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Abstract: Four enantiomeric forms of natural prostaglandins, ent-PGF2α ((−)-1), ent-PGE2 ((+)-2)
ent-PGF1α ((−)-3), and ent-PGE1 ((+)-4) have been synthetized in gram scale by Corey synthesis used
in the prostaglandin plants of CHINOIN, Budapest. Chiral HPLC methods have been developed to
separate the enantiomeric pairs. Enantiomers of natural prostaglandins can be used as analytical
standards to verify the enantiopurity of synthetic prostaglandins, or as biomarkers to study oxidation
processes in vivo.
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1. Introduction

Interest in the field of prostaglandins has been steadily growing since the basic work of
Bergström Samuelsson, and Vane [1–3]. Their discoveries revealed the structure, the enzyme-controlled
biochemical synthesis from arachidonic acid, and the main physiological effects of prostaglandins as
well as their related substances. The biological behavior of prostaglandins, namely the regulation of
the functions of all key organs in mammals including humans, has opened promising prospects for
their therapeutic use. The request for systematic studies of natural prostaglandins and their synthetic
derivatives has forced researchers all over the world to develop economical and scalable syntheses to
produce these substances that were previously available only from natural sources [4–6].

The first generally applicable prostaglandin synthesis was a linear one, developed by Corey [7].
The key intermediate in the synthesis is lactone (−)-5, commonly referred to as Corey lactone, from
which the omega and the alpha side chains of prostaglandins can be constructed [8–10]. The linear
approach was followed by convergent syntheses, a more versatile one, a two-component coupling was
first applied by Sih [11,12]. Noyori developed the idea of the shortest, highly convergent synthesis, the
three-component coupling reaction. Noyori’s process provides the prostaglandins or derivatives in a
one-pot reaction. The starting material is a chiral cyclopentenone; the omega side chain is introduced
by an organo copper-mediated conjugate addition of the optically pure omega side chain. The enolate
formed is trapped by the alfa side chain containing alkyl halide [13–15]. Recently, Aggarwal has
developed a short, stereocontrolled organocatalytic synthesis starting with the double aldol reaction
of succinaldehyde in the presence of a chiral auxiliary. The key intermediate is a methoxy acetal
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from which the omega side chain, which is constructed by a conjugate coupling reaction, then the
alpha side chain is formed by a Wittig reaction [16–18]. For reviews of prostaglandin syntheses see
refs. [19–21]. Scheme 1 shows the structures of the key intermediates of the prostaglandin synthesis
and the structures of PGF2α and an isoprostane, IPF2α.
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Versatile chemical syntheses from widely available starting materials have removed barriers from the
use of natural prostaglandins and synthetic derivatives in human [19] and veterinary therapies [22,23].
The main uses in human therapy are treatments of ocular hypertension and glaucoma [24,25], pulmonary
arterial hypertension (PAH) [26,27], lumbar spinal stenosis [28], gastric and duodenal ulcer [29], labor
induction [30], congenital heart disease in infants [31,32], and chronic idiopathic constipation [33].

The selection of successful drug candidates required the preparation of thousands of prostaglandin
derivatives, among them the enantiomers and epimers of natural prostaglandins as well. The idea that
enantiomers of natural prostaglandins retain their biological activity but metabolize in vivo more
slowly has led to contradicting results; therefore, no drugs have been developed from the prostaglandin
enantiomers and the interest in these derivatives has been pushed to the periphery [34–42]. The situation
changed when Morrow and Roberts reported that prostaglandin-like compounds are generated in vivo
from arachidonic acid by the peroxidation of free radicals independently of the cyclooxygenase
pathway [43–47]. Unbalanced free radicals, reactive oxygen or nitrogen species (ROS or RNS), can
cause oxidative stress in the body, contributing to the development of cardiovascular, neurological,
respiratory, and kidney disease, and even cancer [48].

