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Abstract: The syntheses of two squaramide–naphthalimide conjugates (SN1 and SN2) are reported;
the structures of SN1 and SN2 differ by the attachment of a squaramide—either at the ‘head’ or
the ‘tail’ of the naphthalimide fluorophore. Both compounds displayed weak fluorescence due
to the inclusion of a nitro-aromatic squaramide which efficiently quenches the emission of the
naphthalimide. Both compounds were also shown to undergo self-aggregation as studied by 1H
NMR and scanning electron microscopy (SEM). Furthermore, SN1 and SN2 gave rise to stark
colourimetric changes in response to basic anions such as AcO−, SO4

2− HPO4
2−, and F−. The

observed colour changes are thought to be due to deprotonation of a squaramide NH. The same
basic anions also result in a further quenching of the naphthalimide emission. No colour change or
emission modulations were observed in the presence of Cl−; however, 1H NMR studies suggest that
moderate H-bonding occurs between this anion and both SN1 and SN2.

Keywords: supramolecular chemistry; squaramide; 1,8-naphthalimide; sensor; anion
recognition; aggregation

1. Introduction

Squaramides have attracted a significant amount of research attention in recent years
due to several physical and chemical characteristics that render them an ideal scaffold on
which to build charge neutral anion receptors [1,2]. Their ability to partake in bi-directional
H-bonding that increases the aromatic character of the cyclobutenedione ring [3,4] has been
seen to be of particular benefit for the recognition of halides [5–8]. Indeed, Amendola et al.
showed that a simple squaramide-based receptor forms 1:1 complexes with halide ions that
are up to 2 orders of magnitude more stable than the corresponding urea-based receptor [9].
This finding has led to several examples of their exploitation as anion transporters [10–13]
with the ability to disrupt anion homeostasis in cellular models whereby the transport
ability of the receptors leads to apoptosis and induced autophagy [14,15]. In parallel,
the 1,8-naphthalimide fluorophore has also found significant use in the construction of
anion sensors whereby the ICT character of the naphthalimides can be modulated upon
interaction with anionic species [16]. Gunnlaugsson et al. pioneered their use in this area
where they reported a series of studies on naphthalimide–urea conjugates [17–23].

Our interest in anion recognition and sensing has centred on the squaramide motif
where the aforementioned bidirectional H-bonding interactions in addition to π–π stacking
brought about by the aromatic cyclobutenedione ring give a useful handle on which to build
effective anion sensors [24–31]. We recently reported a series of naphthalimide–squaramide
conjugates that aggregated in solution and were capable of sensitive detection of bromide
through an ‘aggregation–disggregation approach’ [32]. The aggregation behaviour of
these conjugates could be modulated upon bromide recognition where the disruption of
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H-bonding reversed self-assembly and gave rise to a ’switch on’ fluorescence response.
In the current work, we have designed and synthesised a further set of squaramide–
naphthalimide conjugates in which we have changed the functionality of the phenyl
substituent of the squaramide. Again, we have placed the squaramide at either the ‘head’
or the ‘tail’ of the naphthalimide. We envisioned that the inclusion of a nitro group in the
structures would provide a stronger H-bonding receptor while also providing interesting
photophysical properties to the conjugates.

Herein, we report the synthesis of compounds SN1 and SN2 (Figure 1) and carry out
an investigation on both their aggregation behaviour and their anion recognition properties.
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Figure 1. Chemical structures of probes SN1 and SN2.

