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Abstract: In this study, a new bi-nuclear nickel complex [Ni2HL2(EtOH)2](Cl)(EtOH) of a Schiff
base ligand, 2-[3-[2-hydroxybenzylideneamino]propyliminomethyl]phenol, was synthesized and
characterized using UV/Vis, IR, HRMS, and TGA/DTA analysis. The molecular structure of the
obtained complex was corroborated by the single crystal X-ray diffraction technique. It was found in
the complex that two molecules of the ligand coordinate with two nickel atoms through azomethine-
N and phenoxy-O, resulting in 6-coordinate distorted octahedral geometry, in which two ethanol
molecules occupy the axial positions. The dielectric and electrical properties of the obtained samples
were studied by impedance spectroscopy at different frequencies (from 1 Hz to 1 MHz) in the
temperature range 298–343 K. It is found that the electrical conductivity of the Ni(II) complex is lower
than that of the free ligand H2L, suggesting that the complexation traps the charge carriers contained
in the ligand.

Keywords: Bi-nuclear complex; octahedral geometry; spectroscopy; X-ray crystal structure; Hirshfeld
surface analysis; dielectric; conductivity

1. Introduction

Transition metal complexes derived from tetradentate Schiff bases (ONNO) have
been extensively studied in virtue of their wide range of applications [1,2]. Indeed, these
compounds are known for their anti-corrosion [3], catalytic [4,5], optoelectronic [6,7],
electric [8], dielectric [9], magnetic [10,11], and biological properties [12,13].

Many previous studies have found that inorganic metal complexes might exhibit
conducting properties [14,15], which are nowadays the subject of a promising research area.
Thanks to their useful function in molecular electronics and vital biological life processes,
conducting and semiconducting materials have drawn considerable attention [16]. Such

Chemistry 2022, 4, 1193–1207. https://doi.org/10.3390/chemistry4040080 https://www.mdpi.com/journal/chemistry

https://doi.org/10.3390/chemistry4040080
https://doi.org/10.3390/chemistry4040080
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/chemistry
https://www.mdpi.com
https://orcid.org/0000-0001-9260-7659
https://orcid.org/0000-0003-0732-6524
https://orcid.org/0000-0002-2772-6632
https://orcid.org/0000-0003-2655-0230
https://orcid.org/0000-0001-7980-974X
https://doi.org/10.3390/chemistry4040080
https://www.mdpi.com/journal/chemistry
https://www.mdpi.com/article/10.3390/chemistry4040080?type=check_update&version=1


Chemistry 2022, 4 1194

conducting metal complexes stand on the threshold of a bright and exciting future. Hence,
the study of the relationship between the chemical structures and electronic characteristics
of such compounds still invites further and deeper exploration, as they have a tremendous
potential for broader applications that has not been exhausted by their present uses.

Indeed, it is because of this wide range of applications possessed by bi-nuclear metal
complexes that they have attracted much interest [17,18]. One of the most attractive
properties of bi-nuclear complexes is the interaction exchange possibility between metal
centers [19,20]. For they are also known as a catalyst in asymmetric synthesis [21,22], and
have a unique catalytic property in the polymerization reaction of olefins compared with
mononuclear complexes [23,24]. In addition, they are useful for mimicking bimetallic
bio-sites in various proteins and enzymes [25]. Among metal complexes, nickel complexes
have attracted great interest in various fields of chemistry [26,27]. Despite that salen and
related Schiff’s base ligands react with transition metal ions through the deprotonated
forms, which act as tetradentate chelating ligand [28,29], some reported works show that
the oxygen atoms of the phenoxy groups are not deprotonated [30].

Keeping in view the abovementioned features, we report in this paper the synthesis of
undescribed bi-nuclear nickel(II) complex-based 2,2′-((propane-1,3-diylbis(azaneylylidene))
bis(methaneylylidene))diphenol Schiff’s base. Spectroscopic studies are performed for
the ligand and its corresponding nickel complex to establish their structures and crystal-
lographic studies were used to corroborate the structure of the obtained complex. The
dielectric and electrical properties of the obtained compounds were also investigated.