Once discovered, isoprostanes are used as important biomarkers to study the oxidative processes
in humans. Prostaglandin enantiomers, which, unlike natural prostaglandins, are also formed from
arachidonic acid by free radical reactions, are in the spotlight again as promising biomarkers.

2. Aim of the Work

Evaluation of the literature data revealed that syntheses providing enantiomers of natural
prostaglandins in a larger quantity are still missing. The aim of our work is to prepare prostaglandin
enantiomers in a practical way using our processes that yield numerous prostaglandin active
pharmaceutical ingredients in our prostaglandin plants.

The enantiomeric forms of natural prostaglandins can be used for scientific purposes as reference
standards for studying oxidative processes in the body. Natural prostaglandins are synthesized from



Chemistry 2020, 2 729

arachidonic acid by COX-1/COX-2 enzymes. In contrast, enantiomers of the natural prostaglandins
can be formed by free radical oxidation.

Another important application of enantiomeric forms is in the analytical tests of the prostaglandin
active ingredients. The enantiomeric forms can be used as analytical standards to verify the optical purity
of the active ingredients to ensure the quality that meets the requirements of the pharmaceutical authorities.

We plan to prepare the enantiomeric forms of all prostaglandins that are in our portfolio.
This work has been started by synthetizing the enantiomeric forms of the natural prostaglandins that
are manufactured in our plants, because they can be used for two different purposes. Hereinafter,
enantiomeric forms of the modified prostaglandin derivatives will be prepared. The latter can only
be used for analytical purposes, as they are not synthesized in the human body. In the present
study, the synthesis of ent-PGF1α, ent-PGF2α, ent-PGE2 and ent-PGE1, starting from ent-Corey lactone,
and methods for the separation of the enantiomeric pairs by chiral analytical HPLC are presented.
See structures of the Corey lactone enantiomers ((−)-5 and (+)-5)) and the prepared ent-prostaglandins
in Scheme 2.
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Scheme 2. Structure of Corey lactone enantiomers and ent-PGF1α, ent-PGF2α, ent-PGE2 and ent-PGE1.

3. Material and Methods

The commercially available reagents and analytical grade solvents were purchased from
Merck (Darmstadt, Germany). Merck DC Fertigplatten 60 silicagel TLC plates with fluorescence
indicator 254 nm was used for TLC chromatography, and Merck silica gel 60 (0.063–230 mm) for
column chromatography.

Waters HPLC system equipped with a PDA detector and Empower V3 electronic data processing
system was used for the HPLC method development.

1H and 13C NMR spectra were recorded on Bruker AvanceIII (Billerica, MA, USA) instrument at
500.15 MHz and 125.8 MHz, respectively, in the DMSO-d6 solvents. Chemical shifts (δ) are given in
parts per million (ppm) relative to TMS, coupling constants (J) in hertz (Hz). The solvent signals were
used as references and the chemical shifts converted to the TMS scale (deuterated dimethyl sulfoxide
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(DMSO-d6): δC 39.52 ppm (sep) in DMSO-d6, δH 2.50 ppm (m), residual peak in DMSO-d6) [49].
In the report, the full assignment of the 1H and 13C NMR spectra have been achieved by utilizing the
attached proton test (APT) and the two-dimensional HSQC, ed-HSQC, HMBC, COSY, NOESY and
ROESY measurements.

