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Abstract: Targeted α-therapy (TAT) can eradicate tumor metastases while limiting overall toxicity.
One of the most promising α-particle emitters is astatine-211 (211At). However, 211At-carbon bonds
are notoriously unstable in vivo and no chelators are available. This hampers its adoption in TAT.
In this study, the stability of 211At on the surface of gold nanoparticles (AuNPs) was investigated.
The employed AuNPs had sizes in the 25–50 nm range. Radiolabeling by non-specific surface-
adsorption in >99% radiochemical yield was achieved by mixing 211At and AuNPs both before
and after polyethylene glycol (PEG) coating. The resulting 211At-AuNPs were first challenged by
harsh oxidation with sodium hypochlorite, removing roughly 50% of the attached 211At. Second,
incubation in mouse serum followed by a customized stability test, showed a stability of >95% after
4 h in serum. This high stability was further confirmed in an in vivo study, with comparison to a
control group of free 211At. The AuNP-associated 211At showed low uptake in stomach and thyroid,
which are hallmark organs of uptake of free 211At, combined with long circulation and high liver
and spleen uptake, consistent with nanoparticle biodistribution. These results support that gold
surface-adsorbed 211At has high biological stability and is a potentially useful delivery system in TAT.

Keywords: astatine-211; targeted alpha-therapy; gold nanoparticles; radionuclides

1. Introduction

In recent years, targeted α-therapy (TAT) in the treatment of cancer has received
increasing interest [1,2]. Clinical α-therapy was spearheaded by the FDA approval of
223RaCl2 (Xofigo®) for bone metastases in prostate cancer [3], and 225Ac-PSMA-617 recently
showed promise in early clinical trials for metastatic prostate cancer [4,5]. α-particles have
substantially higher linear energy transfer (LET) than the widely employed β-particles.
This increases their efficacy through a higher propensity for causing double stranded DNA
breaks, which often result in cell-cycle arrest followed by mitotic cell death, apoptosis or
necrosis [6–8]. Further, the short range in tissue of α-particles (50–100 µm) makes them
particularly well-suited for treating micrometastases, a major cause of cancer mortality, as
well as reducing unwanted cytotoxicity to healthy surrounding cells [8].
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Only a few of the available α-emitters have suitable decay properties for use in
TAT, the most prominent examples being actinium-225 (225Ac, t1/2 = 9.9 d), radium-223
(223Ra, t1/2 = 11.4 d), thorium-227 (227Th, t1/2 = 18.7 d), bismuth-212 (212Bi, t1/2 = 60.5 min),
bismuth-213 (213Bi, t1/2 = 46 min), and astatine-211 (211At, t1/2 = 7.2 h). Of these, 211At is
regarded as having the most optimal decay properties [9]. 211At decays by two branches,
either by α-particle emission to bismuth-207 (207Bi) or by electron capture to polonium-
211 (211Po) (Figure 1). 211Po in turn decays by α-particle emission to lead-207 (207Pb)
with a very short half-life (0.52 s). This means that each decay results in the emission of
exactly one α-particle. In contrast, the decays of 225Ac, 227Th and 223Ra result in several
α-active daughters, which is believed to have an unfavorable influence on side effects.
Further, the half-life of 211At of 7.2 h is well suited for TAT with popular small-molecule
and peptide-based vectors, and its production on cyclotrons can be scaled up for global
supply [9].
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A primary reason for the limited use of 211At has been its challenging radiochemistry.
As the heaviest halogen, 211At shares several properties with iodine. However, the halogen-
aryl bond is significantly weaker for astatine than it is for iodine [10]. The standard
method for forming the astatine-aryl bond is through electrophilic aromatic substitution
on trialkyl(aryl)stannane precursors [11–13]. This strategy is useful, but deastatination
is commonly observed in vivo [14], likely through intracellular oxidation, followed by
homolytic bond cleavage [15].

