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Abstract: By virtue of their unique physicochemical properties, gold nanoparticles (AuNPs) have
gained significant interest in a broad range of biomedical applications such as sensors, diagnosis,
and therapy. AuNPs are generally synthesized via different conventional physical and chemical
methods, which often use harmful chemicals that induce health hazards and pollute the environment.
To overcome these issues, green synthesis techniques have evolved as alternative and eco-friendly
approaches to the synthesis of environmentally safe and less-expensive nanoparticles using naturally
available metabolites from plants and microorganisms such as bacteria, fungi, and algae. This review
provides an overview of the advances in the synthesis of AuNPs using different biological resources
with examples, and their profound applications in biomedicine. A special focus on the biosynthesis
of AuNPs using different medicinal plants and their multifunctional applications in antibacterial,
anti-inflammatory, and immune responses are featured. Additionally, the applications of AuNPs in
cancer theranostics, including contrast imaging, drug delivery, hyperthermia, and cancer therapeutics,
are comprehensively discussed. Moreover, this review will shed light on the importance of the green
synthesis approach, and discuss the advantages, challenges, and prospects in this field.

Keywords: gold nanoparticles; green materials; biosynthesis; plant extracts; microorganisms; biomed-
ical applications

1. Introduction

Nanotechnology is a promising field that integrates the various disciplines of science,
engineering, and technology. The rapid scientific advances in this field have led to the
development of different types of functional nanoparticles (NPs), with at least one di-
mension in the typical size range of 1 to 100 nm. Among the various metallic NPs, gold
nanoparticles (AuNPs) have attracted huge attention due to their unique surface plasmon
resonance properties, facile synthesis, tunable sizes, and multifunctional abilities with well-
characterized properties [1,2]. They are versatile materials, relatively inert, biocompatible,
and generally stable. Due to their well-defined surface chemistry, AuNPs can be easily
conjugated with different molecules such as proteins, dyes, drugs, antibodies, enzymes, and
nucleic acids [3–5]. AuNPs functionalized with different targeting moieties have enormous
scope in various biomedical applications such as diagnosis, targeting, drug/nucleic acid de-
livery, imaging, and therapy (Figure 1). Furthermore, by employing the surface-enhanced
Raman scattering technique, AuNPs are used as sensitive probes in Raman scattering and
imaging applications [6]. The potential of AuNPs in biomedical fields has been tremen-
dously increased by virtue of their applications in photothermal therapy, radiation therapy,
computed tomography, biosensors, etc. [7]. Due to their intrinsic electrical and optical
properties, as well as their ability to conjugate with different biomolecules, AuNPs-based
biosensors with high sensitivity and selectivity are being developed [8,9]. In the last decade,
AuNPs-based biosensors have attracted great attention in the diagnosis of various types
of diseases. Recently, Antonio et al. [10] highlighted the various AuNPs-based biological
assays for the detection and quantification of analytes in urinary samples, with a focus on
protein analysis. Such assays using AuNPs are useful in the diagnosis of several illnesses
such as kidney disorders, cancer, and heart diseases [4,11].
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Figure 1. Multifunctional applications of gold nanoparticles.

Gold nanomaterials can be synthesized via different techniques in various inter-
nal structure, sizes, and shapes structures, including nanospheres, nanorods, nanocubes,
nanoshells, nanowires, nanocages, nanoflowers, etc. [12]. They exhibit exceptional proper-
ties such as fluorescence, attenuation of X-rays, etc., and act as excellent contrast agents for
optical, fluorescence, X-ray, and photoacoustic imaging [13,14]. Their intrinsic features (op-
tics, electronics, and physicochemical characteristics) can be altered by adjusting their size
and shape. To improve their compatibility and stability in a biological environment, AuNPs
are coated with different biomolecules such as phospholipids, proteins, and polymers such
as polyethylene glycol [15,16]. By fine-tuning the aspect ratio (length/width of the particle),
gold nanorods can be manipulated to absorb light very strongly in the near-infrared region,
convert it into heat energy, and transmit it to the surrounding environment. This process,
called photohyperthermia, is widely used to attenuate cancer cells, where gold nanorods
are administered near the tumor region to destroy the cancer cells without causing much
damage to the healthy neighboring cells [17,18]. These properties have made AuNPs a
widely used nanomaterial for global academic research and in the production of various
industrial products and medical devices.

2. General Methods for Synthesis of AuNPs
2.1. Physicochemical Methods

NPs are typically synthesized via two basic methods: “top-down” or “bottom-up”
(Figure 2). In the top-down approach, the constituent bulk materials are initially broken
down to powder form and subsequently reduced to fine nanoparticles using various
techniques such as etching, grinding, sputtering, thermal/laser ablation, etc. On the other
hand, the bottom-up method involves the self-assembly of atoms to form nuclei, which
then transform into particles of nanoscale range. The bottom-up method is widely used to
obtain NPs with uniform morphology and chemical composition. The Turkevich method
is a conventional chemical synthesis method commonly used to produce spherical small
AuNPs around 10 to 30 nm in diameter [19]. However, it was observed that for the synthesis
of AuNPs above 30 nm size, the results were less reproducible and resulted in a broader
size distribution of particles [20]. The major limitation of this method is the strict process
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control that needs to be followed and the precise maintenance of temperature, pH, and salt
concentration to obtain monodisperse NPs in a specific size range. Alternatively, the Brust
method and seed-mediated growth method are widely used for the synthesis of AuNPs [3].

Figure 2. Top-down and bottom-up approaches for nanoparticles synthesis.

The different methods of AuNPs synthesis, such as physical (ultrasonication, irradia-
tion, electrochemical, etc.), chemical (vapor deposition, sol–gel process, etc.), and biological
methods (using plants and microbial sources), are shown in Figure 3. However, the various
physical and chemical methods used for the synthesis of NPs are expensive and hazardous
to human health due to the use of toxic components and the production of byproducts,
either during the synthesis or during the capping/stabilization process of NPs. The use of
chemicals raises serious environmental and toxicity concerns when administered to living
organisms. For instance, the surfactant cetyltrimethylammonium bromide (CTAB), which
acts as a stabilizer and template for the growth of gold nanorods in the seed-mediated
method, is reported to be highly toxic to different types of cells [21]. Therefore, gold
nanorods stabilized with CTAB are not suitable for biomedical applications and need to be
properly surface-modified with biocompatible materials such as phospholipids or polyethy-
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lene glycol [22]. Hence, there is a growing requirement to search for reliable, non-expensive,
biocompatible, and environmentally friendly methods for the synthesis of NPs.

Figure 3. Different methods for synthesis of gold nanoparticles.

