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Abstract: Structural preferences of (1,3,5-cyclooctatriene) hexacarbonyl diiron [(C8H10)Fe2(CO)6]
and cycloheptatriene hexacarbonyl diiron [(C7H8)Fe2(CO)6] were explored using density functional
theory (DFT) computations. DFT computations together with experimental results demonstrated
that structure with the [η3, (η1, η2)] mode is the preferred structure in (C8H10)Fe2(CO)6, and the
[η3,η3] mode is preferred in (C7H8)Fe2(CO)6. For (C8H10)Fe2(CO)6, the conversion between the
structures with [η3, (η1, η2)] mode and the [η3, η3] mode is prevented by the relatively high activation
barrier. (C8H10)Fe2(CO)6 is indicated as a fluxional molecule with a Gibbs free energy of activation of
8.5 kcal/mol for its ring flicking process, and an excellent linear correlation (R2 = 0.9909) for the DFT
simulated 1H-NMR spectra was obtained. Results provided here will develop the understanding on
the structures of other polyene analogs.
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1. Introduction

In the early 1960s, two structures of (1,3,5-cyclooctatriene) hexacarbonyl
diiron [(C8H10)Fe2(CO)6] with different bonding modes based on the 1H-NMR spectrum
([η4, η2] mode of TS-3 in Scheme 1) and the Mössbauer absorption spectrum ([η3, η3] mode
of 2 in Scheme 1) were proposed [1,2]. Subsequently, a reported X-ray crystal structure
of (C8H10)Fe2(CO)6 [3] showed that the correct bonding of (C8H10)Fe2(CO)6 displayed
a special [η3, (η1, η2)] mode (1 in Scheme 1), not the [η4, η2] or [η3, η3] mode, and this
[η3, (η1, η2)] mode was also believed to be the preferred structure in solution [3].
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1. Introduction 
In the early 1960s, two structures of (1,3,5-cyclooctatriene) hexacarbonyl diiron 

[(C8H10)Fe2(CO)6] with different bonding modes based on the 1H NMR spectrum ([η4, η2] 
mode of TS-3 in Scheme 1) and the Mössbauer absorption spectrum ([η3, η3] mode of 2 in 
Scheme 1) were proposed [1,2]. Subsequently, a reported X-ray crystal structure of 
(C8H10)Fe2(CO)6 [3] showed that the correct bonding of (C8H10)Fe2(CO)6 displayed a special 
[η3, (η1, η2)] mode (1 in Scheme 1), not the [η4, η2] or [η3, η3] mode, and this [η3, (η1, η2)] 
mode was also believed to be the preferred structure in solution [3]. 
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Scheme 1. Possible structures of (C8H10)Fe2(CO)6. 

The variable temperature (from −107 °C to 28 °C) 1H NMR spectra of (C8H10)Fe2(CO)6 
indicated it was a fluxional molecule [4], which could undergo rapidly flicking back and 
forth, similar to a windshield wiper (structure TS-3 in Scheme 1) [4,5]. The high-tempera-
ture coalescence of the two mirror isomers (1 and 1i) through the Cs symmetrical transition 
state yielded only five proton peaks in the 1H NMR spectrum, with relative intensities of 
2:2:2:2:2. The C1 symmetrical complex with [η3, η3] mode (2 in Scheme 1) was suggested 
as a possible higher energetic minimum compared with the complex with [η3, (η1, η2)] 
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Scheme 1. Possible structures of (C8H10)Fe2(CO)6.