2. Materials and Methods
General Experimental Methods

All chemicals purchased were obtained from commercial suppliers and used without
further purification. DCM was distilled over CaH2 and MeCN was dried over 3 Å molecu-
lar sieves. Anhydrous DMF was purchased from Sigma Aldrich (Arklow, Ireland). TLC
was performed on Merck Silica Gel F254 plates (Merck Life Science Limited, Cork, Ireland)
and visualised under UV light (λ = 254 nm). Flash chromatography was performed with
Merck Silica Gel 60 (Merck Life Science Limited, Ireland). Compounds were lyophilised
on a Labconco Freezone 1 Dry system. NMR spectra were recorded on a Bruker Ascend
500 NMR spectrometer, operated at 500 MHz for 1H NMR analysis and 126 MHz for
13C analysis, both at 293 and 343 K. The residual solvent peak was used as an internal
standard for DMSO-d6 and TMS for CDCl3. Chemical shifts (δ) were reported in ppm.
NMR spectra were processed and stack plots produced using MestReNova 6.0.2 software.
Proton and carbon signals were assigned with the aid of 2D NMR experiments (COSY,
HSQC, and HMBC). Multiplicity is given as s = singlet, bs = broad singlet, d = doublet,
brd = broad doublet, dd = doublet of doublets, ddd = doublet of doublet of doublets,
t = triplet, q = quartet, m = multiplet as appropriate, and J values are given in Hz. In-
frared spectra were obtained via ATR as a solid on a zinc selenide crystal in the region
of 4000–400 cm−1 on a Perkin Elmer Spectrum 100 FT-IR spectrophotometer. LC-MS was
performed on an Agilent Technologies 1200 Series instrument consisting of a G1322A
Quaternary pump and a G1314B UV detector (254 nm) coupled to an Advion Expression L
Compact Mass spectrometer (ESI) operating in positive mode. High-resolution ESI spectra
were recorded on an Agilent 6310 LCMS TOF. UV/Vis spectra were recorded on a Varian
Cary 50 Scan UV/Vis spectrophotometer and fluorescence spectra were measured using
a Cary Eclipse operating Cary WinUV software. Diethyl squarate was synthesised as
previously described [33].

6-((2-Aminoethyl)amino)-2-ethyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (2)

A solution of 1 (1 g, 3.29 mmol, 1 eq.) was stirred at room temperature overnight in
neat ethylenediamine (10 mL, excess) to yield a dark orange liquid. The crude product
was slowly added to deionised water (50 mL) and left to stir at room temperature for
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2 h. The precipitate was collected by suction filtration and washed with H2O to yield the
product as a yellow amorphous solid (0.75g, 80%). 1H NMR, (DMSO-d6, 500.13 MHz) δ
(ppm), J (Hz): 8.63 (dd, J = 8.4, J = 0.8, 1H, ArH), 8.36 (dd, J = 7.3, J = 0.9, 1H, ArH), 8.18 (d,
J = 8.5, 1H, ArH), 7.60 (m, 1H, ArH), 6.73 (d, J = 8.5, 1H, ArH), 3.97 (q, J = 6.4, 2H, CH2),
3.32 (t, J = 6.4, 2H, CH2), 2.82 (t, J = 6.4, 2H, CH2), 1.11 (t, J = 7.0, 3H, CH3); 13C NMR,
(DMSO-d6, 125.76 MHz) δ (ppm): 164.0, 163.1, 151.3, 134.6, 131.0, 129.8, 129.0, 124.6, 122.3,
120.6, 108.1, 104.3, 46.7, 34.7, 13.7; HRMS (ESI) calcd. for C16H18N3O2 [M + H]+ 284.1394,
found 284.1389; difference −1.65 ppm; νmax (KBr)/cm−1: 3358 (N-H), 2979 (ArH), 1676
(C=O), 1461 (ArH), 1370 (CH), 1249 (C-N).

3-Ethoxy-4-((4-nitrophenyl)amino)cyclobut-3-ene-1,2-dione (3)

A solution of 4-nitroaniline (1.63 g, 11.75 mmol, 1 eq.) in EtOH (5mL) was slowly
added to a mixture of diethyl squarate (1.74 mL, 11.75 mmol, 1 eq.) and zinc triflate
(0.85 g, 2.35 mmol, 0.2 eq.) in EtOH (5 mL). The reaction was stirred at room temperature
overnight. The precipitate was collected by suction filtration and washed with EtOH
and Et2O to yield the product as an orange amorphous solid (2.901g, 94%). 1H NMR,
(DMSO-d6, 500.13 MHz) δ (ppm), J (Hz): 11.22 (s, 1H, NH), 8.24 (d, J = 9.0, 2H, ArH), 7.59
(d, emphJ = 9.0, 2H, ArH), 4.80 (q, J = 7.1, 2H, CH2), 1.44 (t, J = 7.1, 3H, CH3); 13C NMR
(DMSO-d6, 125.76 MHz): δ (ppm): 185.25, 169.90, 142.97, 126.87, 125.75, 119.51, 70.66, 16.06;
HRMS (ESI) calcd. for C12H10N2NaO5 [M + Na]+ 285.0482, found 285.0496; difference
4.84 ppm; νmax (KBr)/cm−1: 3304 (N-H), 3083 (ArH), 1715 (C=O), 1623 (ArH), 1531 (N-O),
1114 (C-O).