2.2. Biosynthetic Mechanism of AuNPs

The mechanism of AuNPs biosynthesis is a simple two-step process and does not
require a dramatic increase in temperature and pressure. In the first step, the biological
extract (e.g., plant, bacterial, or fungal extract) is mixed with the HAuCl4 salt solution,
which causes the reduction of gold (Au3+) ions to gold atoms (Au0). In the second step,
growth and stabilization result in the AuNPs formation (Figure 4). Finally, the color change
of the resulting solution indicates the formation of AuNPs [23,24]. The chemical reactions
involved in the reduction of Au3+ to Au0 in the presence of H2O molecules are expressed
in the below reactions:

Dissociation: HAuCl4
(Chloroauric acid)

H2O−−→ H+ + Au3+ + 4Cl−,

Oxidation: 4Cl− −→ 2Cl2 + 4e−,
Reduction: Au3+ + 4e− −→ Au0 + e−.
A variety of biocompounds (enzymes, phenols, sugars, etc.) can participate both in the

reduction and stabilization of different types of particles, including AuNPs [25]. Figure 5a,b
show the biosynthesis mechanism of bacterial microorganisms, which can act as a “factory”
for the production of AuNPs. The biosynthesis mechanism of the microorganisms can
be either extracellular or intracellular based on the location of AuNPs production [26].
Extracellular biosynthesis occurs outside the bacterial cell by trapping and reducing metal
ions in the presence of enzymes. On the contrary, in the intracellular method, metal ions
are transported into the microbial cell to form NPs in the presence of enzymes [27].
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Figure 4. Schematic representation of AuNPs biosynthesis mechanism.

Figure 5. Schematic mechanism of (a) extracellular and (b) intracellular AuNPs biosynthesis.

3. Green Synthesis of AuNPs
3.1. Importance of Green Synthesis of AuNPs

As the applications of AuNPs are increasing day by day, the demand for their synthesis
also increases simultaneously. It has aroused interest among researchers worldwide to
develop novel interdisciplinary routes for the synthesis of highly stable, monodisperse, and
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safe AuNPs for various applications. To overcome the challenges in the conventional chem-
ical synthesis method, an alternative approach to synthesize biocompatible NPs, termed
“green synthesis”, has evolved. It is an emerging branch of nanotechnology and has at-
tracted huge attention among researchers and industries, as well as people concerned about
environmental pollution and health hazards. Green synthesis techniques are important as
they are an eco-friendly approach that involves the use of natural bioresources and avoids
toxic chemicals to synthesize different types of NPs [28]. For instance, green synthesis
of cobalt ferrite nanoparticles using extracts of grape peel, pulp, and honey-mediated
synthesis of cobalt-zinc ferrite NPs were reported earlier [29,30].

A variety of plants, microorganisms, and biomolecules derived from them are used as
a source for the synthesis of various types of NPs. Extracts from different parts of the plant
such as leaves, roots, seeds, flowers, fruits, bark, etc., and microbes, including bacteria,
fungi, and algae, are widely used to synthesize NPs with varying sizes and shapes using
interdisciplinary routes [19,31]. The precursor gold salt solution is treated either with the
microbial culture or plant extracts, which are then bioreduced to form AuNPs. Different
metabolites and biomolecules such as sugars, fatty acids, proteins, enzymes, and phenols
play a key role in the synthesis of the AuNPs [32,33]. Further, this biological approach
involves the use of (i) an environmentally acceptable solvent medium for NPs synthesis,
(ii) natural reducing agents, and (iii) nontoxic capping agents, mostly polyphenols and
other secondary metabolites. Green synthesis of AuNPs using different bioagents and their
applications is shown in Table 1.

Table 1. Green synthesis of AuNPs using different bioagents and their applications.

Bioagent Size (nm) Shape Application Ref.

Areca catechu 13.7 Spherical Anticancer, Antibacterial, Antioxidant,
Catalyst [34]

Mangifera indica Linn 6–18 Spherical Drug delivery [35]
Olive leaves 50–100 Spherical, Triangular, Hexagonal Antioxidant [36]

Citrus limon 15–80 Spherical, Triangular Anticancer, Antimicrobial,
Anti-inflammatory [37]

Coreopsis lanceolata 20–30 Spherical Detections of aflatoxins [38]
Musa paradisiaca <50 Spherical, Triangular Anticancer [39]
Zingiber officinale 5–20 Spherical, Triangular, Hexagonal Antibacterial [40]
Cocoa extract 150–200 Spherical, prismatic, Rod Photothermal Therapy, contrast agents [41]
Capsicum annuum var.
grossum 6–37 Quasi-spherical, Triangular, Hexagonal Catalyst [42]

Citrus maxima 25 Spherical Catalyst [43]
Trianthema decandra 17.9–79.9 Spherical, Hexagonal, Cubical Antimicrobial [44]
Mammea suriga 22–50 Spherical, Square Antibacterial [45]
Abelmoschus esculentus 45–75 Spherical Antifungal [46]
Shewanella oneidensis 2–50 Spherical Antibacterial [47]
Streptomyces sp. 90 Cubical Antifungal [48]
Gordonia amara 15–40 Spherical, Polycrystalline Biosensor [49]
Bacillus stearothermophilus 5–30 Spherical, Triangular and other Biosensor [50]
Pseudomonas fluorescens 5–50 Spherical Bactericidal [51]
Stenotrophomonas malophilia 40 Spherical Bioremediation [52]
Sporosarcina koreensis DC4 30–50 Spherical Catalyst [53]
Rhizopus oryzae 10 Nanocrystalline Pesticides [54]
Fusarium semitectum 18–50 Spherical Optoelectronics [55]
Candida albicans 20–80 Spherical, Non-spherical Detection of liver cancer [56]
Volvariella volvacea 20–150 Spherical,Triangular, Hexagonal Therapeutic [57]
Helminthosporum solani 2–70 Polydispersed Anticancer drug [58]
Penicillium brevicompactum 10–50 Spherical Anticancer [59]
Verticillium sp. 20 Spherical Biomedical [60]
Alternaria alternata 12 ± 5 Spherical, Triangular Biomedical [61]
Verticillium luteoalbum <10 Spherical,Triangular, Hexagonal Optics and Sensor [62]
Fusarium oxysporum 46–70 Spherical, Triangular Biomedical [63]
Aureobasidium pullulans 29 ± 6 Spherical Biomedical [64]
Pichia jadinii 10–100 Spherical, Triangular, Hexagonal Optics and Sensor [65]
Yarrowia lipolytica 7.5–27 Spherical, Triangular, Hexagonal Biomedical [66]
Gracilaria corticata 5 Spherical Antibacterial, antioxidant [67]
Shewanella algae 9.6–200 Spherical, Nanoplates Biomedical [68]
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3.2. Advantages of Green Synthesis of AuNPs

The green synthesis method offers the following advantages over the chemical meth-
ods: (i) safety: this method avoids the exposure of chemicals or their toxic byproducts,
either during the NPs synthesis step or during their stabilization process; (ii) cost-effective:
no external stabilizing agent is required. On the contrary, chemical methods use expensive
and hazardous chemicals and stabilizing agents; (iii) simplicity: biosynthesis of NPs from
plant extract is a simple process; (iv) renewable feedstock: e.g., algal biomass; (v) easy
availability of source materials; (vi) biocompatibility: since natural sources are used to
synthesize and stabilize the particles, AuNPs synthesized via green synthesis methods are
biocompatible to different cell types; (vii) the whole green synthesis process is dynamic,
reproducible, and energy-efficient; (viii) suitable for large scale production of NPs for
commercial applications; (ix) AuNPs synthesized via green synthesis method are also
reported to exhibit antibacterial, antifungal, anticancer, and anti-inflammatory properties,
and antioxidant and catalytic activity due to the presence of phytochemicals from the bioex-
tract [69,70]. All these factors have rendered the green synthesis approach more rewarding
than conventional methods.