The variable temperature (from−107 ◦C to 28 ◦C) 1H-NMR spectra of (C8H10)Fe2(CO)6
indicated it was a fluxional molecule [4], which could undergo rapidly flicking back
and forth, similar to a windshield wiper (structure TS-3 in Scheme 1) [4,5]. The high-
temperature coalescence of the two mirror isomers (1 and 1i) through the Cs symmetrical
transition state yielded only five proton peaks in the 1H-NMR spectrum, with relative
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intensities of 2:2:2:2:2. The C1 symmetrical complex with [η3, η3] mode (2 in Scheme 1)
was suggested as a possible higher energetic minimum compared with the complex with
[η3, (η1, η2)] mode (1 in Scheme 1), and the Cs symmetrical complex with [η4, η2] mode
(TS-3 in Scheme 1) was suggested as a possible transition state. However, it is surprising
that the X-ray crystal structure of the 1,3,5-cyclooctatriene homologous analog, cyclohep-
tatriene hexacarbonyl diiron [(C7H8)Fe2(CO)6], exhibited a [η3, η3] mode [6], instead of
the [η3, (η1, η2)] mode in (C8H10)Fe2(CO)6. As the homologous series of cyclopolyene, a
similar bonding mode of the 1,3,5-cyclooctatriene (C8H10) and cycloheptatriene (C7H8)
hexacarbonyl diiron complexes could be expected. The observed different bonding modes
suggested that (C8H10)Fe2(CO)6 may have two different ground state minima ([η3, η3]
mode and [η3, (η1, η2)] mode), and the conversion between these two minima is prohibited
by the high activation barrier. Two different ground state minima ([η3, η3] mode and [η3,
(η1, η2)] mode) may also exist for (C7H8)Fe2(CO)6, but the conversion between these two
minima is also limited by the relatively high activation barrier. These special coordination
modes and related transformations were also observed in the cyclooctatetraene-coordinated
diiron complex and cyclooctatriene-coordinated Ru complex [7,8].

Here, the density functional theory (DFT) computations were performed to study
the structures and bonding of (C7H8)Fe2(CO)6 and (C8H10)Fe2(CO)6. To investigate the
different bonding modes presented in Scheme 1, the possible dynamic fluxional processes
of (C7H8)Fe2(CO)6 and (C8H10)Fe2(CO)6 were explored, and the variable-temperature 1H-
NMR spectra were also simulated. Results provided here could benefit the understanding
on the structures of other cyclopolyene analogs.

2. Computational Methods

Gas-phase geometry optimizations using the Gaussian 09 package [9] were car-
ried out with PBEPBE [10] functional and density fitting approximation [11,12] (key-
word AUTO), employing the modified-LANL2DZ with the f polarization (modified-
LANL2DZ(f )) [13–15] and the effective core potential (ECP, LANL2DZ) for Fe atoms,
employing LANL2DZ(d, p) [16,17] with the related ECP (LANL2DZ) for Si atoms in the
reference system TMS, and employing the 6-31G (d′) [18–20] basis sets for all other atoms
(C, O, and H) (BS1). The accuracy and reliability of the computational methodology had
been demonstrated by previous studies on organometallic complexes [21–23]. Vibrational
frequency computations were used to verify the natures of all stationary points. All located
transition states were obtained with only one imaginary frequency, and minima without
any imaginary frequencies were obtained [21,24]. Spherical harmonic 5d and 7f functions
and the pruned fine integration grids with 75 radial shells and 302 angular points per
shell were used for all computations. Free energy corrections were performed at 1 atm
and 298.15 K.

1H-NMR computations were carried out using the gauge-independent atomic orbital
(GIAO) method [25–27] with PBEPBE functional and basis sets 2 (BS2), based on gas-
phase optimized geometry. In BS2, LANL08(f ) [14,28] and ECP (LANL2DZ) basis sets
were employed for Fe, LANL08(d) [17,28] and related ECP (LANL2DZ) for Si, and the
6-311G++(3df, 3pd) [29,30] basis sets for other atoms (C, O, and H). All simulated proton
chemical shifts were relative to the absolute shift of TMS (calc. 31.03 ppm).

3. Results and Discussion

The DFT-optimized structures of (C7H8)Fe2(CO)6 and (C8H10)Fe2(CO)6 were com-
pared with their experimental X-ray structures (CSD entries: CYHPFE and CYOFEC). The
RMSD values (in Å, without hydrogens) for (C7H8)Fe2(CO)6 and (C8H10)Fe2(CO)6) are
0.0495 and 0.056, respectively (Figure 1, Table S1), which demonstrated the good perfor-
mance of the computational methodology [21,31,32]. Previous studies have suggested
that (C8H10)Fe2(CO)6 is a fluxional molecule undergoing several dynamic interconver-
sions and (C7H8)Fe2(CO)6 is not a fluxional molecule. The possible dynamic processes of
(C8H10)Fe2(CO)6 and (C7H8)Fe2(CO)6 are examined in the following sections.
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3.1. The Interconversions of (C7H8)Fe2(CO)6