2-Ethyl-6-((2-((2-((4-nitrophenyl)amino)-3,4-dioxocyclobut-1-en-1l)amino)ethyl)amino)
-1H-benzo[de]isoquinoline-1,3(2H)-dione (SN1)

A solution of 3 (0.324 g, 1.235 mmol, 1 eq.) in EtOH (8 mL) was slowly added to a
mixture of 2 (0.35 g, 1.235 mmol, 1 eq.) and Et3N (0.689 mL, 4.94 mmol, 4 eq.) in EtOH
(12 mL). The reaction was stirred at room temperature. The precipitate was collected
by suction filtration and washed with EtOH and Et2O to yield the product as an orange
amorphous solid (0.453 -g, 73%). 1H NMR at 343K, (DMSO-d6, 500.13 MHz) δ (ppm), J
(Hz): 9.87 (br, 1H, NH), 8.60 (d, J = 8.3, 1H, ArH), 8.42 (d, J = 7.2, 1H, ArH), 8.26 (d, J = 8.5,
1H, ArH), 8.07 (brs, 2H, ArH), 7.67 (d, J = 8.1, 2H, ArH), 7.64 (d, J = 10.7, 1H, ArH), 7.38 (br,
2H, NH), 6.91 (d, J = 8.5, 1H, ArH), 4.03 (q, J = 7.0, 2H, CH2), 3.96 (t, J = 6.0, 2H, CH2), 3.70,
(q, J = 6.0, 2H, CH2), 1.18 (t, J = 7.1, 3H, CH3); 13C NMR at 343K, (DMSO-d6, 125.76 MHz) δ
(ppm): 181.3, 163.9, 163.1, 150.8, 134.2, 130.9, 129.8, 128.7, 125.6, 124.8, 122.6, 120.9, 118.1,
109.1, 104.7, 56.5, 44.2, 43.1, 34.6, 18.9, 13.6; HRMS (ESI) calcd. for C26H22N5O6 [M + H]+

500.1565, found 500.1557; difference −1.6 ppm; νmax (KBr)/cm−1: 3421 (NH), 3080 (ArH),
1797 (C=O), 1507 (N-O), 1419 (ArH), 1332 (N-O), 1246 (C-N).

Tert-butyl(2-(6-nitro-1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)ethyl)carbamate (5)

Tert-butyl(2-aminoethyl)carbamate, (0.565 mL, 3.54 mmol, 1 eq.) was slowly added
dropwise to a solution of 4 (0.86 g, 3.54 mmol, 1 eq.) in EtOH (20 mL). The reaction mixture
was left to react in a 35 mL microwave tube for 1 hour at 110 ◦C, 1 mbar, and 300 watts. The
precipitate was collected by suction filtration and washed with EtOH and Et2O to yield the
product as a peach amorphous solid (1.047g, 76%). 1H NMR (500 MHz, DMSO-d6) δ 8.70
(d, J = 8.6 Hz, 1H, ArH), 8.63 (d, J = 7.2 Hz, 1H, ArH), 8.60 (d, J = 8.0 Hz, 1H, ArH), 8.55 (d,
J = 8.0 Hz, 1H, ArH), 8.10 (dd, J = 8.6, 7.4 Hz, 1H, ArH), 6.89 (t, J = 6.2 Hz, 1H, NH), 4.14 (t,
J = 5.8 Hz, 2H, CH2), 3.28 (d, J = 5.5 Hz, 2H, CH2), 1.20 (s, 9H, CH3).; 13C NMR (DMSO-d6,
125.76 MHz): δ (ppm): 163.6, 162.8, 156.2, 149.5, 132.0, 130.5, 129.9, 129.0, 128.9, 127.3, 124.6,
123.5, 123.1, 77.9, 38.0, 28.5; HRMS (ESI) calcd. for C38H38N6NaO12 [2M + Na]+ 794.2471,
found 794.2493; difference 2.8 ppm; νmax (KBr)/cm−1: 3401 (N-H), 2977 (ArH), 1714 (C=O),
1593 (ArH), 1523 (N-O), 1365 (C-H), 1192 (C-N).