As an alternative to the astatine-aryl bond, metallic nanoparticles have therefore
been investigated for 211At delivery, using non-covalent approaches. Non-specific surface
adsorption of 211At was first shown with silver nanoparticles, which were proposed as a
carrier system [16,17]. However, gold nanoparticles (AuNPs) are easier to functionalize
and have high biocompatibility [18]. AuNPs were recently investigated in pioneering work
by Bilewicz and co-workers, using radio-TLC to indicate appreciable serum stability of
211At that was surface-adsorbed onto peptide-modified AuNPs [19,20]. In addition, a high
computationally determined stability of 211At on gold clusters was reported [21].

To further investigate the potential use of the surface-adsorption radiolabeling tech-
nique in radionuclide therapy, we prepared AuNPs coated with thiolized polyethylene
glycol (HS-PEG5000). 211At was surface-adsorbed onto these AuNPs and the stability of
this radiolabel was investigated (Figure 2). In this study, we report excellent stability in
serum of these 211At-AuNPs, demonstrated through a newly designed method. Further,
we report high stability in vivo, demonstrated by quantifying the biodistribution of the
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AuNP-borne 211At in mice. Our results demonstrate that surface adsorption of 211At on
AuNPs is very stable in biological environments, including in vivo, and that AuNPs are a
viable delivery vector in TAT with 211At.
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at room temperature and stirred for 20 min, (iv) addition of HS-PEG5000 in water at room temperature and stirred for
25 min. (1) 1st generation citrate-stabilized AuNPs, (2) 1st generation citrate-stabilized [211At]AuNPs, (3) 2nd generation
citrate-stabilized AuNPs, (4) 2nd generation HS-PEG5000-coated AuNPs, (5) 2nd generation citrate-stabilized [211At]AuNPs,
(6) 2nd generation citrate-stabilized embedded [211At]AuNPs, (7) 2nd generation HS-PEG5000-coated [211At]AuNPs, (8) 2nd
generation HS-PEG5000-coated embedded [211At]AuNPs.

2. Materials and Methods
2.1. Materials

Milli-Q (MQ) water (18.2 MΩ × cm) was used for all preparation steps. All glassware
and magnetic stirring bars were cleaned with freshly prepared aqua regia (HCl: HNO3,
3:1, v/v) and rinsed five times with MQ water before use. All chemicals were purchased
from Sigma-Aldrich if not stated elsewise. AuNP sizes and Zeta potentials were measured
by dynamic light scattering (DLS) on a ZetaPALS (Brookhaven). Metal content of sam-
ples was quantified with an ICAP 7000 ICP-OES (Thermo Scientific). 211At activity was
measured on a dose calibrator (VEENSTRA instruments), unless otherwise noted. An
isotonic HEPES-saline buffer containing 4-(2-hydroxyethyl)-1-piperazineethanesulfonic
acid (HEPES, 10 mM) and NaCl (150 mM) was prepared by mixing equal molar amounts of
sodium HEPES salt and free acid HEPES, for a final pH of 7.4–7.5 and osmolality of about
290 mOsm/kg. An overview of the synthetic approach can be seen in Figure 2.

2.2. Production of 211At

Stable bismuth deposited on aluminium backing was irradiated with 29 MeV α-
particles to produce 211At in a Scanditronix MC32 cyclotron at the positron emission
tomography (PET) and Cyclotron Unit at Copenhagen University Hospital, Denmark.
At the Department of Nuclear Medicine, Sahlgrenska University Hospital, Sweden the
generated target was purified by dry distillation to achieve pure 211At, as previously
reported [22].
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2.3. Preparation of Citrate-Stabilized 1st Generation AuNPs (1)

HAuCl4·3H2O (14.2 mg, 36 µmol) was first dissolved in MQ water (10 mL) and added
to additional MQ water (90 mL) in a three-neck flask fitted with a reflux condenser. At
the same time, a second solution was prepared in a metal-free plastic tube by dissolving
fresh trisodium citrate (84 mg, 328 µmol) in MQ water (8 mL). The gold solution was then
heated to 80 ◦C and the trisodium citrate solution was added in one portion under vigorous
mixing. The reaction mixture was stirred for 60 min at 80 ◦C, until the color changed to a
dark red.