Comparisons of the computed Gibbs free energies of structures with [η3, η3] mode
and [η3, (η1, η2)] mode (0.0 vs. 4.9, in kcal/mol, Figure 2) showed that structure with
the [η3, η3] mode is demonstrated as the preferred structure of (C7H8)Fe2(CO)6, which
is consistent with the experimental X-ray crystal structure [6]. DFT optimized structure
with the Cs symmetrical [η3, η3] mode was proven as a transition state (TS-1 in Figure 2,
1.4 kcal/mol), which connected two mirror isomers of the C1 symmetrical [η3, η3] complex.
The tricarbonyl equivalence process with a Gibbs barrier of 9.6 kcal/mol (TS-2 in Figure 2)
was also located. To explore the possible dynamic processes of (C7H8)Fe2(CO)6, a conver-
sion between [η3, η3] mode complex 1 and [η3, (η1,η2)] mode complex 2 was performed.
No direct conversion between complex 1 and complex 2 could be obtained, and a two-
step conversion through bridging CO [µ2-η4, η2] complex 3 (16.3 kcal/mol) was located.
Relatively high Gibbs barriers for the conversion between complex 1 with the [η3, η3]
mode and complex 3 with the [µ2-η4, η2] mode (17.8 kcal/mol), and conversion between
complex 3 and complex 2 with the [η3, (η1, η2)] mode (21.3 kcal/mol) were obtained, which
prevented low-temperature conversion between [η3, η3] mode complex 1 and [η3, (η1, η2)]
mode complex 2.
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3.2. Dynamic Fluxionality of (C8H10)Fe2(CO)6

In contrast to the preferred structure with [η3, η3] mode in (C7H8)Fe2(CO)6, structure
with [η3, (η1, η2)] mode (complex 1 in Figure 3, 0.0 kcal/mol)of (C8H10)Fe2(CO)6 was more
favorable than the structure with [η3, η3] mode (complex 2 in Figure 3, 12.0 kcal/mol) [3].
The Fe–Fe bond length in complex 1 with the [η3, (η1, η2)] mode in (C8H10)Fe2(CO)6 was
2.766 Å, which is similar to that in (C7H8)Fe2(CO)6 (d(Fe-Fe) = 2.767 Å). However, the Fe–Fe
bond length in complex 2 with the [η3, η3] mode (d(Fe-Fe) = 2.932 Å) in (C8H10)Fe2(CO)6

was longer than that of (C7H8)Fe2(CO)6 (d(Fe-Fe) = 2.868 Å) due to an additional methylene
fragment. The (Fe–CH–CH2–CH2–CH) five-member ring in the complex 1 with [η3, (η1,
η2)] mode of (C8H10)Fe2(CO)6 caused the structural preference, as opposed to the (Fe-CH-
CH2-CH) four-member ring in the complex with [η3, (η1, η2)] mode of (C7H8)Fe2(CO)6.
It is worth noting that the Gibbs free energy difference between the [η3, η3] mode and
[η3, (η1, η2)] mode of (C8H10)Fe2(CO)6 was much higher than that of (C7H8)Fe2(CO)6
(12.0 kcal/mol vs. 4.9 kcal/mol). Three different dynamic processes, including two tricar-
bonyl equivalence processes (9.1 kcal/mol for C1 symmetrical TS-1 and 14.2 kcal/mol for
C1 symmetrical TS-2) and one ring flicking process (8.5 kcal/mol Cs symmetrical TS-3),
were found in the interconversion of [η3, (η1, η2)] mode complex 1 (and enantiomer 1i) of
(C8H10)Fe2(CO)6. The experimental variable-temperature NMR spectra of (C8H10)Fe2(CO)6
were not well resolved, but the activation energy for the ring flicking process was roughly
estimated from 10.3 kcal/mol to 11.6 ± 2 kcal/mol [4,33,34], which was close to the DFT-
computed values (8.5 kcal/mol for TS-3). The equivalence process of asymmetric [η1,
η2]-Fe(CO)3 rotation (TS-2, 14.2 kcal/mol) had a higher rotation barrier compared with
the symmetric η3-Fe(CO)3 rotation (TS-1, 9.1 kcal/mol), which was in agreement with
experimental observations (15.6 ± 2 kcal/mol for asymmetric and 11.4 ± 2 kcal/mol
for symmetric process) [33]. A direct conversion between [η3, (η1, η2)] mode complex 1
and [η3, η3] mode complex 2 of (C8H10)Fe2(CO)6 was located, and the Gibbs barrier was
28.7 kcal/mol (TS-1-2, Figure 3). Indirect conversion through bridging CO [µ2-η4, η2] com-
plex 3 (24.9 kcal/mol) was also achieved. Relatively high Gibbs barriers for the conversions
between complex 1i and complex 3 (26.2 kcal/mol) and between complex 3 and complex 2
(26.1 kcal/mol) were obtained.
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3.3. Interpretations of the Dynamic Fluxionality