2. Results and Discussion

The salen base Schiff ligand H2L was prepared by the condensation of propane-1,3-
diamine with two equivalents of salicylaldehyde using a common procedure described in
the literature [31]. The nickel complex [Ni2HL2(EtOH)2](Cl)(EtOH) was obtained through a
simple reaction of a stoichiometric amount of nickel salt (NiCl2, 6H2O) with the ligand H2L in
refluxing ethanol.

The schematic representation of the ligand H2L structure (Figure 1) and its nickel
complex [Ni2HL2(EtOH)2](Cl)(EtOH) (Figure 2) was established on the basis of the usual
spectroscopic methods, viz.: FT-IR, 1H and 13C NMR, and UV/Vis, as well as mass spec-
trometry. In addition, the structure of the nickel complex was confirmed by single crystal
X-ray diffraction.
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2.1. Crystal Structure Description

The crystal structure of the title compound is built from two metal ions bound by
two organic ligands and two ethanol molecules to form a binuclear nickel(II) complex,
in addition to two entity solvents, namely Cl− and C2H5OH. The plot of the asymmetric
unit of the new dimeric complex, [Ni2HL2(EtOH)2](Cl)(EtOH), obtained using the Ortep 3
program [32], is shown in Figure 2. The specificity of the crystal structure of this compound
is the disorder at the level of the ethanol solvent molecule. Indeed, the two carbon positions
of the ethanol solvent are splitting and the refinement of the occupancy rate of these
sites is set to the value obtained after refinement. This refinement requires a constraint
on the distances O7–C39(A,B) and C39(A,B)–C40(A,B). Moreover, there is a void in the
structure containing a disordered solvent molecule, which requires the use of SQUEEZE,
as implemented in the PLATON and SHELXL programs [33,34].

Furthermore, each nickel atom is surrounded by two nitrogen and two oxygen atoms
belonging to one ligand, which build a slightly distorted square plane. In addition, one
of the axial positions is occupied by ethanolic oxygen, while the other is filled by oxygen
belonging to the second ligand. The resulting Ni coordination polyhedra are two slightly
distorted Ni2N4O6 edge-sharing octahedra, as shown in Figure 3. As a matter of fact, the
Ni2N4O6 dimers are linked by hydrogen bonds through solvent molecules, forming chains
parallel to the b direction with a Ni1–Ni2 distance between two chelated Ni equal to 3.148 Å,
whereas the Ni belonging to neighboring molecules are far apart from each other by ligands.
In addition, among the four Schiff base moieties of the title compound, only one (O1N1C1
to C7) is nearly planar, with the largest deviation from planes being −0.032(3) Å at N1,
while the other three ((O2N2C11–C17), (O4N3C20–C26), and (O5N4C30–C36)) are inclined
with respect to N2 of 0.250(2) Å, N3 of −0.356(3) Å, and N4 of −0.278(3) Å, respectively.
The two phenyl rings connected to the chelated Ni1 are inclined at 62.12 (18) to each other
and the dihedral angle between the both phenyl cycles linked to Ni2 is 55.92 (19)◦.
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Figure 3. The Ni2N4O6 dimers linked by hydrogen bonds through solvent molecules.