4. Biosynthesis of AuNPs from Plant Sources

Biosynthesis of AuNPs from plant sources is facile and involves a single-step process
in the one-pot method. To synthesize AuNPs from plant sources, different parts of the plant
(leaves, fruits, bark, flower, peels, seed, rhizome root, etc.) are washed with distilled water,
dried, ground into powder or chopped into small pieces, and boiled in distilled water to
a specific temperature to obtain the extract. Then, filtration or centrifugation techniques
are used to purify the extract, which is then simply mixed with various concentrations of
gold salt solution (based on the plant parts and their species). The gold salt solution is
reduced into AuNPs and the reaction completes in minutes to a few hours. The reaction
mixture is further incubated to reduce the gold salt completely, and is visually monitored
by color change. Finally, the synthesized AuNPs are purified by centrifugation and washed
thoroughly in water for further use. The whole process is simple, eco-friendly, and can be
scaled up easily.

Plants are rich in alkaloids, flavonoids, saponins, steroids, tannins, and other natural
compounds [71]. The plant extract contains various secondary metabolites, which act as
both reducing and stabilizing agents for the biogenesis of NPs [72]. Numerous reports
have shown the successful synthesis of different types of NPs, such as silver, copper, gold,
cobalt, palladium, magnetite, and zinc oxide [73,74]. Although various parts of plants have
been reported in the biosynthesis of AuNPs, leaves are widely used. Variations in the level
of metabolites content from different plant parts, and even variation among plants, play a
crucial role in shaping the morphology of NPs.

Islam et al. [75] reported a reproducible green synthetic method to produce highly
stable AuNPs, using the leaves extract of the plant Salix alba L. (syn: white willow), which
belongs to the family Salicaceae. The leaves and bark of this plant are rich in phenolic
contents such as salicin, which acts as a precursor in the development of aspirin. Hence, they
are traditionally used for musculoskeletal pain relief and treatment of different ailments,
owing to their antipyretic and anti-inflammatory properties. When the aqueous gold ions
were treated with Salix alba L. leaves extract, they were reduced, leading to the synthesis
of AuNPs. The UV–Vis absorption spectra data revealed that the synthesized AuNPs
were found to be colloidally stable at different pH and salt concentrations. The AuNPs
functionalized with the phytochemicals of leaf extracts exhibited good antifungal activity,
pain-relieving, and muscle relaxant effect, which enhances their potential for various
biomedical and pharmaceutical applications. Narayan et al. [76] reported the extracellular
synthesis of AuNPs using coriander leaf extract as the reducing agent. Transmission
electron microscopy (TEM) images have shown the formation of stable AuNPs in the size
range of 6.75–57.91 nm (Figure 6) with varying shapes, such as spherical, triangle, truncated
triangles, and decahedral morphologies.
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Figure 6. (A,B) TEM images of AuNPs synthesized by leaf extract of coriander. Reprinted with
permission from Ref. [76]. Copyright 2008 Elsevier.

Similarly, Boruah et al. [77] reported a simple, faster, low-cost, eco-friendly technique
to biosynthesize AuNPs using fresh young leaves and leaf buds of Camellia Sinensis
(widely used to prepare tea). When chloroauric acid was treated with tea extract prepared
from young leaves and leaf buds at room temperature, they were reduced (Au3+ → Au0)
by polyphenols present in the extract, leading to the formation of AuNPs. Chen et al. [78]
reported that AuNPs (∼8–25 nm) synthesized from the aqueous leaf extract of Curcumae
Kwangsiensis Folium exhibited excellent, dose-dependent anti-human ovarian cancer po-
tential due to their antioxidant properties. Biogenic AuNPs synthesized using different
plant extracts exhibit remarkable cytotoxic antibacterial properties. For instance, Cha-
hardoli et al. [79] studied the reduction of gold ions into spherical AuNPs (3–37 nm) using
Nigella arvensis leaf extract in the one-step green synthesis method. They showed the
cytotoxicity effects against H1299 and MCF-7 cancer cell lines with an IC50 value of 10 and
25 µg/mL, respectively. Fourier transform infrared spectroscopy (FTIR) analysis confirmed
the presence of phytocompounds involved in the reduction and stabilization of NPs.

Apart from leaves, other parts of the plants, such as barks, flowers, fruits, seeds, and
even peels of fruits, are used in the synthesis of NPs. Bahram et al. [80] used the bark
extract from the S. alba (willow tree) to synthesize AuNPs which exhibited high potential
as colorimetric sensors for selective recognition and monitoring of cysteine, among other
amino acids. Leon et al. [81] synthesized AuNPs through a one-pot synthesis method
using Mimosa tenuiflora (Mt) bark extract, which is rich in different types of polyphenols.
The synthesized AuNPs were characterized by a series of analytical techniques including
FTIR and X-ray photoelectron spectrometry for functional group determination. The re-
sults indicated that AuMt (colloids formed by AuNPs and molecules of Mt) NPs interact
mainly with carbonyl groups (ketones), in addition to hydroxyl groups of Mimosa tannins,
saponins, and other molecules that participate in the reduction of Au3+ to Au0 and stabi-
lization of nanomaterials. Due to the fluorescence property at low excitation power and a
high cellular uptake, AuMtNPs synthesized with Mt bark extracts are good candidates for
implementation as drug nanocarriers and fluorescent probes in cells. Elmiitwalli et al. [82]
reported the green synthesis of AuNPs using cinnamon bark extract, which acts both as
reducing agent and stabilizer.

Wang et al. [83] synthesized stable AuNPs in the size range 10–30 nm, utilizing lignin
NPs at room temperature without the addition of chemicals. Lignin–AuNP composites
exhibited enhanced stability in suspension for more than 7 days. Parida et al. [84] reported
the synthesis of cost-effective and environment-friendly AuNPs using onion (Allium cepa)
extract as reducing agent. Lee et al. [85] reported the synthesis of AuNPs (32.96 ± 5.25 nm)
by the reduction of aqueous gold metal ions in contact with the aqueous peel extract
of the plant Garcinia mangostana (G. mangostana). FTIR results revealed the presence of
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phenols, flavonoids, benzophenones, and anthocyanins, which suggests that they may act
as reducing agent.