4. Results and Discussions

4.1. Synthesis of Mirror Images of Natural Prostaglandins

In our prostaglandin plant, we use modified version of Corey synthesis [48] to produce a
variety of natural and structurally modified prostaglandins as active pharmaceutical ingredients
(PG API-s) [50–69]. This versatile synthesis allows the production of different types of prostaglandins
from a common intermediate, the Corey lactone ((−)-5). The same strategy was used to design the
synthesis of enantiomeric forms of natural prostaglandins. Logically, in this case, the starting material
was the mirror image of the Corey lactone, called ent-Corey lactone ((+)-5), from which each of
the four enantiomeric prostaglandins could be prepared. The ent-Corey lactone can be synthetized
by known methods from (+)-bicyclic lactone, the “wrong” enantiomer of the resolution step of the
prostaglandin synthesis [48,70,71]. Preparation and resolution of rac-bicyclic lactone is shown in
Scheme 3. The ent-Corey lactone and Corey lactone are also commercially available [72].
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The initial reaction steps in the synthesis of ent-prostaglandins, were the transformation of the
ent-Corey lactone ((+)-5) to the unprotected lactol (11). First, the primary hydroxyl-group in the
ent-Corey lactone ((+)-5) was oxidized by Anelli oxidation [73]. Dichloromethane solution of the
crude aldehyde (6) was reacted with the sodium salt dimethyl (2-oxo)heptylphosphonate (7) to form
the omega side chain under the conditions of Horner–Wadsworth–Emmons (HWE) reaction [74–76].
Protected enone (8) was purified by crystallization. Then, the 15-oxo-group was stereoselectively
reduced with in situ prepared catecholborane in the presence of (S)-2-Methyl-CBS catalyst [77].
After work-up, the lactone group of protected enol (9) was reduced to the lactol (10). The undesired
diastereomer, the derivatized side-product of 15-oxo-reduction, (S)-10 was removed by chromatography
and crystallization. The methanolysis of PPB-protecting group provided the unprotected lactol (11),
which was purified by crystallization. Reaction steps are shown in Scheme 4.
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Scheme 4. Preparation of lactone (11) from ent-Corey lactone (+)-5. (a) NaOCl, KBr, NaHCO3, TEMPO
catalyst, dichloromethane, water, 0–10 ◦C; (b) 7, NaOH, dichloromethane, water, 0–10 ◦C, crystallization
from diisopropyl ether-hexane; (c) BH3-DMS, pyrocatechol, (S)-2-Me-CBS, THF, (−15)–(−10) ◦C; (d)
DIBAL-H, THF, toluene, (−75)–(−70) ◦C, chromatography with toluene-EtOAc, crystallization from
toluene-hexane; (e) K2CO3, MeOH, 35–40 ◦C, crystallization from EtOAc-diisopropyl ether.

The unprotected lactol (11), containing a masked aldehyde functionality, is a common building
block of all four enantiomeric prostaglandins. The alpha side chain for ent-PGF2α ((−)-1) was prepared
by Wittig reaction with the phosphorane liberated from 4-carboxybutyl triphenylphosphonium bromide
(CBP-Br) (12) by the strong base, KOBut. We have not crystallized yet the oily crude ent-PGF2α (1),
instead it was converted to its stable, crystalline tromethamine salt.

For the preparation of the remaining three derivatives ent-PGE2 ((+)-2), ent-PGF1α ((−)-3),
ent-PGE1 ((+)-4), the lactol group of 11 was reoxidized to lactone (13) with iodine in an aqueous
medium containing KI and KHCO3. This reoxidation is required for the selective formation of the
9-oxo group in the PGE derivatives. Free hydroxyl groups were protected with dihydropyran by
an acid catalyzed reaction, supplying the bis-THP lactone (14). To form the alpha side chain of the
prostaglandin structure, the lactone group was reduced to lactol to make the molecule suitable for the
Wittig reaction. The alpha side chain was built again with the phosphorane prepared from CBF-Br
(12) with KOBut as the base in THF solution, giving the ent-THP2-PGF2α (16), that is the last common
intermediate for the preparation of ent-PGE2 ((+)-2), ent-PGF1α ((−)-3) and ent-PGE1 ((+)-4).

Preparation of ent-PGE2 ((+)-2), happened by the oxidation of the free 9-hydroxyl group of acid
(16) with pyridinium chlorochromate (PCC) in ethyl acetate. The pH of the reaction mixture was
buffered by sodium acetate and acetic acid. The crude ent-THP2-PGE2 (17) was filtered through silica
gel to remove the residue of the oxidant. In the last step of this series, the THP-protecting groups were
removed in isopropanol. The reaction was catalyzed by 1 mol/L hydrochloric acid. Crude ent-PGE2

((+)-2) was purified by chromatography using hexane-ethyl acetate eluent, and crystallization from
ether-diisopropyl ether.