In the crystal structure, the molecules are linked together by O−H. . . Cl hydrogen
bonds involving the solvent molecules, namely Cl− and the free ethanol (C2H5OH), forming
chains parallel to the b axis, as shown in Figure 3. These chains are interconnected through
C–H. . .π interaction between C8–H8A and the phenyl ring (C30 to C35). In addition,
two other intramolecular C–H. . .π interactions are observed in this structure, as shown
in Figure 4. Moreover, the complex presents a very strong intramolecular hydrogen
bond (O5−H50. . . O1), which forms a bridge between two vertices of the edge-sharing
octahedra Ni2N4O6 (see Figure 4). The set of C–H. . .π interactions and hydrogen bonds
are summarized in Table 4.
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It would be interesting to compare the structure of the present binuclear dimers to
those of other Schiff based dimers. Indeed, the structure of the binuclear complex of nickel
(II) with Schiff base ligands reported by You et al. [35] is very close to that described in
the present work. In both structures, the Ni atoms are in two edge-sharing octahedral
sites having a base formed by two imino N atoms and two phenolate O atoms belonging
to the Schiff base ligands, while the axial positions are occupied by one ethanol oxygen
and one phenolate oxygen, as shown in Figure 2, while in the reported work, the axial
positions are filled by one phenolate oxygen and one other oxygen belonging to water or
methanol molecules. In the same work, the authors report the structure of the binuclear
complex of zinc (II) with Schiff base ligands in which the two zinc atoms are located in a two
edge-sharing trigonal–bipyramidal coordination. Moreover, the binuclear centrosymmetric
copper (II) complex with the Schiff base ([Cu(H2L)]2) displays a distorted square pyramidal
geometry surrounding the CuII+ [36]. The two copper atoms constituting the dimers are
located in the two pyramids sharing a baso-apical edge. The Cu-O and Cu-N distances
are between 1.9393 (17) A and 2.010 (2) A for the square plane and 2.3802(17) A for the
CuO in the axial position. These values are slightly higher than those observed in the
monomer complex of copper (II) with the same Schiff base [37]. In this complex, the copper
(II) is surrounded by four donor atoms, two oxygen and two nitrogen atoms, forming
a distorted square planar geometry. The Cu-O bond lengths are in the range between
1.894(2) and 1.956(2) Å, while the Cu-N distances are between 1.879(3) and 1.997(2) Å
for C22H20CuN2O2. For more information, a review article on Schiff bases was recently
reported by Aragón-Muriel et al. [38] and could be of interest to the authors.

2.2. Spectroscopic Studies

The FT-IR spectra of the ligand H2L and its corresponding nickel complex are com-
pared to attest the coordination of the ligand. The FT-IR spectrum of the ligand H2L
(Figure S1) reveals in particular the presence of a strong absorption band assigned to the
vibration of the (C=N) bond at 1629 cm−1. The absorption band at 3250 cm−1 is attributed
to the vibration of the (O-H) bond.

On the other hand, the FT-IR spectrum of the nickel complex (Figure S2) shows in
particular the presence of a remarkable wideband characteristic of the (O-H) associated
bond of the ethanol molecule. Moreover, the stretching vibration of (C=N) was identified
at 1622 cm−1, which corroborates the presence of Schiff’s base in the complex. Further
evidence of chelation of the ligand with the nickel salt was shown by the bands at a
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range 444–643 cm−1, assigned to Ni-O and Ni-N vibration in the nickel complex. These
assignments are in good agreement with the literature data [39,40].

The proposed structure for the obtained nickel complex was further corroborated
using high-resolution mass spectrometry. The mass spectrum recorded in DMSO shows a
peak for the protonated molecular ion [([Ni2HL2](Cl))-H] at m/z = 805.01499 (Figure S3).

2.3. Electronic Spectra

The absorption spectral data for H2L and [Ni2HL2(EtOH)2](Cl)(EtOH) were obtained
in freshly prepared ethanol solution (Figure 5). The ligand H2L spectrum consists of two
relatively intense bands at 264 nm and 295 nm, involving the π→π* transition, as well as
two other low-intensity bands at 354 nm and 440 nm, involving π→π* excitation of the
C=N bond and n→π* transition, respectively. Complexation with Ni(II) results in two
significant changes of the spectrum. The two intense bands at 279 nm and 298 nm, as well
as the relatively low-intensity band at 384 nm shifted to a longer wavelength, witnessed
the coordination through azomethine nitrogen (C=N). The band observed at 447 nm could
be attributed to the ligand–metal charge transfer transitions. The electronic absorption data
of [Ni2HL2(EtOH)2](Cl)(EtOH) suggest an octahedral structure [41], which was further
confirmed by X-ray crystal structure analysis. The electronic spectral data are listed in
Table 1.
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Table 1. UV/Vis spectral data for H2L and [Ni2HL2(EtOH)2](Cl)(EtOH).