Reports [86,87] have revealed that the temperature and pH of the reaction mixture play
an important role in determining the final size and shape of the synthesized AuNPs. For
example, Bogireddy et al. [86] described the formation of size-tunable crystalline AuNPs
using sundried Coffea arabica seed (CAS) extract at room temperature. The influence
of pH on the size of AuNPs was investigated by manipulating the pH of the reaction
mixture (pH 5, 7, 9, and 11). The size, shape, and crystallinity of the NPs were analyzed
using different techniques, including TEM and X-ray diffraction (XRD). The results showed
the formation of larger NPs (∼69 nm) at lower pH value (∼5), which was probably due
to the limited availability of capping agents (OH− functional groups), whereas smaller,
quasi-spherical NPs (∼13 nm) were formed at higher pH values (>10). Thus, the obtained
results stipulate the possibility to manipulate the size and shape anisotropy of NPs by
controlling the pH of the reaction mixture. FTIR results revealed that the phenolic groups
present in the CAS extract helped to reduce Au3+ to Au0 and stabilize the synthesized
AuNPs. Similarly, Oueslati et al. [87] reported the synthesis of ultra-small and large AuNPs
using polyphenol extracted from the Salvia officinalis plant. In both alkaline (pH∼11) and
acidic media (pH∼5), polyphenols induced rapid reduction of the Au (III) salt and led to
the formation of highly monodisperse, ultra-small (∼6 nm), and larger (∼27 nm) spherical
AuNPs, respectively. FTIR results revealed that different polyphenols were capped onto
the surface of NPs favoring high colloidal stability.

Anbu et al. [88] synthesized spherical-shaped AuNPs with an average size of 15 nm
using Platycodon grandiflorum (balloon flower plant) extracts and evaluated their an-
tibacterial potential against Escherichia coli and Bacillus subtilis. The synthesized AuNPs
significantly inhibited bacterial growth and demonstrated their antibacterial applications.
Sett et al. [89] reported a novel method of AuNPs synthesis using aqueous fruit extract of
Dillenia indica. The high phenolic content of the aqueous core extract of D. indica with a
strong antioxidant property helped in the reduction of gold ions to AuNPs. The phytochem-
icals present in the fruit extract act as an effective reducing and capping agent to synthesize
AuNPs. TEM images of AuNPs revealed an average size range of 5–50 nm, which is very
promising for most biological applications. The synthesized AuNPs did not show any form
of cytotoxicity in the normal fibroblast cell line L929, thus proving their compatibility.

Elia et al. [90] compared the biocompatibility and stability of AuNPs synthesized
using the extracts of the following four different plants: Salvia officinalis, Lippia citri-
odora, Pelargonium graveolens, and Punica granatum. When chloroauric ions were treated
with the extract of different plants, the gold ions were reduced to gold atoms, which then
aggregated to form AuNPs. TEM images have shown the formation of smaller spheri-
cal/triangular NPs starting from about 10 nm in size, whereas larger particles (∼150 nm)
were also formed with different geometrical shapes, such as triangles, pentagons, and
hexagons. The cytotoxicity studies of all the synthesized AuNPs on L-cells (a murine
fibroblast cell line) did not show deleterious effects and expressed biocompatibility as well
as high stability for over 3 weeks. Therefore, the synthesized NPs have the potential to be
applied in biomedical applications. Literature data have shown the formation of AuNPs of
varying geometrical shapes when extracts from different plants were used [91,92].

Rao et al. [93] reported the green synthesis of AuNPs (20–30 nm) by reducing chloroau-
ric acid with flower and leaf extracts of Ocimum tenuiflorum, leaves of Azadirachta indica
and Mentha spicata, and peel of Citrus sinensis plants. The synthesized AuNPs were
tested on pathogenic Staphylococcus aureus (Gram-positive) and Pseudomonas aeruginosa
(Gram-negative) bacteria, which are dangerous to humans and other living organisms.
The phytochemicals from the plant extract formed in situ capping on the NPs surface
and exhibited antibacterial properties up to 99%. The toxicity study inferred that the
phytochemicals-capped AuNPs ruptured the bacterial cell wall and affected the normal
metabolic process of pathogenic bacteria. Interestingly, the phytochemicals-capped AuNPs
produced via green synthesis exhibited higher antibacterial activities than the other metallic
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NPs produced by chemical methods. This proves the benefits of NPs synthesized through
green routes compared to chemical methods and their superior features for biomedical
applications.

5. Biosynthesis of AuNPs Using Microorganisms

Green synthesis of AuNPs using different types of microorganisms such as bacteria,
fungi, algae, actinomycetes, etc., has triggered great interest in industrial microbiology
owing to the numerous benefits they offer. Easy handling and processing, low-cost medium
for their growth, and ability to adsorb and reduce various metal ions into NPs are some
of the attractive reasons [19,94,95]. Large-scale cultivation of microbes in bulk fermenters
will enable the surplus extraction of enzymes and various secondary metabolites in a less
economical way. Various fungal strains can be cultivated on different substrates such
as cellulosic wastes, coir-pith, and agricultural wastes, thereby enabling the usage of
less-expensive raw materials for their growth, helping in waste recycling and reducing
environmental pollution [96].

Microorganisms such as bacteria, filamentous fungi, yeast, algae, and actinomycetes
have huge scope in the bioremediation process and have the potential to degrade con-
taminants, such as heavy metals, dyes, and toxic chemicals, that pose environmental and
human risks [97,98]. In other words, microbes can be effectively utilized to biologically
degrade harmful pollutants into nontoxic substances.

5.1. Fungi and Algae

Fungi are excellent candidates for large-scale production of NPs because of the simplic-
ity, high scalability, downstream processing, easy handling, and cost-efficiency of fungal
growth on both the laboratory and the industrial scale. The filamentous fungi are well
known for their high metal tolerance and bioaccumulation properties. Fungal cell walls
possess different functional groups such as amine, carboxyl, sulfhydryl, hydroxyl, and
phosphate groups, that act as ligands and help to chelate metal ions [99]. Further, they
secrete a wide array of proteins and enzymes such as ATPase, 3-glucanase, hemicellulose,
glyceraldehyde-3-phosphate dehydrogenase, cell wall lytic enzyme β-1, etc., which play
an important role in the feasible, large-scale synthesis of metallic NPs. Fungi such as
Penicillium chrysogenum, Fusarium oxysporum, and Verticillium sp. are reported in the
biosynthesis of metallic NPs such as platinum, silver, silicon, and titanium [100].

Numerous reports have elaborated the biogenesis of AuNPs using unicellular and
multicellular fungi [56,101]. Extracellular or intracellular extracts of different fungi such as
Candida albicans, Aspergillus niger, Aspergillus clavatus, and Penicillium sp. are widely
used for the synthesis of AuNPs [102,103]. Priyadarshini et al. [104] reported an ecofriendly,
ambient temperature protocol for size-controlled synthesis of AuNPs, using the fungus
Aspergillus terreus IF0. AuNPs were formed immediately by adding chloroauric acid to
the aqueous fungal culture extract. TEM results have revealed that the particles were found
to be in the size range of 10–19 nm. FTIR analysis has indicated the presence of carboxyl,
amino, and thiol functional groups from the fungal extracts, which were responsible for
both bioreduction and stabilization of NPs. The synthesized AuNPs demonstrated excellent
antibacterial activity against the Gram-negative bacteria, Escherichia coli, and have exciting
scope in clinical applications.