2-(2-Aminoethyl)-6-nitro-1H-benzo[de]isoquinoline-1,3(2H)-dione (6)

Compound 5 (1.02 g, 2.647 mmol, 1 eq.) was dissolved in TFA:DCM (50:50) (6 mL)
and was stirred at room temperature overnight. The solvent was removed under reduced
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pressure to yield a beige amorphous solid (0.70 g, 93%). 1H NMR (500 MHz, DMSO-
d6) δ 8.75 (dd, J = 8.7, 0.8 Hz, 1H, ArH), 8.67 (dd, J = 7.3, 0.8 Hz, 1H, ArH), 8.64 (d,
J = 8.0 Hz, 1H, ArH), 8.59 (d, J = 8.0 Hz, 1H), 8.13 (dd, J = 8.6, 7.4 Hz, 1H), 7.81 (s, 2H, NH2),
4.33 (t, J = 5.9 Hz, 2H, CH2), 3.18 (dd, J = 11.2, 5.6 Hz, 2H, CH2).; 13C NMR (DMSO-d6,
125.76 MHz): δ (ppm): 164.0, 163.3, 149.7, 132.2, 130.6, 130.1, 129.4, 128.9, 127.2, 124.7, 123.4,
123.2, 38.2, 37.9; HRMS (ESI) calcd. for C14H12N3O4 [M + H]+ 286.0822, found 286.0800;
difference −7.88 ppm; νmax (KBr)/cm−1: 3078 (ArH), 1712 (C=O), 1595 (ArH), 1525 (N-O),
1437 (C-H), 1247 (C-N).

6-Amino-2-(2-aminoethyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (7)

Pd/C (approx. 0.2 g) was added to a solution of 6 (1.00 g, 3.50 mmol) dissolved
in MeOH (40 mL). The reaction was placed under a H2 atmosphere and left to stir at
room temperature for 3 h. The reaction was filtered through a pad of celite and washed
with excess MeOH; the filtrate was removed under reduced pressure to yield a mustard
amorphous solid (0.673 g, 75%). 1H NMR, (DMSO-d6, 500.13 MHz) δ (ppm), J (Hz): 8.63
(dd, J = 8.4, J = 1.1, 1H, ArH), 8.44 (dd, J = 7.3, J = 1.05, 1H, ArH), 8.21, (d, J = 8.4, 1H, ArH),
7.77, (br, 2H, NH2), 7.67 (m, 1H, ArH), 7.48 (s, 2H, NH2), 6.86 (d, J = 8.4, 1H, ArH), 4.27 (t,
J = 6.0, 2H, CH2), 3.12 (m, 2H, CH2); 13C NMR, (DMSO-d6, 125.76 MHz) δ (ppm): 164.9,
163.9, 153.3, 134.5, 131.5, 130.4, 129.9, 124.4, 122.4, 119.8, 108.6, 108.0, 38.4, 37.6; HRMS (ESI)
calcd. for C14H13N3NaO2 [M + Na]+ 279.0930, found 279.0914; difference −5.68 ppm; νmax
(KBr)/cm−1: 3419 (N-H), 3362 (N-H), 3017 (ArH), 1636 (NH), 1485 (ArH), 1429 (C-H), 1247
(C-N).

6-Amino-2-(2-((2-((4-nitrophenyl)amino)-3,4-dioxocyclobut-1-en-1-yl)amino)ethyl)-1H
-benzo[de]isoquinoline-1,3(2H)-dione (SN2)

A solution of 3 (0.1 g, 0.39 mmol, 1 eq.) in EtOH (8 mL) was slowly added to a mixture
of 7 (0.1 g, 0.39 mmol, 1 eq.) and Et3N (0.217 mL, 1.56 mmol, 4 eq.) in EtOH (10 mL).
The reaction was stirred at room temperature overnight. The precipitate was collected
by suction filtration and washed with EtOH and Et2O to yield the product as an orange
amorphous solid (0.124g, 67%). 1H NMR (500 MHz, DMSO-d6) δ 9.66 (s, 1H), 8.60 (d,
J = 8.4 Hz, 1H), 8.41 (d, J = 6.9 Hz, 1H), 8.18 (d, J = 8.3 Hz, 1H), 8.09 (d, J = 8.6 Hz, 2H),
7.64–7.57 (m, 1H), 7.40 (s, 2H), 7.23 (s, 2H), 6.85 (d, J = 8.4 Hz, 1H), 4.33 (t, J = 5.7 Hz, 2H),
3.93 (t, J = 5.2 Hz, 2H).). 13C NMR at 343K, (DMSO-d6, 125.76 MHz) δ (ppm): 181.3, 171.5,
164.6, 163.6, 162.6, 153.2, 145.7, 142.0, 134.3, 131.4, 130.3, 129.0, 125.7, 125.4, 124.3, 122.3,
120.0, 118.1, 108.7, 108.2, 43.0, 16.0; (although not symmetrical, the squaramide 13C signals
appeared as coincident in this spectrum); HRMS (ESI) calcd. for C24H18N5O6 [M + H]+