Entry Wave Lengths (nm) Assignment

H2L
264, 295 π→π* (phenolic chromophore)

354 n→π*
440 π→π* (C=N)

[Ni2HL2(EtOH)2](Cl)(EtOH)
279, 298 π→π*

384 n→π*
447 d→ π* charge transfer (CT)
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2.4. Thermogravimetric Analysis

The purity and thermal stability of the free ligand H2L and its nickel complex
[Ni2HL2(EtOH)2](Cl)(EtOH) were investigated by thermal gravimetric analysis (TGA)
and differential thermal analysis (DTA) in the range of 0 to 600 ◦C and heating rate of 10 ◦C
per minute in an open atmosphere. The free ligand H2L reflected acceptable stability up to
200 ◦C, then started to decompose in a single step up to Toff ~ 228 ◦C and TDTA = 300 ◦C.
The volatilized mass represents about 46%, which corresponds to the loss of nearly 2H2O,
2NH3, and 5(CO or CO2), as shown in Figure 6.
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Figure 6. TGA and DTA of the free ligand H2L.

However, the complex [Ni2HL2(EtOH)2](Cl)(EtOH) showed a completely different
decomposition pattern with two distinct pyrolysis steps (Figure 7). The first decompo-
sition step was recorded between 90 and 143 ◦C and corresponds to the loss of the free
solvent Cl− and ethanol molecules from the structure ([Ni2HL2(EtOH)2](Cl)(EtOH)) with
TDTA = 118 ◦C. This loss represents about 9% of the complex mass. The second stage was
recorded between 441 and 470 ◦C (TDTA = 451 ◦C) for the loss of 26% of the complex mass.
This perdition is attributed to the loss of the two ethanol molecules and the decomposition
of the ligand, as described above.

2.5. Dielectric Studies

The frequency dependence of the permittivity and the dielectric loss at room tem-
perature of the ligand H2L and the [Ni2HL2(EtOH)2](Cl)(EtOH) complex are illustrated
in Figure 8. First, we observed that the dielectric parameters of the two samples show a
plateau at high frequencies and then increase at low frequencies. The permittivity of the
ligand H2L is about 2.8, while its dissipation factor is 0.07 at high frequencies. The decrease
in frequency leads to an increase in dielectric parameters until they reach 7.5 for εr and
0.55 for Tanδ at 1 Hz. It is well known that the dielectric parameters correspond to the
polarization phenomenon in the materials. The observed increase in dielectric parameters
at low frequencies can be due to space charge and defects in the material [42]. In other
words, the applied electrical field helps in the jump of space charge and defects along low
energy sites and their accumulation at high barrier energy sites results in an enhancement
in the polarization at lower frequencies [43]. At higher frequencies, these charges cannot
follow the oscillation of the electric field, leading to a decrease in εr. It worth noting that, for
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a fixed frequency, one can observe that (i) the permittivity of the nickel(II) complex is lower
than that of the free ligand H2L and (ii) the dielectric loss of the complex is higher than that
of the ligand. Thus, complexation of the ligand H2L with Ni(II) results in a decrease in the
permittivity and a slight increase in the dissipation factor. The decrease in the permittivity
can be explained by the fact that the complexation reduces the space charge, defects, and
electron density, which comes from the free nitrogen and oxygen atoms, of the H2L ligand,
in agreement with the above structure data, which showed that nitrogen and oxygen atoms
are linked to nickel atoms in the nickel(II) complex.
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The temperature dependence of the dielectric parameters εr and Tanδ of the studied
compounds at 1 KHz are presented in Figure S4. It is found that the dielectric constant
εr and the dielectric losses Tanδ increase slightly with temperature. An increase in the
intensities of ε′ and tanδ at higher temperatures is apprehended on account of a reduction
in bond energies in the materials. It seems that the orientation of small dipoles (polarons)
and the electronic and ionic polarizations are facilitated with an increase in temperature.