Quite recently, Nguyen et al. [105] demonstrated the green-synthesis of silver and
gold NPs using Ganoderma lucidum, mushroom extract, as reducing and capping agents.
The synthesized NPs showed excellent catalytic, antibacterial activity, and colorimetric
detection of Fe3+ ions in real water systems and exhibited their outstanding properties
in environmental and biotechnological applications. Sastry et al. [106] observed the in-
tracellular and extracellular production of AuNPs using two different genera of fungi,
Verticillium sp. and Fusarium oxysporum. When the aqueous gold and silver ions were
exposed to Verticillium sp., the metal ions were reduced intracellularly to form gold and
silver NPs in the size range 2–20 nm. On the other hand, the same aqueous gold and silver
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ions were reduced extracellularly in the case of F. oxysporum, leading to the formation of gold
and silver NPs around 2–50 nm in size. The active biomolecules produced by the fungi,
the concentration of precursor gold salt solution, and optimization of the experimental
conditions play an important role in controlling the size distribution, shape, and biochem-
ical composition of the synthesized NPs. For instance, Dhanasekar et al. [107] explained
a simple and eco-friendly approach to synthesize AuNPs of different sizes (7–93 nm) and
shapes by exposing the cell-free filtrate of filamentous fungus Alternaria sp. to three differ-
ent concentrations (0.3, 0.5, and 1 mM) of chloroauric solution. In all cases, the Au3+ ions
were reduced to Au0, leading to the formation of stable AuNPs. TEM analysis has revealed
the presence of spherical, square, rod, pentagonal, and hexagonal morphologies for 1 mM
chloroauric solution and quasi-spherical and spherical NPs for lower concentrations (0.3
and 0.5 mM) of chloroauric solution. FTIR analysis has revealed the presence of aromatic
primary amines, amino acids such as tryptophan/tyrosine, or phenylalanine as the capping
and stabilizing agents on the surface of AuNPs.

Different approaches have been used for the biosynthesis of AuNPs from fungal
extracts. However, there is no clear knowledge about the limitations of all these methods.
To gain better understanding, Molnar et al. [108] investigated 29 different thermophilic
filamentous fungal strains to compare the AuNPs formed using either the extracellular
fraction, the autolysate of fungi, or the intracellular fraction of fungi. The results have
shown that AuNPs of varying sizes (6–40 nm) with high standard deviations ranging
between 30% and 70% were formed based on the difference in the fungal strain and
environmental conditions. Mishra et al. [59] reported the fungus-mediated synthesis
of AuNPs using an industrially important fungus Penicillium rugulosum. TEM results
revealed that the size of synthesized NPs was in the range of 20–80 nm. The AuNPs were
then conjugated with isolated genomic DNA of bacteria Escherichia coli and Staphylococcus
aureus. Stability analysis results have shown that DNA-conjugated AuNPs were highly
stable and monodispersed, which infers that the presence of genomic DNA on the surface of
NPs prevents them from aggregation due to their negatively charged phosphate backbone.
Such surface modification of AuNPs will improve their shelf life during in vivo applications
and enhance their scope in biomedicine.

A variety of algae, such as Turbinaria conoides, Spirulina platensis, Galaxaura elongate,
and Shewanella algae, are used as bionanofactories for the synthesis of AuNPs [67,68].
Singh et al. [109] reported the synthesis of AuNPs using aqueous extract of Dunaliella
salina, a unicellular, halotolerant microalga. The synthesis, characterization, and in vitro
anticancer activity of the biosynthesized AuNPs is shown in Figure 7. The anticancer
potential of AuNPs was tested against the breast cancer cell line (MCF7) and normal
breast epithelial cell line (MCF 10A), and commercial anticancer drug cisplatin was used
as a positive control. The cell viability results (Figure 8A–D) have indicated that AuNPs
synthesized using D. salina selectively attenuated cancer cells and were not detrimental
to the normal cell line, whereas cisplatin affected normal cells as well at 48 h exposure.
Chellapandian et al. [110] demonstrated a facile one-pot synthesis of AuNPs using an
aqueous solution of the marine red seaweed, Gracilaria verrucosa. The biocompatibility of
the synthesized AuNPs was assessed using human embryonic kidney (HEK-293) cells. The
fluorescence microscopy images using Trypan blue exclusion and AO/EB staining have
shown (Figure 9) that the cells treated with biosynthesized AuNPs (100 µg/mL) appear
similar to control cells, indicating the cell viability.
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Figure 7. Green synthesis of gold nanoparticles from Dunaliella salina, UV–Vis characterization
spectra, and in vitro anticancer activity on breast cancer cell line. Reprinted with permission from
Ref. [109]. Copyright 2019 Elsevier.

Figure 8. Cell viability using MTT assay after treatment with AuNPs and cisplatin on MCF 10A
(A,B) and MCF 7 cell lines (C,D). Reprinted with permission from Ref. [109]. Copyright 2019 Elsevier.



Chemistry 2022, 4 357

Figure 9. Biocompatibility of HEK-239 cells with AuNPs under fluorescence microscope evidenced
by Trypan blue exclusion and AO/EB staining. (a) Control cells appear green with no evidence of
cell death. (b) Cells treated with AuNPs (100 µg/mL) appear similar to control cells. Reprinted with
permission from Ref. [110]. Copyright 2019 Elsevier.

5.2. Bacteria

Different types of bacterial species have been reported to play an important role in
several biotechnological applications such as food processing, bioremediation, biofuels,
genetic engineering, and biomining [111]. They are actively involved in the production of
inorganic NPs such as silver, gold, and selenium [112]. Bacteria are good candidates in NPs
synthesis due to their abundance in the environment, rapid growth, and ability to survive
in extreme conditions. Prokaryotic bacteria and actinomycetes have been extensively used
to synthesize AuNPs, either intracellularly or extracellularly. Various enzymes, fatty acids,
and sugars present in the bacterial cell can reduce metal ions to their respective NPs. Reports
have shown the biosynthesis of AuNPs using different bacteria such as Bacillus subtilis,
Escherichia coli, Rhodopseudomonas capsulate, Lactobacillus, Pseudomonas aeruginosa,
Bacillus megaterium, and Desulfovibrio desulfuricans [113–115].

Kumari et al. [116] demonstrated the formation of AuNPs of various sizes (2–500 nm)
and shapes (spheres, triangles, pentagons, hexagons, and nanosheets) by modulating
different physical parameters using Trichoderma viride filtrate. The synthesized NPs
were characterized by different techniques, including dynamic light scattering, UV–visible
spectroscopy, FTIR, TEM, and X-ray diffraction. Experimental studies have indicated that
various parameters such as pH, temperature, time, and culture filtrate concentration play a
major role in altering the morphology of NPs.