To prepare ent-PGF1α ((−)-3) and ent-PGE1 ((+)-4) the cis double bound in the alpha side chain of 16
must be selectively reduced. This selective reduction is a key step because it allows derivatives containing
either one or two double bonds to be prepared from a common intermediate. This transformation is
performed by catalytic hydrogenation in diisopropyl ethylamine-dichloromethane solution using 10%
Pd/C catalyst. The quantity of crude ent-THP2-PGF1α (18) was divided into two parts. One part was
dissolved in isopropanol containing 1 mol/L hydrochloric acid to remove the THP-protecting groups,
giving ent-PGF1α. Crude ent-PGF1α ((−)-3) was purified by double crystallization from ethyl acetate
followed by ethyl acetate-hexane.
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The 9-hydroxyl group of the remaining quantity of 18 was oxidized with PCC to the 9-oxo
derivative, ent-THP2-PGE1 (19). Crude 19 was purified by column chromatography. The evaporated
main fraction was dissolved in isopropanol containing 1 mol/L hydrochloric acid to remove the
protecting groups. Crude ent-PGE1 ((+)-4) was crystallized from diisopropyl ether-hexane. Reaction
steps for the preparation of ent-prostaglandins are shown in Scheme 5.
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TAM, MeOH, acetone, hexane, 25 ◦C→ 0 ◦C; (c) I2, KI, KHCO3, water; (d) Dihydropyran, pTsOH.H2O,
toluene, THF, 20–50 ◦C; (e) DIBAL-H, toluene, THF (−75)–(−70) ◦C; (f) CBP-Br, KOBut, THF, toluene,
(−10)–(−5) ◦C; (g) PCC, NaOAc, AcOH, EtOAc, 30–40 ◦C, chromatography with diisopropyl ether-
acetone mixture as eluent; (h) 1 mol/L HCl, H2O, i-PrOH, 20 ◦C, chromatography with hexane-EtOAc
mixtures as eluent, crystallization from ether-diisopropyl ether; (i) cat H2, Pd/C, diisopropyl ethylamine,
dichloromethane, rt; (j) 1 mol/L HCl, H2O, i-PrOH, 20 ◦C, crystallization from EtOAc then EtOAc-hexane;
(k) PCC, NaOAc, EtOAc, AcOH, 30–40 ◦C, chromatography with diisopropyl ether-EtOAc mixture as
eluent; (l) 1 mol/L HCl, H2O, i-PrOH, 20 ◦C, crystallization from diisopropyl ether-hexane.
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4.2. Separation of Natural Prostglandin Enantiomers by Chiral HPLC

Having the optically pure mirror images of four natural prostaglandins in our hands (chemical
purities are given in the Supplementary Material), the next goal was to develop chiral HPLC methods
for the separation of the enantiomeric pairs. To date, only one scientific article has reported the chiral
reversed phase HPLC separation of PGE2 enantiomers. According to the article, various chiral HPLC
columns were tested, but the enantiomeric separation was only successful when the Phenomenex
Lux Amylose2 column was used. Elution of the Lux Amylose2 column with methanol:water or
2-propanol:water did not resolve the enantiomers. When a low concentration of acetonitrile (25% in
water with 0.1% formic acid) and a slow flow rate (50 µL/min) were used, the enantiomers separated,
but the peaks were broadened. The best results were obtained when two columns, connected in series
were used for the enantiomeric separation [78].

As the known procedure presented a rather sophisticated method and that method was only
applied for the separation of PGE2 enantiomers, we have decided to work out a simplified procedure
which is suitable for routine tests of the prostaglandins manufactured in our plant.