2.6. Electrical Studies
2.6.1. Dc Electrical Conductivity

Figure S5a shows the Nyquist plot of the ligand H2L measured at different temper-
atures and Figure S5b shows that of its corresponding nickel(II) complex. The extracted
values of the dc conductivity (σdc) are tabulated in Table 2. From the analysis of the Nyquist
plots, it is observed that the two samples present the same temperature behavior; the
electrical resistance decreases by increasing temperature, suggesting that the electrical con-
ductivity of the materials is thermally activated. The equivalent circuit of the conductivity
in these samples can be described by a simple equivalent circuit of a parallel combination
of a resistance R and a constant phase element (CPE). It is found, for each temperature, that
the resistance of the ligand H2L is lower than that of the bi-nuclear nickel complex, thereby
the latter is more resistive.

Table 2. Room temperature values of the dielectric and electrical parameters for H2L and the
[Ni2HL2(EtOH)2](Cl)(EtOH) complex at 1 KHz.

Entry εr Tan δ σdc × 10−10

(S·cm−1)
σac × 10−8

(S·cm−1) Ea (eV)

H2L 2.8 0.07 7.05 1.44 0.81
[Ni2HL2(EtOH)2](Cl)(EtOH) 0.9 0.09 0.24 0.33 0.37

The electrical dc conductivity of each sample was calculated by the following
Equation (1).

σdc =
e
S

1
R

(1)

where (e) is the thickness of the sample, (S) is the area of the sample–electrode contact, and
(R) is the sample resistance at zero frequency (extracted from the Nyquist plot).

The variation in lnσdc as a function of 1000/T for H2L and its nickel(II) complex is
illustrated in Figure S6. It is found that the dc conductivity values throughout the temperature
variation of H2L are higher than those found for [Ni2HL2(EtOH)2](Cl)(EtOH). The ligand
H2L exhibits a dc conductivity of 7.05 × 10−10 S·cm−1 at RT and 1.94× 10−8 S·cm−1 at 343 K,
while its nickel(II) complex presents a dc conductivity of 2.40 × 10−11 S·cm−1 at RT and
1.57 × 10−10 S·cm−1 at 343 K. In addition, it is clearly observed that the dc conductivity in-
creases linearly with the temperature for the two samples, which suggests that dc conductivity
is a thermally activated process and follows an Arrhenius law defined as follows [44,45]:

σdc = σ0 exp(−Ea/KBT) (2)

where Ea is the activation energy, σ0 is the pre-exponential factor, and KB is the Boltzmann’s
constant. The activation energy values Ea were calculated using the slopes as shown
in Figure S6. It is found that the ligand H2L exhibits an activation energy of 0.81 eV,
while the nickel(II) complexation has Ea equal to 0.37 eV. It appears that the complexation
of the ligand reduces the activation energy of the conduction process. Therefore, the
observed shrinking of the electrical conductivity in the complex is due to the reduction in
the charge carriers.
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2.6.2. Ac electrical Conductivity

The ac conductivity (σac) of the under-study samples is calculated using the follow-
ing equation:

σtot = (e/S)·(Z′/Z′2 + Z′′2) (3)

The variation in ac conductivity (logσac) as a function of the frequency for H2L and
[Ni2HL2(EtOH)2](Cl)(EtOH) recorded at room temperature is shown in Figure 9. It can be
seen that the alternative conductivity increases linearly with frequency. This dispersion of
the conductivity is in agreement with the expectation of Jonscher’s power law [46]:

σac = Aωs (4)

where A is the pre-exponential factor,ω corresponds to 2πf, and s (varies between 0 and 1)
is the power-law exponent.
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The variation in this parameter with temperature can provide information about the
conduction mechanism in the samples. In fact, based on the variation in the frequency
exponent with temperature, many mechanisms for the conduction are proposed [43,46]:

• If the frequency exponent (s) is independent of temperature, the mechanism is the
quantum mechanical tunnel model (QMT);

• If (s) decreases to a minimum and then increases with a further increase in temperature,
the mechanism is the large polaron tunnel model (LPT);

• If (s) increases with increasing temperature, the mechanism corresponds to the small
polaron tunnel model (SPT);

• If (s) decreases with increasing temperature, the conductivity origin is described by
the correlated barrier hopping (CBH) model.