472.1252, found 472.1248; difference −0.79 ppm; νmax (KBr)/cm−1: 3361 (N-H), 3250 (N-H),
1796 (C=O), 1622 (N-H), 1504 (N-O), 1432 (ArH), 1368 (C-H), 1328 (N-O), 1247 (C-N).

3. Results and Discussion
3.1. Synthesis

The syntheses of compounds SN1 and SN2 were achieved through an analogous
method previously reported by us (Scheme 1) [32]. For SN1, 4-bromo-1,8-naphthalimide
1 was reacted with ethylenediamine before nucleophilic addition of the product 2 to
4-nitrophenyl squarate monoester 3 to yield SN1 in 73% yield. Similarly, SN2 was synthe-
sised by reaction of 4-nitro-1,8-naphthalic anhydride 4 with N-Boc-ethylenediamine to give
product 5. Following TFA-mediated deprotection and reduction in the presence of H2 and
Pd/C, compound 7 was reacted with 3 to yield SN2 in 67% yield. All compounds and
intermediates were fully characterised by 1H NMR, 13C NMR, HRMS, and IR spectroscopy
(see Supplementary Materials).
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Scheme 1. Syntheses of (a) SN1 and (b) SN2.

We have previously noted that the 1H NMR spectra of analogous squaramide–
naphthalimide conjugates give rise to complex NMR spectra showing a large degree
of peak broadening owing to self-aggregation in solution. In order to investigate whether
similar behaviour would be observed for SN1 and SN2, 1H NMR and UV/Vis absorption
measurements were carried out in addition to SEM analysis.

3.2. Variable-Temperature NMR and SEM Analysis

The 1H NMR spectra of SN1 and SN2 in DMSO-d6 were measured at both 298 K and
343 K. There were clear differences observed between both spectra where at 298 K signals
are broadened, suggesting that aggregation is occurring under these conditions. Conversely,
at 343 K some signals become less broad and show a much-improved resolution while
others become more broadened. Figure 2 shows the 1H NMR spectrum of SN1 at 298 K and
343 K as an example. Naphthalimide signals appear to resolve from broad to sharp for each
proton while the signals associated with the 4-nitrophenyl portion display the opposite
behaviour—the signal at 8.2 ppm becomes broad at 343 K and shifts upfield to 8.05 ppm
while the signal at 7.45 ppm also becomes broad and shifts upfield to 7.4 ppm. Similarly,
the CH2 signals in the aliphatic region resolve from broad to sharp, clearly showing the
correct multiplicity. The observation of peak broadening for the nitro-phenyl substituent
suggests that this portion of the molecule is undergoing rapid rotation around the C-N
bond axis at elevated temperature. This behaviour is reminiscent of a molecular rotor [34]
and explains the observed peak broadening at elevated temperature. Conversely, the
resolution of the CH2 signals suggests that this linker is also taking part in the self-assembly
behaviour. The broad to sharp signal resolution signifies the disaggregation event. Taken
together, the evidence from the above study suggests a temperature-dependent aggregation
of the molecule that involves predominantly contributions from the naphthalimide and
squaramide portions of the assembly.
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(10−3 M).

To further probe the aggregation characteristics of both compounds, attempts were
made to grow crystals from concentrated DMSO solutions. Unfortunately, in our hands
the compounds did not crystallise and instead formed what appeared to be amorphous
solids. The morphological features of these solids were thus analysed by scanning electron
microscopy (SEM), and as shown in Figure 3, the SEM images exhibit interesting and
distinct morphology on the nanoscale. SN1 appeared as an amorphous solid with no
defined structure to speak of. Conversely, SN2 formed a porous sponge-like structure with
a large degree of uniformity throughout the material. At higher magnifications, the material
appeared to be composed of small ‘nanoflake’ type material. Although firm conclusions
cannot be drawn on the exact material properties from these results, it is worth noting the
difference in morphology brought about by the position of the 4-nitrophenyl-squaramide
moiety, i.e., whether it is positioned at the head or the tail of the 1,8-naphthalimide. This be-
haviour was also seen with the 3,5-bis(trifluoromethyl)phenyl derivatives where this minor
structural change gave rise to a significant change in material morphology as determined
using SEM.