He et al. [117] reported the extracellular biosynthesis of stable AuNPs using the
bacterial Rhodopseudomonas capsulate, which secretes cofactor NADH- and NADH-
dependent enzymes that induce bioreduction of Au3+ to Au0 and the subsequent formation
of AuNPs. TEM results have demonstrated the formation of spherical AuNPs in the range
of 10–20 nm at pH 7. On the contrary, few gold nanoplate structures were formed when
the pH was reduced to 4. Interestingly, the results indicate that the pH plays an important
role in determining the size and shape of NPs. At low pH, the functional groups (amino,
carboxyl, sulfhydryl, etc.) possess more positive charge, and the reducing power of the
biomass is weak. This leads to a very slow reaction rate and strong Au-biomass biosorbent,
which would possibly result in the formation of nanoplate structures. On the other hand,
an increase in the pH increases the reducing power and reaction rate and contributes to
the formation of spherical-shaped NPs, which are thermodynamically favorable. Similarly,
Sathiyanarayanan et al. [118] reported the extracellular synthesis of AuNPs using the
Bacillus megaterium MSBN04. The exopolysaccharide (EPS) produced from this bacterium
acts as both reducing and stabilizing agents. TEM and XRD analysis have confirmed the
spherical crystalline nature of AuNPs (5–20 nm), which were capped with an EPS layer.
Nadaf et al. [119] demonstrated a facile bacteriogenic route for the extracellular synthesis
of AuNPs from Bacillus marisflavi YCIS MN 5, which showed their potential in catalytic
dye degradation of congo red and methylene blue in the presence of sodium borohydride.
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Few bacterial species can survive at toxic metal ion concentrations and extreme tem-
peratures. They have unique defense mechanisms to tolerate such high stress and toxicity
of metal ions. Ahmad et al. [120] reported the intracellular synthesis of AuNPs using a
novel alkalotolerant actinomycete (Rhodococcus species). When the cells were exposed to
chloroauric acid, gold ions were rapidly reduced. TEM analysis of thin sections of actino-
mycete cells has shown that highly monodispersed NPs in the size range of 5–15 nm were
formed on the cytoplasmic membrane. The synthesized AuNPs were not toxic to the cells
and the cells continued to grow even after the biogenesis of AuNPs. Llanten et al. [121]
reported the biosynthesis of AuNPs using a thermophilic bacterium belonging to the genus
Geobacillus, strain ID17, isolated from Antarctica. When exposed to Au3+ ions, the bac-
terial cells turned from colorless into a dark purple color. This bioconversion process is
enzymatically mediated by the reductase enzyme and NADH as cofactors. TEM results
have shown intracellular accumulation of quasi-hexagonal-shaped AuNPs with sizes rang-
ing from 5–50 nm. Sharma et al. [94] exploited a novel strain of Marinobacter pelagius,
which belongs to marine bacteria and can tolerate high salt concentration and can evade
toxicity of different metal ions for the production of AuNPs. TEM images have shown the
formation of stable and monodisperse AuNPs around 10 nm size upon exposure of the
chloroauric acid solution to whole cells. The result indicated that this bacterial strain can
synthesize stable, quick, and monodisperse AuNPs around 2–6 nm in size.

Several bacterial strains have the potential of adsorbing/binding metal ions and re-
ducing them into NPs by enzymes produced during metabolic processes in cells, and
this property helps to enhance their applications in bioremediation and bioleaching.
Nangia et al. [52] identified a new bacterial strain, Stenotrophomonas malophilia (Au-
Red02), and isolated it from gold-enriched soil samples, which can synthesize well-dispersed
AuNPs of size about 40 nm. FTIR results showed that the synthesized AuNPs were capped
with negatively charged phosphate groups, which improves their stability in the aqueous
medium. Kunoh et al. [122] reported that the cells of Leptothrix (iron-oxidizing bacteria)
released extracellular RNA which has the ability to reduce Au (III) to form spherical AuNPs
when treated with an aqueous chloroauric acid solution under ambient conditions.

There are some drawbacks in the usage of bacteria for the synthesis of AuNPs. First,
maintaining the bacterial culture is a tedious process. Second, safety measures have to
be strictly followed in a clean environment to prevent them from mass contamination.
Third, the reduction process is slow and takes time from hours to days. Hence, they are
not a preferable choice for the commercial synthesis of AuNPs. Nevertheless, few recent
reports have highlighted that the AuNPs synthesized from various bacterial strains exhib-
ited superior properties when compared to the NPs prepared by chemical methods. For
instance, Li et al. [123] reported that the AuNPs synthesized from Deinococcus radiodurans
showed significant antibacterial activity against both Gram-positive and Gram-negative
bacteria. This opens up additional scope for the NPs as an antibacterial agent. Similarly,
Shabani et al. [124] reported the enzymatic synthesis of AuNPs (∼10 nm) using Escherichia
coli. The synthesized NPs exhibited strong antifungal properties against various human
pathogenic fungi and nontoxicity for Vero and Hep-2 cell lines in vitro at concentrations
ranging from 0.31 to 10%.

6. Green Synthesis of Different Types of Nanoparticles

Apart from AuNPs, the green synthesis technique is commonly used to synthesize
different types of nanoparticles. For instance, Vinodhini et al. [125] demonstrated the green
synthesis of silver nanoparticles (AgNPs) in the size range of 40–57 nm from the leaf extracts
of medicinal herbs such as Tabernaemontana divaricate, Basella alba, and Allium fistulosum. The
biosynthesised AgNPs were nontoxic and exhibited antibacterial, antifungal, antioxidant,
and antidiabetic properties due to the presence of phenolics and other active components
present in these medicinal plants. Similarly, Tyagi et al. [126] reported the biosynthesis
of magnetic iron oxide nanoparticles (FeNPs) from spinacia oleracea (spinach) and musa
acuminata (banana). Iqbal et al. [127] demonstrated the production of zinc oxide nanoparti-
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cles (ZnONPs) using Elaeagnus angustifolia leaf extracts, and Gulbagca et al. [128] reported
the green synthesis of palladium nanoparticles (PdNPs) using Urtica plant extracts. Among
the various types of nanoparticles, AuNPs are highly preferred in biomedical applications
as they exhibit unique properties such as surface plasmon resonance, nontoxicity, and high
biocompatibility.

7. Biosynthesized AuNPs in Cancer Theranostics: Imaging, Drug Delivery,
and Treatment

Cancer is a disease characterized by abnormal and unrestricted cell growth with
potential to spread to other parts of the body. The World Health Organization (WHO)
reported nearly 10 million deaths in 2020 and this is expected to increase to an estimated
12 million deaths by 2030 [129]. Among the different types of nanomaterials used to treat
cancer, biosynthesized AuNPs functionalized with targeting ligands and anticancer drugs
are considered as promising candidates in diagnosis and cancer therapy [24,130]. Kim
et al. [131] explored this concept to prove the efficacy of AuNPs in treating glioblastoma
multiforme (GBM), the most common primary grade 4 brain tumor. They demonstrated
that the oral delivery of AuNPs conjugated with milk protein lactoferrin and polyethylene
glycol (PEG), a biocompatible polymer, was able to cross the blood–brain barrier and
bind with lactoferrin receptors that are highly expressed in the brain tumor cells in mice
models. Further, when irradiated with laser light, the administered AuNPs increased the
temperature in GBM due to photothermiaproperties and induced a significant reduction
in the tumor volume. A schematic illustration for oral absorption of lactoferrin (Lf)–PEG-
conjugated AuNPs and the mechanism of action of Lf–PEG–AuNP targeting Glioblastoma
multiforme (GBM) through lactoferrin receptor pathway of the small intestine, the blood–
brain barrier, and GBM cells is given in Ref. [131].