The values of the frequency exponent (s) of the studied samples at different temper-
atures were determined from the linear plots at high frequencies, and its variation as a
function of temperature is plotted in Figure S7. From the analysis of these spectra, it is
found that the frequency exponent(s) decreases with increasing temperature. Thus, the
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correlated barrier hopping (CBH) model is the appropriate mechanism to describe the
conduction nature in the ligand H2L and its nickel (II) complex. In this model, the charge
carriers take place through the barriers separating the localized sites and the decrease in (s)
values signifies a reduction in this energy barrier [47].

3. Materials and Methods
3.1. Experimental Section

All of the chemicals used in the experiment were obtained from Sigma-Aldrich, had
an analytical grade, and were used as received with no further purification. The progress of
the reactions was monitored by TLC and spots were visualized under UV light. The melting
points were determined using a KOFLER BENCH. The infrared spectra were recorded
at room temperature using a BRUKER VERTEX 70 spectrometer. The 1H and 13C NMR
spectra were recorded at room temperature on a BRUKER AVANCE II 300 MHz instrument.
The spin multiplicities are reported as singlet (s), doublet (d), triplet (t), multiplet (m),
doublet of doublets (dd), doublet of triplets (dt), and quintet (qu). The high-resolution mass
spectrum was recorded on a Waters/Vion IMS-QTOF: Spectrometer, equipped with an
electrospray ionization (ESI) source, operating in either positive or negative ion mode. The
electronic spectra were recorded in ethanol using a UV-6300PC/VWR spectrophotometer.

3.1.1. Preparation of Ligand H2L

A mixture of propane-1,3-diamine (1.11 g, 14.97 mmol) and salicylaldehyde (3.66 g,
29.95 mmol) was refluxed in absolute ethanol (10 mL) until the consumption of reagents.
The completion of the reaction was monitored by thin-layer chromatography (TLC). Then,
the solvent was evaporated and the residue was crystallized in ethanol. The yellow
precipitate was isolated by filtration and washed with cold ethanol and dried in vacuo.
Yellow solid; yield: 3.97 g, 94%; m.p. = 112 ◦C; FT-IR: ν(O-H): 3450 cm−1, ν(C=N):
1629 cm−1, ν(C=C): 1620 cm−1, 1579 cm−1, 1495 cm−1, 1457 cm−1, ν(C–O): 1277 cm−1; 1H
NMR (CDCl3, 300 MHz) (δ, ppm): 2.13 (qu, 2H, CH2, 3J = 6.6 Hz), 3.73 (t, 4H, 3J = 6.6 Hz),
6.91 (td, 2H, Ar-H, 4Jm = 1.2 Hz, 3Jo = 7.8 Hz), 7.00 (d, 2H, Ar-H, J = 8.4 Hz), 7.27 (dd, 2H,
Ar-H, Jm = 1.8 Hz, Jo = 7.8 Hz), 7.34 (td, 2H, Ar-H, Jm = 1.5 Hz, Jo = 7.5 Hz), 8.39 (s, 2H,
-CH=N), 13.47 (s, 2H, Ar–OH); 13C NMR (CDCl3, 75 MHz) (δ, ppm): 31.72 (CH2), 56.83
(CH2-CH=N), 117.00, 118.66, 118.77 (-CAr-CH=N), 131.30, 132.30, 161.14 (-CAr-OH), 165.48
(-CH=N). UV/Vis in ethanol, λmax nm [εmax (L·mol−1·cm−1)]: 264 (32,567), 295 (12,943),
354 (4569), 440 (1344).