2.4. Preparation of Citrate-Stabilized 2nd Generation AuNPs (3)

In a three-neck flask fitted with a reflux condenser, 20 mL of the 1st generation
Au-nanoparticles was diluted with MQ water (80 mL). Fresh trisodium citrate solution
was prepared by dissolving trisodium citrate dihydrate (21.2 mg, 82 µmol) in MQ water
(2.0 mL). After mixing the two solutions and heating to 80 ◦C, a solution of HAuCl4
(18.5 mg, 47 µmol, 3 mM) in MQ water (15 mL) was added dropwise over 30 min to
provide 2nd generation AuNPs.

2.5. Surface Adsorption of 211At to 2nd Generation AuNPs (5, 7, Group A, Group B)

In a 10 mL flask, 5 mL of the 2nd generation AuNP dispersion was placed. To this
solution, 29.5 MBq of 211At in CHCl3 (20 µL) was added. The mixture was stirred for
20 min at room temperature and was subsequently heated to 80 ◦C for 60 min.

2.6. Embedding of 211At in 2nd Generation AuNPs (6, Group C)

In a 10 mL flask, 1 mL of the 1st generation AuNPs was dissolved in MQ water (4 mL).
To this mixture, 29.5 MBq of 211At in CHCl3 (20 µL) was added. After 20 min stirring at
room temperature, trisodium citrate (1.06 mg, 3.6 µmol) in MQ water (100 µL) was added.
After this mixture reached a temperature of 80 ◦C, HAuCl4·3H2O (0.93 mg, 2.25 µmol) in
MQ water (750 µL) was added in three portions of 250 µL over 6 min. This mixture was
stirred at 80 ◦C for an additional 60 min.

2.7. PEG Coating of 2nd Generation AuNPs (4, 7, 8)

For 4.6 mL of 2nd generation AuNPs (cAu = 0.441 mM), HS-PEG5000 (0.74 mg) was
weighted out and dissolved in MQ water (484 µL). This solution was then added to
the AuNPs and stirred for 25 min at room temperature. The AuNPs were purified by
transferring them to Amicon®® centrifugal filter devices (30 kDa) and concentrating them
by centrifugation to ca. 100 µL for 5 min at 4.4 krpm. The obtained residue was resuspended
in HEPES buffer. The centrifugation and resuspension was repeated 5 times.

2.8. Oxidative Stability Test

In a centrifuge filter, 0.5 mL of the 211At-AuNP dispersion was mixed with aq. sodium
hypochlorite (0.25 mL, 6–14% active Cl2). This mixture was shaken for 5 min at room
temperature. The color of the solution changed from dark red to colorless and a black
precipitate was formed. To this precipitate, water (2.0 mL) was added and the mixture was
centrifuged for 5 min at 4.4 krpm. The addition of water and centrifugation was repeated
3 times and the washing water phases combined. The activity from the combined water
phases and the activity in the filter were measured on a well counter.

2.9. Serum Stability Test

A mixture of 100 µL of the PEG-coated [211At]AuNPs in HEPES buffer was diluted
with HEPES buffer (600 µL) and mouse serum (300 µL) and was shaken for 4 h at 37 ◦C at
room temperature. After 4 h, MeOH (1 mL) was added and the mixture was shaken for an
additional 5 min. In the next step, DCM (2 mL) was added and the resulting suspension
was shaken for an additional 5 min. The mixture was centrifuged for 10 min at 4.4 krpm,
resulting in a phase separation between the organic and the aqueous phases, separated by a
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“cake” of agglomerated proteins and serum components. The fractions were separated and
each fraction was individually washed twice by adding 2 mL of water to the organic phase,
2.0 mL of DCM to the aqueous phase and 2 mL water to the “protein-cake”. The combined
organic phase, the combined aqueous phase, and the protein cake were measured on a
well counter.

2.10. ICP Determination of Gold Content for the Serum Stability Test

Each phase obtained from the procedure described above was dried at 50 ◦C, overnight.
To each fraction was then added aq. HNO3 (500 µL, 16 M), aq. H2O2 (300 µL, 10 M), and
aq. HCl (50 µL, 11 M). The solutions were stirred for 20 h at 65 ◦C. The mixtures were then
diluted with aq. HCl (14.2 mL, 3.7 M). A standard curve for gold was prepared, and each
sample was measure by ICP-OES.