Both SN1 and SN2 were also examined using UV/Vis spectroscopy and fluorescence
emission spectroscopy. The UV/Vis absorption spectrum of SN1 in DMSO showed two
absorption maxima at 280 nm and 420 nm with extinction coefficient values of 34,375 M−1

and 29,900 M−1
, respectively. Similarly, SN2 showed an almost identical spectrum to SN1

with maxima also at 280 nm and 420 nm and with extinction coefficients of 35,187 M−1

and 27,410 M−1, respectively. Interestingly, a third absorption maximum at 545 nm was
observed in the case of SN2 attributed to a naphthalimide π–π stacking band (Figure 4) [35].
This peak was shown not to obey the Beer–Lambert law and further confirms the presence
of a self-association event at higher concentrations of SN2. This behaviour was not observed
for SN1 and exemplifies the sensitivity of squaramide–naphthalimide conjugates to changes
in molecular structure when considering their aggregation characteristics. A summary of
the absorption properties of SN1 and SN2 as well as their molar absorptivities is given in
Table S1.
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Furthermore, both compounds exhibited very weak fluorescence emission at ca.
525 nm. With the aggregation behaviour observed for the previously reported analogues
containing a 3,5-bis CF3 substituent, we also undertook a thermal study to investigate if the
fluorescence of SN1 could be modulated by disaggregation. In this case, the fluorescence of
SN1 is already significantly quenched due to the inclusion of a NO2 group which is known
to efficiently quench emission from aromatic systems, including naphthalimides [36,37].
A temperature-dependent fluorescence study was undertaken in 5% aq. DMSO ranging
from 298 K to 343 K where the fluorescence of both compounds was largely unaffected
by temperature (see Supplementary Materials). The 1H NMR results above suggest that
SN1 and SN2 aggregate in solution but, upon heating, disassemble; however, this process
cannot be monitored with fluorescence emission spectroscopy.

With the known propensity of squaramides to bind strongly to halides and other anionic
species [9,10,38–42], we expected that SN1 and SN2 may also be capable of anion recognition
and that this process may be monitored by both UV spectroscopy and 1H NMR spectroscopy.
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3.3. Anion Recognition

To investigate the ability SN1 and SN2 to bind anions in solution, a series of 1H NMR
experiments were carried out. Initial qualitative measurements were undertaken using a
screening experiment in which 30 equivalents. of several anions (AcO–, HPO4

2−, SO4
2−,

F–, and Cl– as their tetrabutylammonium salts) were added to the receptors in solution
(0.5% H2O in DMSO-d6). These preliminary results showed significant changes to the
spectra of both SN1 and SN2, where the addition of AcO–, F–, HPO4

2–, and SO4
2– led to

the disappearance of the NH signal. This change was also coupled with a stark colour
change from yellow to purple (or yellow to orange for SO4

2–) in the cases of both receptors
(see Figure 5 for SN2).
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Figure 5. (a) 1H NMR stackplot of SN2 with various anions (30 equivalents) in 0.5% H2O in DMSO-d6

at 298 K. (b) The corresponding colour changes upon anion addition.

The disappearance of the NH signal and the colour change suggest that deprotonation
of the squaramide/naphthalimide may be responsible, as has been previously observed [32].
We further confirmed this deprotonation behaviour by observation of bifluoride (HF2

−)
in the 1H NMR spectra of SN1 and SN2 upon the addition of F–

. In comparison, the
changes upon the addition of Cl– were more subtle. For example, with SN2, Cl– led to
a large downfield shift of the NH signal (Ha) from 10.15 ppm to 11.5 ppm coupled with
a significantly sharpened spectrum. The large downfield shift of the NH signal suggests
a classical H-bonding interaction between Cl– and the NH protons of the squaramides.
More detailed 1H NMR spectroscopic titrations were carried out with Cl–, and the resulting
data fit to a 1:1 binding model using the open access BindFit software program [43–45]
to provide the apparent stability constants (Ka). Ka values of 273.7 M−1 (±4.1%) and
114.8 M−1 (±5.9%) were measured for receptors SN1 and SN2, respectively, in DMSO-d6
at 273 K. Figure 6 shows the changes observed in the 1H NMR spectrum of SN2 upon the
addition of Cl– (20 equivalents.).
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Figure 6. Changes in the 1H NMR spectrum (NHa, NHb, NHc identified) of SN2 upon the addition
0–20 equivalents of anions as tetrabutylammonium (TBA) chloride in DMSO-d6.