AuNPs, either individually or in combination with other treatment modalities such
as radio/chemotherapy, have the ability to induce hyperthermia or deliver the drug in
the targeted region or cell to produce a synergetic effect and thus help to facilitate cancer
treatment. For instance, Rezaeian et al. [132] used a green chemistry approach to synthe-
size curcumin-coated AuNPs and performed in vitro study to the compare nanoparticle-
mediated photothermal therapy and radiofrequency electric field hyperthermia on mouse
colorectal cancer (CT26) cell lines. The results have shown that the NPs induced apoptosis
cell death considerably using both photothermal therapy and radiofrequency electric field
hyperthermia treatments. Another study used the green chemistry method to synthesize
stable AuNPs coupled with 5-Fluorouracil, a chemotherapeutic drug that is widely used
for the treatment of liver cancer [133]. This study focused on in vivo toxicity induced by
AuNPs in the zebrafish embryo model, in vitro drug release behavior, and efficacy of the
NPs in human liver cancer (HepG2) cell lines. In vivo biodistribution analysis indicated
that a higher amount of AuNPs accumulated in the liver induced significant cytotoxicity
in HepG2 cell lines, which signifies that the AuNPs could be used as a tool for both imag-
ing and targeted drug delivery with minimal side effects of liver cancer. Various reports
specifying anticancer activity of AuNPs biosynthesized from different plant sources are
mentioned in Table 2.
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Table 2. Green synthesis of AuNPs using different bioagents and their applications.

Plant Extract Source Anticancer Type Size (nm) Ref.
Jasminum auriculatum leaf extract Human cervical cancer cell line (HeLa) 8–37 [134]
Turbinaria decurrens hydromethanolic extract MCF-7, HEPG-2, and HCT-116 cell lines 10–19 [135]
Tecoma capensis leaf extract Human breast cancer cell line (MCF7) 10–35 [136]
Scutellaria barbata aqueous extract of plant Human pancreatic cancer cell lines (PANC-1) 400–1000 [137]
Couroupita guianensis flower extract Human leukemia cell line (HL-60) 7–48 [138]
Catharanthus roseus leaf extract MCF7 and HepG2 cell line 15–28 [139]
Tabebuia argentiea flower extract Liver cancer cell line (HEPG2) 56 [140]
Benincasa hispida aqueous extract Human cervical cancer cell line (HeLa) 22.18 ± 2 [141]
Coleous forskohlii root extract Liver cancer cell line (HEPG2) 10–30 [142]
Orchid whole plant extract Breast cancer cell line (AMJ 13) 14–50 [143]
Hevea brasiliensis latex extract Ovarian cell line (CHO-K1) 9 [144]
Antigonon leptopus leaf extract Human breast cancer (MCF-7) cells 13–28 [145]
Bauhinia purpurea leaf extract Lung carcinoma cell line (A549) 20–100 [146]
Petroselinum crispum leaf extract Human colorectal cell line (COLO- 201) 20–80 [147]
Indigofera tinctoria leaf extract Lung carcinoma cell line (A549) 6–29 [148]
Lonicera 4 japonica flower extract Human cervical cancer cell line (HeLa) 10–40 [149]
Podophyllum hexandrum leaf extract Human cervical cancer cell line (HeLa) 5–35 [150]
Gymnema sylvestre leaf extract Huma colorectal cancer cell line (HT29) 72.8 [151]
Brazilian Red Propolis hydroethanolic extract Bladder (T24), prostate (PC-3) cancer cell line 8–15 [152]
Mentha Longifolia leaf extract Breast cancer cell lines (MCF7, Hs 578Bst, Hs 319.T, UACC-3133) 36.4 [153]

8. Bioapplications of Medicinal-Plants-Based AuNPs

Medicinal plants, which are widely used in traditional health practices, play a vital
role in the treatment of various kinds of human diseases. Their extracts from different plant
parts such as leaves, flowers, and roots are used in the development of novel therapeutic
drugs [154,155]. It is estimated that above 60% of anticancer drugs that are currently used
for cancer treatment are isolated from medicinal plants and almost 3000 medicinal plants
worldwide have been reported to have anticancer properties [156,157]. Medicinal plants are
rich in various phytoconstituents including polyphenols, flavonoids, glycosides, terpenoids,
fatty acids, alkaloids, saponins, and tannins [136,158]. When these materials are used as
a source for NPs synthesis, the surface of the NPs is either coated or conjugated with
these beneficial compounds. Hence, NPs synthesized using medicinal plant extracts show
interesting antibacterial, anti-inflammatory, antidiabetic, and cytotoxic properties [159].

Further, AuNPs synthesized via different green techniques using environmentally
friendly reagents exhibit excellent immune response regulation and efficacy in therapy
against immune system-associated diseases such as cancer, inflammatory, and autoimmune
diseases [160]. However, scientific research on the anticancer properties of medicinal plants
is limited. The exact mechanism and the key components of the plant extracts that induce
biomedical effects are not well explored. Wang et al. [137] reported the green synthesis of
AuNPs using a medicinal plant Scutellaria barbata, which is widely used in the Chinese
system of medicine to treat various human ailments. Biosynthesized AuNPs showed
effective anticancer activity against human pancreatic cancer cell lines (PANC-1).

Geetha et al. [138] revealed a simple, cost-effective, and one-step process to biosyn-
thesize AuNPs using flower extract of a pharmacologically important tree Couroupita
guianensis, commonly known as cannon ball tree, which has innumerable medicinal ap-
plications including antibiotic, antiseptic, and anti-inflammatory activity. The anticancer
potential of biosynthesized AuNPs was evaluated using a variety of techniques such as
MTT assay, DNA fragmentation, apoptosis by 4,6-diamidino-2-phenylindole (DAPI), a flu-
orescent staining, and comet assay for DNA damage, against human leukemia cell (HL-60)
line. Leukemia is a type of blood cancer and a leading cause of cancer-related mortality
worldwide [161]. Becerril et al. [162] reported the green synthesis of AuNPs using the
aqueous extract from Turnera diffusa, a native desert plant used for traditional medicine in
Mexico. This plant has great pharmacological significance including anti-obesity, antioxi-
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dant, antibacterial, anti-inflammatory, antidiabetic, antimycotic, and cytotoxic activities.
The cytotoxicity and immunomodulatory effects of AuNPs synthesized using this plant
extract were investigated on the leukocytes of longfin yellowtail Seriola rivoliana, a marine
fish, and antibacterial activity against Vibrio parahaemolyticus and Aeromonas hydrophila,
Gram-negative bacteria. The results indicated that the AuNPs increased the phagocytosis
activity, attenuated the reactive oxygen species in leukocytes production, and increased the
cellular antibacterial mechanism mediated by nitric oxide production.