2.11. In Vivo Stability Study

The PEG-coated 2nd gen 211At-AuNPs were concentrated using an Amicon®® cen-
trifugal filter device (4 min, 4.4 krpm) and then washed 3 times with HEPES buffer. Finally,
they were resuspended in HEPES buffer to achieve a final radioactivity concentration of
8–9 MBq/mL. For the free 211At control, HEPES buffer was added to dry 211At, dissolving
it to the same concentration. The biodistribution of all samples was evaluated in healthy
female Balb/C nu/nu mice (Janvier Labs, France), 4–6 weeks of age. This study was
approved by the Gothenburg Ethical Committee for Animal Research (Ethical permit: 283-
2011), and all animals were maintained as regulated by the Swedish Animal Welfare Agency.
The mice were housed under sterile conditions at 22 ◦C with access to food and water ad
libitum. Approximately 0.8–0.9 MBq of 211At in 100 µL was intravenously injected through
the tail vein in a total of 18 mice. The mice were sacrificed at 21 h after injection. Blood
was collected by cardiac puncture and tissues including thyroid/throat, salivary glands,
heart, lungs, liver, stomach, kidneys, and spleen were excised. The tissues were weighed
and 211At activity was measured on a NaI(Tl) γ-counter (Wizard 1480, Wallac, Finland).
Results were expressed as the percent of injected dose per gram of organ (% ID/g).

3. Results and Discussion
3.1. Gold Nanoparticle Preparation

AuNPs with surface adsorbed 211At were prepared by three different methods (Figure 2).
This resulted in Group A: Direct 211At adsorption onto PEG-precoated AuNPs, Group B:
Direct 211At adsorption onto citrate-stabilized AuNPs, followed by PEG-coating, and Group C:
An embedding procedure for doping AuNPs with 211At, inspired by our previous work [23].

A modified version of the Turkevich–Frens method [24,25] was employed for AuNP
synthesis. Hydrogen-tetrachloroaurate(III) trihydrate (HAuCl4·3H2O) was reduced by
adding aqueous sodium citrate at 80 ◦C, forming the first generation (1st gen, 1–2) AuNPs
(16.3 ± 1.3 nm). Besides reducing the gold, citrate also stabilizes the formed AuNPs in aque-
ous dispersion by electrostatic interaction with the AuNP surface. Second generation (2nd
gen, 3–8) AuNPs were formed by heating 1st gen AuNPs (1) to 80 ◦C with addition of aque-
ous HAuCl4 over 10 min (28.5 ± 3.3 nm). To improve the biocompatibility of the AuNPs,
the surface-bound citrate was displaced by a neutrally-charged HS-polyethylenglycol-5000
(HS-PEG5000) coating to yield 4, 7, and 8. Such a coating is known to provide plasma
circulation half-lives in mice of approximately 10–20 h [23,26]. PEG forms a hydrated
corona around the AuNPs, which sterically impedes interaction with other blood compo-
nents [27,28]. Successful coating with HS-PEG5000 was confirmed by an increase in the
hydrodynamic diameter from 28.5 ± 3.3 nm to 51.6 ± 3.9 nm, as measured by dynamic
light scattering (DLS) (Figure 3A), and a decrease in surface charge from −19.9 ± 2.1 mV
to −11.6 ± 1.4 mV (Figure 3C).
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Figure 3. Characterization of AuNPs. Groups A, B and C are shown, along with 2nd gen citrate-
stabilized AuNPs, and 1st gen citrate-stabilized AuNPs. (A) Mean diameter by intensity of the AuNPs,
measured by DLS (n = 3). (B) Polydispersity indices (PDIs) derived from the DLS measurements
(n = 3). (C) Zeta potentials measured by DLS (n = 2). (D) UV-VIS absorption spectra of 1st and
2nd generation citrate-stabilized AuNPs. (E) Transmission electron microscopy (TEM) pictures of
1st generation citrate-stabilized AuNPs (top) and second generation HS-PEG5000-coated AuNPs
(bottom). In the bottom-right image, a pale corona around the AuNPs indicates successful PEG
coating. By analyzing the TEM-images, an average size of 11.9 nm ± 0.8 nm (n = 113) for the first
generation citrate-stabilized AuNPs (1) was found and for the second generation HS-PEG5000-coated
AuNPs (4), an average size of 25.3 nm ± 2.1 nm (n = 201) was found.