Reverse phase methods are promising for the chromatographic analysis of acidic compounds,
including prostaglandin acids, so we have been looking for a reverse phase chiral column. Based on
literature data and our previous experience, we have chosen Chiracel OJ-RH as the chiral HPLC column.
This type of column has been successfully applied for the enantiomeric separation of chemically distinct
racemic organic acids [79].

In selecting the values of the test parameters, we partly took into account the column supplier’s
recommendation [80], and partly our chromatographic experience. The reversed phase HPLC
conditions are summarized in Table 1.

Table 1. Reversed phase HPLC conditions.

Parameter Value

Apparatus: Waters HPLC system equipped with a PDA detector and Empower
V3 electronic data processing system

Column: Chiracel OJ-RH, 150 × 4.6 mm, 5 µm
Column temperature: 25 or 40 ◦C (5–40 ◦C) *
Flow rate: 0.5 mL/min (0.5–1.0 mL) *
Injected volume: 5 µL
Concentration of sample: 0.25 mg/mL
Composition of eluent: see Table 2
Composition of sample solvent: acetonitrile:methanol:water

30:10:60
Wavelength: 200, 210 nm
Run time: 20–40 min

* The optimal parameters recommended by the column supplier are shown in the brackets.

Based our preliminary experiments, sample solutions were prepared by dissolving equal amounts
of the pure enantiomers in the sample solvent (acetonitrile:methanol:water = 30:10:60) and aliquots
from the solution of the corresponding enantiomeric pairs were mixed prior to the injection. The eluent
was a three-component mixture containing acetonitrile:methanol:water (pH = 4). It is noted here that
pH of the water was adjusted to 4 with phosphoric acid (85 w/w% in H2O) in every case. This pH = 4
value provides an adequate separation and elution rate for the prostaglandin acids, without causing
decomposition of their acid-sensitive structure. Phosphoric acid was also recommended for adjusting
the pH of Chiracel OJ-RH columns at this pH value to avoid degradation of the column. Composition
of the eluents were varied in a wide range to achieve a good resolution. The composition of the eluents
is summarized in Table 2.
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Table 2. Eluent composition.

Run
Composition

Acetonitrile Methanol Water (pH = 4)

1 30 10 60
2 25 10 65
3 24 10 66
4 23 10 67
5 20 10 70
6 20 15 65
7 15 20 65
8 15 15 70

The results for individual runs were evaluated by comparing the resolution values (R) calculated
according to United States Pharmacopeia (USP-NF, < 621 > Chromatography). To achieve at least
R = 1.2 resolution the composition of the eluent and column temperature were varied. When optimizing
the method, not only the resolution, but also the time and eluent consumption were taken into account.
The effect of the variable parameters on the resolution of enantiomers of PGE2 is shown in Figure 1.
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Figure 1. Effect of the variable parameters on the resolution of PGE2 enantiomers. 
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Figure 1. Effect of the variable parameters on the resolution of PGE2 enantiomers.

By varying the indicated parameters, we performed the chiral separation of all four enantiomeric
pairs with excellent resolution, R ≥ 1.5. The best resolutions are shown in Figures 2–5.
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Figure 2. Chiral separation of the optical isomers of PGF2α (tested as TAM salt), R = 1.5. Optimized 

parameters: Eluent: MeCN:MeOH:water (pH = 4) = 30:10:60, column temperature 25 °C, wavelength 
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Figure 2. Chiral separation of the optical isomers of PGF2α (tested as TAM salt), R = 1.5. Optimized
parameters: Eluent: MeCN:MeOH:water (pH = 4) = 30:10:60, column temperature 25 ◦C, wavelength
200 nm.
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Figure 3. Chiral separation of the optical isomers of PGF1α, R = 1.7. Optimized parameters: Eluent: 

MeCN:MeOH:water(pH = 4) = 23:10:67, column temperature 25 °C, wavelength 200 nm. 