The relatively high activation energies of (C7H8)Fe2(CO)6 (21.3 kcal/mol of TS-2-3, Figure 2)
and (C8H10)Fe2(CO)6 (26.1 kcal/mol of TS-2-3, Figure 3) indicated that the conversion
between the structures of [η3, (η1, η2)] mode and [η3, η3] mode cannot occur under experi-
mental conditions. The Cs symmetrical TS-1 and tricarbonyl equivalence process TS-2 of
(C7H8)Fe2(CO)6 could not affect the proton peak pattern in the 1H-NMR spectra; therefore,
(C7H8)Fe2(CO)6 was assigned as a non-fluxional molecule. In contrast, (C8H10)Fe2(CO)6
was assigned as a fluxional molecule. The Cs symmetrical TS-3 ring flicking in complex 1
with [η3, (η1, η2)] mode of (C8H10)Fe2(CO)6 could change the patterns of proton peaks in
the variable-temperature 1H-NMR spectra. At the low-temperature limit, the chemical en-
vironments of the 10 protons in (C8H10)Fe2(CO)6 are different. No equivalent proton exists
at the low-temperature limit, and 10 proton peaks are shown in the 1H-NMR spectrum at a
1:1:1:1:1:1:1:1:1:1 ratio. When the temperature was raised, the Cs symmetrical [η4, η2] mode
transition states TS-2 generates five proton peaks in the 1H-NMR spectrum at a 2:2:2:2:2 ra-
tio (Table S2) [4]. The gas phase variable-temperature 1H-NMR spectra of (C8H10)Fe2(CO)6
and (C7H8)Fe2(CO)6 were simulated (Figure 4, Figures S1 and S2, Table S2). An excellent
linear relationship (R2 = 0.9909) between the DFT-computed proton chemical shifts and the
experimental 1H-NMR (Figure 5) of (C8H10)Fe2(CO)6 was achieved.
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4. Conclusions

Reactions of cyclopolyene with iron carbonyls could generate various diiron com-
plexes, which usually contain serval different bonding modes. To provide a straightforward
understanding on the change in hapticity, DFT computations were carried out to explore the
structural preferences of (1, 3, 5-cyclooctatriene) hexacarbonyl diiron [(C8H10)Fe2(CO)6] and
cycloheptatriene hexacarbonyl diiron [(C7H8)Fe2(CO)6]. The computational results showed
that the two bridging ethylene fragments (-CH2-CH2-) in (C8H10)Fe2(CO)6 made the struc-
ture with the [η3, (η1, η2)] mode favorable, other than the [η3, η3] mode in (C7H8)Fe2(CO)6.
Cs symmetrical ring flicking (TS-3, 8.5 kcal/mol) was the dominant factor in the intercon-
versions of the structure with the [η3, (η1, η2)] mode of (C8H10)Fe2(CO)6. The gas-phase
1H-NMR spectra of (C8H10)Fe2(CO)6 were simulated based on the dominant Cs sym-
metrical TS-3 ring flicking, which showed excellent correlation (R2 = 0.9909) between the
computed gas-phase proton chemical shifts and experimental 1H-NMR of (C8H10)Fe2(CO)6.
Transition metal complexes with cyclopolyene ligands are widely used as the starting mate-
rials in synthesis and photochemical studies, and interpretations of the bonding modes of
[(C7H8)Fe2(CO)6] and (C8H10)Fe2(CO)6 from this study could provide some basic insights
on the structures of other transition metal cyclopolyene analogs.
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