3.2. Radiolabeling with 211At

Three different 2nd gen HS-PEG5000-coated 211At-AuNPs were prepared by different
routes, resulting in Groups A, B and C. The synthesis of all groups started from 1st gen
citrate-stabilized AuNPs (1). In Group A and Group B, a second layer of gold was added
directly onto the 1st gen AuNPs, which led to an increase in size, as observed by DLS and
transmission electron microscopy (TEM) (Figure 3A,E). Groups A and B differed in the
stage at which 211At was added. In Group A, 211At was added after PEG-coating, while
in Group B, 211At was added first, after which the AuNPs were coated with PEG. This
differentiation was chosen to investigate whether stable surface labeling with 211At could
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be achieved both before and after PEG coating. In Group C, an embedding procedure was
attempted [22,29]. In this group, 211At was added to the 1st gen citrate-stabilized AuNPs
to give, followed by the addition of a 2nd layer of gold, as described above. This was
to investigate whether 211At can be stably trapped inside AuNPs, as we have previously
shown for copper-64 [22]. After the radiolabeling procedures were carried out, the resulting
211At-AuNPs were purified and washed on centrifuge filters with pore sizes of 30 kDa. The
combined aqueous filtrates were collected and the 211At content in these and in the purified
211At-AuNPs were quantified. In all three groups, >99% of the radioactivity remained with
the AuNPs, demonstrating highly efficient radiolabeling and a quantitative radiochemical
yield (RCY).

3.3. Stability Evaluation by Oxidative Challenge

The stability of the 211At radiolabel for each group was first evaluated chemically.
Sodium hypochlorite, a strong oxidant, was added to the 211At-AuNPs. This treatment was
intended to break the Au-At association on the surface of the 211At-AuNPs, by oxidizing
the 211At. Upon addition of the oxidant, AuNP agglomeration was immediately observed
as the appearance changed from a dark red dispersion to black precipitate suspended in
a transparent, colorless liquid. This was likely caused by oxidation of the thiols binding
the coating to the AuNPs, resulting in non-stabilized AuNPs. The AuNP precipitate was
isolated on a centrifuge filter and the activity in both fractions was measured in a dose
calibrator. 211At not associated with the AuNPs would pass through and appear in the
filtrate. This was confirmed by a control experiment in which AuNPs were excluded, where
all activity (3.8 MBq of 211At) passed through the filter. For Group C, the embedding group,
51.2 ± 5.2% of the activity was associated with the AuNP precipitate. A similar result
was observed for Group A (48.9 ± 7.6%) and Group B (47.8 ± 8.2%), with no significant
difference between the three groups. This led to the conclusion that all three methods
resulted in 211At-radiolabels of similar stability. Accordingly, the embedding (Group C)
did not appear to have resulted in 211At stably trapped inside the AuNPs in a yield that
would provide a superior stability towards challenge by oxidation, as compared to surface
adsorption.