Overall, both SN1 and SN2 were found to bind to Cl– with moderate affinities, with SN1
showing a slightly increased affinity compared to SN2. As previously reported, the position
of the squaramide at the ‘tail’ of the naphthalimide seems to be optimal for anion binding.

Having observed such stark colour changes while conducting the 1H NMR titrations,
we also wished to examine the interaction of SN1 and SN2 with anions using UV/Vis
spectroscopy. The titrations were performed by additions of aliquots of the putative anionic
guest (AcO−, Cl−, F−, HPO4

2−, SO4
2−) as the tetrabutylammonium (TBA) salt solution

(20 mM) in DMSO to a 1.2 × 10−5 M solution of the receptor in DMSO. The changes in the
UV spectra upon anion addition were monitored for each receptor. The overall changes in
the ground state of SN2 with TBA SO4

2− are shown in Figure 7 as an example.
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Upon titration with Cl− , very minor changes were seen in all cases. In contrast, much
more significant changes were seen upon the addition of AcO−, F−, HPO4

2−, and SO4
2−.

As shown in Figure 5, an increase in absorption at 545 nm was observed with a concomitant
decrease at 280 nm and 420 nm and a clear isosbestic point at 460 nm. Similar changes
were observed upon titration with AcO−, F−, and HPO4

2−. These results again suggest a
deprotonation event at the squaramide binding site. The changes in the fluorescence spectra
of SN1 and SN2 were also monitored, but as expected, only minor changes were observed
in the emission spectra of SN1 and SN2 upon titration with Cl-. Titration with AcO−,
F−, HPO4

2−, and SO4
2− led to more significant changes where some further fluorescence

quenching was observed, with a small emission decrease being observed at 430 nm and
460 nm for SN1 and SN2, respectively. We also ascribe this behaviour to the deprotonation
observed in the NMR titrations where similar behaviour was also observed in the presence
of all basic non-halide anions (see Supplementary Materials). Overall, the results of the
anion binding experiments seem to suggest that a moderate H-bonding interaction occurs
between Cl− and both SN1 and SN2 but results in very minor spectroscopic perturbation
as measured by UV/Vis and fluorescence. Conversely, the interaction of either receptor
with more basic anions results in a deprotonation that is accompanied by both stark colour
changes as well as further fluorescence quenching.

4. Conclusions

In conclusion, we have reported the synthesis of two new squaramide–naphthalimide
conjugates, SN1 and SN2. We have shown that these receptors undergo some degree
of self-aggregation in aqueous DMSO as observed by 1H NMR and SEM. We have also
shown that both receptors are capable of classical H-bonding to Cl- and appear to undergo
deprotonation in the presence of more basic anions such as AcO−, F−, HPO4

2−, and SO4
2−.

Deprotonation leads to stark colour changes that are clearly observable to the naked eye
and can also be monitored using UV/Vis absorption spectroscopy. Unfortunately, due to
the quenching effect of the NO2 substituent on the 1,8-naphthalimide, large changes in
emission characteristics are not observed apart from minor quenching brought about in the
presence of basic anions, again, thought to be a result of deprotonation. The position of the
squaramide relative to the naphthalimide (i.e., at the head or the tail of the structure) seems
to play a role in the strength of the association constant with Cl−. Under our experimental
conditions, SN1, which has the squaramide appended to the ‘tail’ of the naphthalimide,
showed a higher affinity when compared to SN2 where the squaramide is at the ‘head’
of the naphthalimide. We are currently optimising our design to take advantage of the
aggregation–disassembly approach to anion recognition, and our results will be reported
in due course.

Supplementary Materials: Supporting information including spectroscopic methods, characteriza-
tion data, titration data and titration analysis can be downloaded at: https://www.mdpi.com/article/
10.3390/chemistry4040085/s1.
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