 

Figure 4. Chiral separation of the optical isomers of PGE2, R = 1.5. Optimized parameters: Eluent: 

MeCN:MeOH:water(pH = 4) = 15:20:65, column temperature 40 °C, wavelength 210 nm. 

 

Figure 5. Chiral separation of the optical isomers of PGE1, R = 1.8. Optimized parameters: Eluent: 

MeCN:MeOH:water(pH = 4) = 30:10:60, column temperature 25 °C, wavelength 200 nm. 

Enantiopurity of the individual pure ent-prostaglandins has been also determined by the 

developed chiral methods. HPLC area percentages and enantiomeric excesses are summarized in 

Table 3. 

Table 3. Enantiopurity of the ent-prostaglandins. 

ent-PG HPLC Area % Enantiomeric Excess 

ent-PGF2a.TAM (−)-1.TAM 98.2 0.964 

ent-PGE2 (+)-2 99.9 0.998 

ent-PGF1α (−)-3 99.3 0.986 

ent-PGE1 (+)-4 99.9 0.998 
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Figure 3. Chiral separation of the optical isomers of PGF1α, R = 1.7. Optimized parameters: Eluent:
MeCN:MeOH:water(pH = 4) = 23:10:67, column temperature 25 ◦C, wavelength 200 nm.
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Figure 4. Chiral separation of the optical isomers of PGE2, R = 1.5. Optimized parameters: Eluent:
MeCN:MeOH:water(pH = 4) = 15:20:65, column temperature 40 ◦C, wavelength 210 nm.
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Enantiopurity of the individual pure ent-prostaglandins has been also determined by the developed
chiral methods. HPLC area percentages and enantiomeric excesses are summarized in Table 3.

Table 3. Enantiopurity of the ent-prostaglandins.

ent-PG HPLC Area % Enantiomeric Excess

ent-PGF2a.TAM (−)-1.TAM 98.2 0.964
ent-PGE2 (+)-2 99.9 0.998

ent-PGF1α (−)-3 99.3 0.986
ent-PGE1 (+)-4 99.9 0.998
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5. Conclusions

Four mirror images of the natural prostaglandins, ent-PGF2α ((−)-1), ent-PGE2 ((+)-2), ent-PGF1α

((−)-3), and ent-PGE1 ((+)-4) were synthesized by the modified Corey synthesis. The starting material
was the ent-Corey lactone ((+)-5), which is a side-product of our prostaglandin production. Using
ent-Corey lactone ((+)-5) the mirror images of natural prostaglandins and numerous modified
derivatives can be synthesized. The mirror images of prostaglandins can be used as reference standards
to justify the optical purity of the pharmaceutical active ingredients. In addition, enantiomeric forms
of natural prostaglandins may be important biomarkers to study the oxidative stress of the human
body to better understand the mechanism of development of many serious, or even fatal, diseases.

Chiral HPLC methods have been also developed for the analytical separation of the enantiomeric
pairs. Enantiopurity of the pure ent-prostaglandins has been determined. The HPLC method developed
proved to be quite general. The Chiracel OJ-RH column was suitable for the separation of all four
enantiomeric pairs. The eluent mixture contained acetonitrile:methanol:water (pH = 4) in each case,
but the solvents were mixed in different proportions. The column temperature was 25 ◦C for the
separation of the enantiomeric pairs of PGF2α, PGF1α and PGE1, but adequate resolution of the PGE2

enantiomers was achieved at a higher column temperature, at 40 ◦C.
In contrast to the known method, the procedure developed is suitable for the routine analytical

tests to check the enantiopurity of the prostaglandins produced in our plants.
Our long-term goal is to synthesize the mirror images of all prostaglandins that are in our portfolio

in order to test the enantiopurity of the active ingredients of the prostaglandin drugs.

Supplementary Materials: Preparation of ent-PGF2α ((−)-1), ent-PGE2 ((+)-2) ent-PGF1α ((−)-3), and ent-PGE1
((+)-4) is available online at http://www.mdpi.com/2624-8549/2/3/47/s1.
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