3.4. Stability Evaluation in Serum

The radiolabel stability of the three groups was further evaluated by incubation in
mouse serum over 4 h at 37 ◦C, with free 211At also incubated as control (Figure 4). To
better complement the results obtained by Bilewicz and co-workers [19], a new method
was developed for evaluating potential 211At loss from the AuNPs. After incubation in
serum, methanol (MeOH) and dichloromethane (DCM) were added to precipitate the
serum components. Upon centrifugation of the resulting heterogeneous mixtures, a clear
segregation of biological material into a middle layer was achieved (Figure 4B). This created
a three-phase system consisting of polar medium (“aqueous”), apolar medium (“DCM”)
and serum component precipitate (“protein cake”). Both the bottom DCM phase and the
protein cake were red-colored, indicating the presence of AuNPs in these two phases,
whereas the aqueous phase was colorless. This was confirmed in a control experiment
where the gold content in all three fractions was measured by inductively-coupled plasma
atomic emission spectroscopy (ICP-OES) (Figure 4A); 56.3 ± 3.5% of the gold was found
in the “protein-cake”, 41.4 ± 1.9% in the organic phase and 2.3 ± 2.6% in the aqueous
phase. We consider it likely that the presence of AuNPs in the protein cake was due to
co-precipitation with serum components. The 211At-AuNPs were primarily found in the
bottom DCM phase [30]. In contrast, free 211At was located almost exclusively in the
top aqueous phase, as was confirmed in a control experiment in which free 211At was
incubated with mouse serum. Here, 98.8 ± 1.1% of the activity was found in the aqueous
phase (Figure 4A). This also showed that when free 211At is added to serum, it does not
associate with proteins, as negligible activity was found in the protein-cake. For the 211At-
AuNP Groups A–C, the opposite was observed. Over 95% of the 211At was found in the
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combined AuNP-containing phases (“protein cake” and “DCM”). As free 211At in the
control experiment did not associate with these two phases to any significant extent, it
was concluded that >95% of the added activity remained on the 211At-AuNPs in all three
groups and that the 211At-radiolabel was highly stable in serum.
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3.5. In Vivo Stability Evaluation in Mice

The in vivo stability of the 211At-radiolabel was investigated for Group B–C. This was
carried out in healthy Balb/c mice, through quantification of the biodistribution by ex vivo
well-counting of key organs and tissues (Figure 5). Groups B and C were chosen since the
preceding experiments described above had shown no difference between Groups A and
B, and we desired to investigate whether embedding (Group C) provided an advantage
in vivo that had not been detected in our in vitro evaluation. An activity of 0.8–0.9 MBq
was administered intravenously in all cases; 21 h post-injection, the mice were sacrificed,
and organs were resected, weighed, and the 211At-activities measured. 211At-AuNP Groups
B and C were compared statistically to the control group of free 211At in HEPES-buffer, via
a one-way ANOVA with post hoc Tukey’s test (Figure 5).

A pronounced and generally statistically significant difference between the free 211At
and the two 211At-AuNP groups was observed. The biodistribution of free 211At was
comparable to previously reported data [31], with pronounced accumulation occurring
primarily in the thyroid (10.0 ± 1.7% ID/g) and stomach (9.3 ± 1.9% ID/g). Around 3%
ID/g was detected in lungs, salivary glands and spleen. The remaining activity is likely
to have been excreted or located to un-analyzed tissues. In contrast, Groups B and C
showed limited accumulation in the thyroid, which in both cases was highly significantly
different from free 211At, at 3.7 ± 0.5% ID/g (p = 0.011) and 4.2 ± 1.1% ID/g (p = 0.015),
respectively. A similar difference was observed for stomach, with Groups B and C showing
3.2 ± 0.7% ID/g (p = 0.024) and 4.5 ± 1.3% ID/g (p = 0.075), respectively. Accordingly, the
two 211At-AuNP groups exhibited low uptake in the two hallmark accumulation tissues of
free 211At, testifying to a high stability of the 211At-radiolabel.
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of the biodistribution of AuNPs with a similar size (73 ± 6 nm) and the same coating materials
(HS-PEG5000) were included [23]. The data were analyzed by a one-way ANOVA followed by a
Tukey’s multiple comparison test with the following significance thresholds (*) p > 0.3, (**) p > 0.15,
(***) p < 0.025.

It should be noted that the small but detectable presence of 211At-AuNPs observed
in thyroid and stomach for Groups B and C could be due to perfusion of these organs
by 211At-AuNP-containing blood. A substantial difference was observed in the blood
concentration at 21 h between the two 211AuNP groups and free 211At, with 8.9 ± 4.6%
ID/g (Group B) and 6.9 ± 1.9% ID/g (Group C), compared to a very low 0.8 ± 0.1% ID/g
for the free 211At. Accordingly, AuNP-bound 211At was significantly longer circulating than
free 211At, suggesting that 211At bound to AuNPs in this way is stable in circulation. Due
to variation in the data, blood content differences were not statistically different, however.
PEG-coated AuNPs are expected to circulate long enough for an appreciable amount to be
present in blood after 21 h. For reference, data from a previous study [23] has been included
in Figure 5, showing typically observed ex vivo biodistribution data for this size range of
AuNPs, in this case, obtained 24 h post-injection, with blood circulation still present at this
time (2.8% ID/g).