3.1.2. Synthesis and Crystallization of Nickel Complex [Ni2HL2(EtOH)2](Cl)(EtOH)

To an ethanolic solution of the ligand H2L (0.268 g, 0.95 mmol), a solution of NiCl2
and 6H2O (0.226 g, 0.95 mmol) in ethanol was added dropwise through a dropping funnel.
Then, the mixture was refluxed for 4 h and left to cool to room temperature. The formed
precipitate was isolated by filtration and washed with diethyl ether and cold ethanol. The
obtained complex is insoluble in water, ether, chloroform, methylene chloride, and hexane.
In contrast, it is soluble in methanol, ethanol, tetrahydrofuran, acetonitrile, dimethylfor-
mamide, and dimethyl sulfoxide. Therefore, it was recrystallized in ethanol and green
crystals were obtained by slow evaporation of the ethanolic solution.
Green crystals; yield: 0.648 g, 80%; m.p. > 260 ◦C; FT-IR (neat): ν(C=N): 1610 cm−1, ν(C–O):
1192 cm−1, ν(Ni–O): 560 cm−1, ν(Ni–N): 444 cm−1; UV/Vis in ethanol, λmax nm [εmax
(L·mol−1·cm−1)]: 279 (16,062), 298 (14,139), 384(2419), 447(1827); ESI-QTOF-MS (m/z):
mass calculated for [([Ni2HL2](Cl))-H]+: 805.57555, found: 805.01499.

3.1.3. X-Ray Data Collection and Crystal Structure Determination

A single crystal of bi-nuclear nickel(II) complex derived from 2,2’-((propane-1,3-
diylbis(azaneylylidene))bis(methaneylylidene))diphenol Schiff base was mounted on a
Brucker D8 VENTURE four circles diffractometer equipped with a CCD bi-dimensional de-
tector and INCOATEC IµS micro-focus source MoKα monochromatic radiation
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(λ = 0.71073 Å) [48]. Data were corrected for Lorentz and polarization effects and for
absorption [49]. The structure was solved by direct methods using SHELXT [50] and re-
fined (by weighted full-matrix least-square on F2 techniques) to convergence using the
SHELXL2016 program [33]. A summary of the measurement parameters is presented in
Table 3. Hydrogen atoms were localized in a Fourier map or placed geometrically and
included in the final cycles of refinement with isotropic thermal parameters, yielding
the final R values summarized in Table 3. The final atomic coordinates and isotropic or
equivalent isotropic displacement parameters are given in Table S1. The inter-atomic bond
lengths and angles are summarized in Table S2. The hydrogen bonds O–H. . . Cl and the
C–H. . .π interactions are reported in Table 4. The cif file containing the atomic positions,
the anisotropic displacement parameters, the interatomic bonds and angles (supplement
materials), and the measured and calculated intensities is deposited in the crystallographic
Data Centre under the number CCDC 1904847. These data can be obtained free of charge
via the Cambridge Crystallographic Data Centre, https://www.ccdc.cam.ac.uk (accessed
on 30 August 2022), or e-mail: deposit@ccdc.cam.ac.uk.

Table 3. Crystal data, data collection, and structure refinement details for the [Ni2HL2(EtOH)2](Cl)(EtOH)
complex.

Crystal data

Chemical formula C38H45N4Ni2O6·C2H6O·Cl
Mr 852.71
Crystal system, space group Orthorhombic, Pca21
Temperature (K) 296
a, b, c (Å) 17.5795 (12), 11.8562 (9), 20.2065 (13)
V (Å3) 4211.6 (5)
Z 4
Radiation type Mo Kα
µ (mm−1) 1.01
Crystal size (mm) 0.36 × 0.25 × 0.18

Data collection

Diffractometer Bruker D8 VENTURE Super DUO [48]
Absorption correction Multi-scan [49]
Tmin, Tmax 0.638, 0.746
No. of measured, independent, and
observed [I > 2σ(I)] reflections 108,380, 10,452, 8643

Rint 0.047
(sin θ/λ)max (Å−1) 0.667

Refinement

R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.069, 1.01
No. of reflections 10,452
No. of parameters 517
No. of restraints 59

H-atom treatment H atoms treated by a mixture of
independent and constrained refinement

∆〉max, ∆〉min (e Å−3) 0.22, −0.22

Absolute structure Flack x determined using 3701 quotients
[(I+) − (I−)]/[(I+) + (I−)] [51]

Absolute structure parameter −0.002 (4)

Table 4. Hydrogen-bond geometry (Å, ◦) for the [Ni2HL2(EtOH)2](Cl)(EtOH) complex.

