THF/Hexane
in 1/20 ratio to afford the corresponding products in pure forms.

3. Results and Discussion
3.1. Evaluation of Catalytic Conditions for the Reaction of Furfural with Morpholine

To optimize the reaction conditions, furfural (1) and morpholine (2) were selected as
model substrates for the synthesis of the desired trans-4,5-dimorpholinocyclopent-2-enone
4 (Table 1). First, control experiments using 3 mol% HAuCl3 in different solvents were
tested and the results are summarized in Table 1. Among the used solvents, acetonitrile was
found to promote the studied transformation within 1 h and with quantitative formation
of the desired product 4 (Table 1, entry 1). In the presence of other polar solvents, such
as EtOAc, MeOH, EtOH, or the less-polar DCM, DCE, CHCl3, or even non-polar toluene,
a mixture of aminal 3 and the product 4 were observed in different ratios (Table 1). Similar
results were also observed in the absence of a catalyst and over a prolonged period of time
(18 h) in several solvents (Table S2). Only protic solvents MeOH and EtOH and polar DMF
were found to promote the studied transformation over a prolonged period of time, leading
to a mixture with the desired 4 as the major product (Table S2 entries 2, 3, and 13). For
comparison, the reaction profile was also studied in the absence of HAuCl4 and in CH3CN
as the chosen solvent. The absence of a catalyst, and at a prolonged reaction time of 18 h,
revealed the formation of a mixture of aminal 3 and the 4; however, no reaction completion
was observed (Figure 1). The structure of 3 was determined by NMR and compared with
the literature data [73].

Then, the development of the catalytic condition in the presence of different gold cata-
lysts was performed in acetonitrile and the results are summarized in Table 2. Commercially
available heterogeneous catalysts containing gold nanoparticles (AuNPs) in 1 % w/w, such
as Au/TiO2, Au/Al2O3, and Au/ZnO2, were tested at 25 ◦C. In all cases, the corresponding
catalyst was used in 1 mol% based on the amount of AuNPs (20 mg), 0.2 mmol of the
furfural, and 0.44 mmol of the morpholine, in 0.2 mL of CH3CN. We observed that aminal
3 was formed as the major product (Table 2, entries 2–4). When TiO2 and Al2O3 were used
as heterogeneous catalysts, similar results were observed along with a significant amount
of the unreactive furfural 1 (Table 2, entries 4 and 5). These results indicate that AuNPs and
the acidic supports TiO2 and Al2O3 are not able to catalyze the formation of the desired
trans-DACP 4 under the present conditions. For this reason, we further studied the catalytic
activity of the commercially available gold salts, i.e., AuCl, (pTolyl)3AuCl, and HAuCl4,
under the above conditions. The Au(I) salts shows media catalytic activity towards the
reaction between 1 and 2 (Table 2, entries 6–8); however, HAuCl4 was found to efficiently
mediate the studied transformation, quantitatively leading to the desired product 4 (Table 2,
entry 9). Based on these results, we continued with the evaluation of the catalytic condi-
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tions and found that HAuCl4 can catalyze this transformation even at the lower amount
of 1.5 mol% within 2 h (Table 2, 11). However, using 1 mol%, no reaction completion was
observed within 2 h and the desired 4 was formed in a 77 % yield (Table 2, entry 12). It is
worth noting that when increasing the scale of the reaction to 0.5 mmol and 1 mmol of 1,
a quantitative formation of 4 was observed within 15 min and 30 min, respectively (Table 2,
entries 13 and 14). For comparison, HCl was added into the reaction mixture at 3 mol%;
however, a lower yield of the desired 4 was measured (40%) with a significant amount of
aminal 3 (29%) and an identified product (31%) was observed by 1H NMR of the crude
reaction mixture (Table 2, entry 15). These results agree with a Lewis-catalyzed process by
the presence of Au(I) and Au(III), with Au(III) as a hard Lewis acid, to preferentially bind to
the lone pairs of heteroatoms such as O, N, and S. The oxophilic Au(III) complexes may be
employed to accelerate chemoselective reactions for which piphilic Au(I) complexes are less
efficient. To support this hypothesis, different commercially available salts (CuCl2, CuCl,
NH4Cl, MgCl2, ZnCl2, CoCl2, FeCl3) were also tested under the same conditions (Table S3).
However, in all cases, mixtures of 3 and 4 were observed, with the latter predominating
in most cases, accompanied by an unidentified product in significant amounts (Table S3,
entries 5, 6, and 13). In most cases, a higher amount of the salt (ca. > 6 mol%) was required
for reaction completion (Table S3). Photoirradiation conditions, with a xenon lamp as the
light source, were also performed, using either heterogeneous or homogeneous conditions
(Table S4). In all cases, no significant changes were measured in the product yields or
reaction conversion by 1H NMR spectroscopy.
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Figure 1. Reaction profile study in the absence of a catalyst and in CH3CN. 
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Table 1. Solvent screening in the presence of HAuCl4.
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3.2. Application of Catalytic Conditions to the Synthesis of trans-DACPs 4, 4a–4d, and 5a–5o