In Groups B and C, the majority of the 211At was found in the liver and the spleen,
which is consistent with generally observed nanoparticle biodistribution, as observed
from the reference data included in Figure 5 and general literature [23,32]. In Groups B
and C, 55.0 ± 16.1% ID/g and 39.4 ± 16.0% ID/g accumulated in the liver, compared
to very low uptake of free 211At at 1.6 ± 0.2% ID/g. Similarly, 61.8 ± 14.1% ID/g and
37.3 ± 7.7% ID/g accumulated in the spleen, respectively, with similarly low uptake of free
211At at 3.1 ± 0.6% ID/g. This data also supports the conclusion that surface adsorbed 211At
on AuNPs follows the general biodistribution of nanoparticles, and is therefore of high
stability in circulation. In addition, liver and spleen uptake of nanoparticles is mediated
by macrophage phagocytosis [33] and 211At is considered non-residualizing [9,34]. This
means that if 211At detached from the nanoparticles during macrophage phagocytosis, it
would exhibit free 211At behavior upon excretion from macrophages and therefore lead to
thyroid and stomach accumulation. Since liver and spleen uptake is preserved at 21 h, this
further attests to the excellent stability of the surface-adsorbed 211At.
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Between the two 211At-AuNP groups themselves (Group B and Group C), no substan-
tial differences were observed. This supports our preceding stability evaluations, serum
and oxidative challenge, in that no difference between embedding of 211At (Group C)
versus surface adsorption (Groups A and B) exists. Both 211At-AuNP types showed high
in vivo stability, irrespective of whether an embedding procedure had been carried out or
not. Further, since the evaluation by oxidative challenge showed only 52 ± 5.2% associated
with the AuNPs, we conclude that the embedding procedure was not successful and hy-
pothesize that surface-adsorbed 211At continues to move with and stay on the surface as
more gold is added onto the AuNPs. In turn, however, embedding does not appear to be a
prerequisite to obtain high in vivo stability, as this is also observed with surface adsorption.

Accordingly, our results demonstrate a high general stability of 211At that is surface-
adsorbed to AuNP surfaces. AuNPs are a versatile drug delivery platform with significant
potential. The advantages of AuNPs primarily rest in their biocompatibility, their facile
surface functionalization with thiol-bearing derivatives, and the fact that they can be
prepared in a wide range of sizes (ca. 2–70 nm) and shapes [35–37]. Functionalization
with targeting vectors further allows for the specific receptor targeting to desired cells and
surface structures, with cancer cells being of particular relevance [38,39]. The results we
present here demonstrate the potential in using 211At with AuNP-based drug delivery
systems for targeted alpha therapy (TAT). A particular advantage with TAT is that no drug
release is required. Instead, surface adsorbed 211At will emit alpha particles that can strike
and kill targeted cancer cells from a distance. It should be noted that the range in gold
of alpha particles emitted from 211At is about 10 µm (own calculations). This means that
the alpha particles will not be absorbed by the AuNPs themselves, even if they traverse it
along the full length of their diameter.

4. Conclusions

In this study, we report high in vitro and in vivo stability of 211At attached to AuNPs
by surface adsorption. This was achieved by adding 211At to preformed AuNPs, giving
excellent radiochemical yields of >99%. The resulting 211At-radiolabel was partly stable
(48.3 ± 3.2%) under very harsh oxidative conditions, while completely stable in serum for
up to four hours (>95%). Finally, we demonstrated high in vivo stability of the surface-
adsorbed 211At in healthy mice for up to 21 h. Due to the facile and non-specific radio-
labeling method, the surface of the 211At-labeled AuNPs is likely to be modifiable with
tumor- targeting vectors. This method for labeling AuNPs with 211At therefore appears to
be relevant and useful as a delivery system for 211At in targeted radionuclide therapy.
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