Yasmin et al. [163] employed green techniques for rapid synthesis of spherical AuNPs
in the size range of 16–30 nm using Hibiscus rosasinensis, a medicinal plant that has a lot
of beneficial applications such as anti-infectious, anthelmintic, anti-inflammatory, diuretic,
and antipyretic properties. The synthesized particles were found to be stable for up to a
few months and have the potential to be used for medical and biosensor applications. A
recent study reported the synthesis of AuNPs using the aqueous Mentha longifolia leaf
extract. The major constituents of this plant include polyphenols, alkaloids, organic acids,
terpenoids, etc., and this plant has been used as an antihypertensive and antitussive drug in
traditional medicine. The biosynthesized nanoparticles were found to be effective against
various breast cancer cell lines, such as breast adenocarcinoma (MCF7), breast carcinoma
(Hs 578Bst), breast infiltrating ductal cell carcinoma (Hs 319.T), and breast infiltrating
lobular carcinoma (UACC-3133) cell lines, without causing cytotoxicity against a normal cell
line (HUVEC). Therefore, AuNPs synthesized using Mentha longifolia leaf aqueous extract
can be tested as an anti-breast cancer drug in humans in the near future [153]. Another
report described the biogenic synthesis of AuNPs using the Jasminum auriculatum leaf
extract. The leaves of this plant have numerous medicinal applications such as antilithiatic,
wound healing activity, and diuretic activity. They are used in the treatment of leprosy, skin
diseases, ulcers, and wounds. The MTT assay performed using these NPs against human
cervical cancer (HeLa) cells revealed significant anticancer activity without the requirement
of doping additional molecules [134].

Hasan et al. [135] biosynthesized AuNPs from Turbinaria decurrens, which is an
Egyptian marine brown macroalga, which has a diverse group of phytochemicals with
unique bioactivities and is widely used as food and medicine. The authors compared the
chemical composition and antioxidant and anticancer activities of both the hydromethano-
lic extract (HME) of this plant and the HME–AuNPs on three different cancer cell lines
(MCF-7, HEPG-2, and HCT-116) using MTT assay. The results showed the strong anticancer
activity of AuNPs against all the three studied cell lines. Their findings indicated that the
biosynthesized AuNPs could be used as a source for the discovery of novel therapeutic
agents in the biomedical field to treat oxidative stress-related diseases, particularly can-
cer. Hosny et al. [136] explained a phytofabrication technique to synthesize AuNPs that
remained stable for up to three months using the aqueous leaf extract of Tecoma capensis, a
flowering plant commonly found in tropical and subtropical areas of Africa. The anticancer
efficacy of T. capensis–AuNPs was tested against human breast cancer cell line (MCF7)
using MTT assay and the results revealed the excellent potency of AuNPs in preventing the
development and proliferation of MCF7 cells. All these studies explain that the synthesis of
AuNPs based on medicinal plants is beneficial to express their health and medical benefits
along with their multifunctional potential in treating different diseases, including cancer.

9. Challenges and Future Prospects

In the recent decade, the green synthesis approach has been successfully used to
synthesize a variety of NPs, including AuNPs, with varying morphology and properties.
Numerous research articles have been published worldwide on the interdisciplinary routes
in the synthesis of NPs from different plants and microorganisms. However, there are
several limitations and drawbacks in the green synthesis method which limit their large-
scale production for commercial purposes and diminish their subsequent applications in
biotechnology and nanomedicine. The current challenges are summarized below:
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• Lack of sufficient data to control the size and shape of NPs: Many reports have demon-
strated the formation of AuNPs with different morphologies during the synthesis
process. The formation of NPs with uniform morphology and narrow size distribution
is essential for pharmacological and biological applications. Proper knowledge to
optimize the reaction mixture, experimental time, pH, temperature, rotational speed,
concentrations of chloroauric acid concentrations, etc., have to be taken into care to
solve this problem.

• Lack of standardized protocols to reproduce NPs with the same characteristics: NPs
from different parts even of the same plant have variations in their structure and
properties, as, e.g., AuNPs synthesized from different plant parts exhibit different
levels of cytotoxicity due to the difference in the antioxidant/metabolite contents.

• Lack of clear knowledge on the mechanism of NPs synthesis is a major drawback,
and identification of key components present in different metabolites from plants and
microbial sources that play an active role in the synthesis of NPs are challenging.

• Separation and purification of NPs from the complex reaction mixture is another
important aspect that still remains a hurdle.

• Scalability of synthesized NPs from a laboratory approach to meet the huge demands
in the industrial and pharmaceutical scale is a major concern.

• A detailed toxicological study of the biosynthesized NPs is crucial to enhance their
scope in diverse fields.

• Technical barriers and regulatory policies for the commercial synthesis of NPs limit
the scale-up process, which needs to be overcome.

• Stability and functionalization: More research on green synthesis is required to surface-
modify the synthesized NPs to improve their stability in biological media and func-
tionalize them with specific antibodies or peptides to improve their applications in
drug delivery and cancer therapy.

Even though the green synthesis approach is very popular, overcoming the above
challenges could improve the global acceptability and adaptability of the commercial
synthesis of AuNPs. Future research and development in this sector should be directed
towards overcoming the present hurdles and coming up with novel standardized protocols,
designing smart and safe AuNPs functionalized with different biomolecules, and targeting
moieties for multifunctional applications.

10. Conclusions

Due to their unique characteristics, AuNPs have enormous applications in various
fields such as electronics, catalysis, optics, sensors, and biology. Though different physic-
ochemical methods are used in the synthesis of NPs, the green synthesis method is a
promising approach to produce different types of NPs, including gold nanomaterials, in a
simple, eco-friendly, and cost-effective manner. This method has several advantages over
the conventional physical and chemical methods used for NPs synthesis, such as safety,
and does not involve the use of hazardous chemicals or the addition of external harmful
substances during the synthesis/durability of NPs. Different parts of plants and a variety
of microbes, including bacteria, fungi, algae, and yeast, are used as a natural source in
the biosynthesis process. Further, NPs synthesized using biological extracts have several
beneficial properties, such as high anticancer, antimicrobial, anti-inflammatory, antioxidant,
and catalytic activity, etc., which find exciting applications in nanomedicine.

This review article focuses on the “state-of-the-art” research on the “green synthesis” of
AuNPs, different sources of green materials, with special emphasis on biosynthesis of NPs
from different parts of the plant, intracellular and extracellular synthesis from microbes, and
their overall applications. Further, the advantage of the green synthesis method over the
conventional chemical synthesis methods, current challenges in this field, and the prospects
are discussed in detail. Green synthesis is an emerging field and current research on the
biogenesis of AuNPs, characterization, and functionalization of the synthesized particles
are still in the developing phase. A thorough understanding of the basic principles of green
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chemistry and more research work is required to gain sufficient knowledge in this field.
Addressing the current challenges in this field and overcoming them with standardized
protocols and innovative techniques can revolutionize the synthesis of AuNPs on both
laboratory and commercial scales.
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