Based on the above optimum conditions, we further examined the possible appli-
cation into the direct synthesis of a series of substituted trans-DACPs (Scheme 2). Sev-
eral substituted secondary amines (1.1 mmol) and furfural (0.5 mmol) were added into
0.5 mL of CH3CN in the presence of 1.5 mol% of HAuCl4 at 25 ◦C. Indeed, under these
conditions, the substituted trans-DACPs (4, 4a–4d) were synthesized and isolated in mod-
erate to high yields of 52–95% (Scheme 2) using the commonly available starting sec-
ondary amines, such as morpholine, pyrrolidine, 3-methylpyrolidine, dimethylamine, and
N-methylaniline, respectively.
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With these encouraging results, we further examined the possible application of the
present optimum conditions using substituted anilines (1.1 mmol) instead of secondary
amines. As far as we know, only aniline was used in sporadic examples for the synthesis of
the corresponding trans-DACPs; however, low yields were reported. Only polyoxometa-
lates were reported to successfully drive the conversion of furfural to the corresponding
trans-DACPs in the presence of anilines [72]. Thus, a series of substituted anilines (1.1 mmol)
were studied in the presence of 0.5 mmol of furfural in 0.5 mL of CH3CN at room tempera-
ture. Indeed, under the proposed conditions, a series of substituted trans-DACPs (5a–5o)
were synthesized and isolated in moderate to high isolated yields of 54–89% (Scheme 3).
More specifically, substituted anilines with electron withdrawing groups (5a–5m) were
found to lead the reaction in higher yields; however, the corresponding aniline and p-
toluidine derivatives were formed in lower yields (5n, 54% and 5o, 59%). In addition to this
observation, the m-NO2-substituted aniline reacted in lower yields than the corresponding
p-NO2 aniline, leading to the desired trans-DACPs 5l and 5m of 68% and 65%, respectively.
It is interesting to note that 5a and 5e were also synthesized at the 5 mmol lab-scale and
were isolated in 77% and 73% yields, respectively, in the presence of 3 mol% of HAuCl4
and in 3 mL of CH3CN (Scheme 3, values in parentheses).

It is worth noting that p-MeO-aniline (pKb~8.6) does not lead to the desired cyclopen-
tanone derivate; however, the corresponding imine 6 was formed quantitatively (Scheme 4).
Accordingly, using the primary aliphatic amine n-butylamine (pKb~3.2) and benzylamine
(pKb~4.6), the corresponding imines 7 and 8 were observed as the only product, even at the
prolonged reaction time (18 h) (Scheme 4). It is noting that, in the presence of pyrrolidine,
an equimolar mixture of the desired trans-4,5-N,N-disubstituted cyclopent-2-en-1-one 9a
and the thermodynamic 2,4-disusbtituted cyclopentenone 9b was observed; however, no
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reaction process was observed in the presence of diisopropylamine, 1H-indole, or L-proline
(Scheme 4). Based on these results, it seems that the protocol was applied to anilines and
secondary amines with pKb higher than ca. 9.
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3.3. Reaction Profile Evaluation of the Reaction between Furfural and o-Phenylenediamine

To synthetically explore the present catalytic conditions using aryl diamines, we ini-
tially studied the reaction between o-phenylenediamine (9) and furfural (1). The reaction
process was monitored by 1H NMR, and after completion (the consumption of furfural
based on TLC), four products were observed: the corresponding trans-DACPs (13) in
a 26% yield, 2-furyl-benzimidizole (11) as the major one in a 36% yield, 1,2-disubstituted
benzimidazole (12) in a 14% yield, and the corresponding imine (10) in a 24% yield
(Scheme 5). By increasing the amount of furfural and catalyst and at a prolonged re-
action time, the desired product 13 was formed in a lower yield (16%); however, the
corresponding benzimidazole derivatives 11 and 12 were formed in 23% and 61% yields,
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respectively (Scheme 5). This result agrees with our previous work on benzimidazole
synthesis from aldehydes and o-phenylenediamine catalyzed by Au/TiO2 [74].
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3.4. Proposed Mechanistic Pathway for the Reaction of Furfural with Anilines

From a mechanistic point of view, during the present catalytic conditions, the oxophilic
Au(III) complexes mediated the initial formation of I and the further transformation to
intermediate II (Scheme 6). The nucleophilic attack of the amine to the 3-position of the
cyclopentenone core of II led to the formation of Stenhouse salt intermediate III, which
subsequently transformed to the final product through a 4π-conrotatory electrocycliza-
tion pathway with the exclusive trans-diastereoisomer (trans-DACPs) (Scheme 6). This
plausible pathway is in agreement with the literature reports in which the corresponding
Stenhouse salt, derived by the reaction of furfural with aniline, was isolated and character-
ized by XRD [67]. It is worth noting that no reaction process was observed by 1H NMR
when 5-methylfurfural was mixed with 4-chloroanilne, a result that further supports the
proposed mechanism.
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by HAuCl3.

4. Conclusions

Herein is presented, for the first time, the efficient approach of a series of trans-N,N-4,
5-substituted-diaminocyclopent-2-enones from furfural and anilines mediated by Gold(III)
chloride. With the proposed protocol, a library of trans-DACPs were synthesized and
isolated with good to high yields, using a low amount of the catalyst (1.5 mol%), under
ambient conditions, in the absence of additives and using short reaction times. Under
the same conditions, secondary amines were also reacted with furfural to produce the
corresponding trans-DACPs in high yields. The present catalytic synthetic protocol has
an extended substrate scope with high yields and represents, to the best of our knowledge,
the first gold-driven paradigm as an efficient method for the formation of the cyclopen-
tenones core under mild reaction conditions.
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