D–H. . . A D−H H. . . A D. . . A D−H. . . A

O5–H50. . . O1 0.82 1.66 2.401 (3) 148
O7–H7A. . . Cl1 0.82 2.28 3.060 (7) 160
O3–H3O. . . Cl1 0.86 (4) 2.24 (5) 3.082 (3) 165 (4)
O6−H6O. . . Cl1 i 0.86 (5) 2.25 (5) 3.102 (3) 171 (5)
C8−H8A. . . Cg11 ii 0.97 2.78 3.722 (4) 163
C10−H10A. . . Cg10 0.97 2.94 3.825 (4) 152
C19−H19A. . . Cg9 0.96 2.74 3.616 (5) 152

Symmetry code: (i) x, y + 1, z; (ii) −1/2 + x, 1 − y, z. Cg9: centroid of (C11–C16); Cg10: centroid of (C20–C25);
Cg11: centroid of (C30–C35).

https://www.ccdc.cam.ac.uk
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3.1.4. Electrical Measurements

The electrical measurements of the ligand H2L and its corresponding nickel complex
[Ni2HL2(EtOH)2](Cl)(EtOH) were studied by impedance spectroscopy using a Modulab
MTS data acquisition system equipped with a Linkam temperature control system. The
powders of H2L and [Ni2HL2(EtOH)2](Cl)(EtOH) were pressed to form pellets of 1 mm in
thickness and 10 mm in diameter. Then, the pellets were electroded with silver lacquer and
placed in the Linkam-type sample holder. The conductance and capacitance measurements
were collected at different frequencies (1 Hz–1 MHz) in the temperature range from room
temperature (RT) to 343 K. From the collected data, the dielectric parameters (permittivity
(εr) and dielectric loss (Tan (δ))) and the electrical parameters (dc and ac conductivity and
activation energy (Ea)) were determined.

4. Conclusions

In summary, we prepared a new bi-nuclear nickel complex based on 2,2′-((propane-1,3-
diylbis(azaneylylidene))bis(methaneylylidene))diphenol Schiff base. The structures were
evidenced without doubt through spectroscopic and single crystal X-ray diffraction analysis,
which showed that the chelation occurs through the deprotonated phenolic oxygen and
azomethine nitrogen atoms of the ligand. The coordination behavior shown for the H2L
ligand, in this case, is totally different from that shown in previously published work.
Hirshfeld surface analysis was performed to explore the intermolecular interactions and
packing patterns in the crystal structure. The electrical conductivity of the H2L ligand is
diminished with nickel(II) coordination. The complex [Ni2HL2(EtOH)2](Cl)(EtOH) exhibits
a dc conductivity of 2.40× 10−11 S·cm−1 at room temperature, which indicates the electrical
insulating nature of this complex. The frequency dependence of the conductivity showed
that the conductivity of both compounds follows Jonscher’s universal power law. The
variation in the frequency exponent (s) with temperature demonstrates that the conduction
nature in the samples is described by the correlated barrier hopping (CBH) mechanism.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/chemistry4040080/s1, Figure S1: FT-IR spectrum of the ligand H2L;
Figure S2: FT-IR spectrum of the [Ni2HL2(EtOH)2](Cl)(EtOH) complex; Figure S3: Mass spectrum of
the [Ni2HL2(EtOH)2](Cl)(EtOH) complex; Figure S4: Temperature dependence of the permittivity (εr)
and the dielectric loss tan (δ) of H2L and [Ni2HL2(EtOH)2](Cl)(EtOH) at 1KHz; Figure S5: Cole-Cole
diagrams of (a) H2L and (b) [Ni2HL2(EtOH)2](Cl)(EtOH) at different temperatures; Figure S6: ln (σdc)
versus 103/T plots of H2L and [Ni2HL2(EtOH)2](Cl)(EtOH); Figure S7: Temperature dependence of
the exponent (s) of H2L and [Ni2HL2(EtOH)2](Cl)(EtOH); Table S1: Fractional atomic coordinates
and isotropic or equivalent isotropic displacement parameters (Å2) of [Ni2HL2(EtOH)2](Cl)(EtOH)
complex; Table S2: Atomic displacement parameters (Å2) for [Ni2HL2(EtOH)2](Cl)(EtOH) complex;
Table S3: Selected bond distances (Å) and angles (◦) for the [Ni2HL2(EtOH)2](Cl)(EtOH) complex.
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