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Abstract: Cloud-computing capabilities have revolutionized the remote processing of exploding
volumes of healthcare data. However, cloud-based analytics capabilities are saddled with a lack of
context-awareness and unnecessary access latency issues as data are processed and stored in remote
servers. The emerging network infrastructure tier of fog computing can reduce expensive latency by
bringing storage, processing, and networking closer to sensor nodes. Due to the growing variety of
medical data and service types, there is a crucial need for efficient and secure architecture for sensor-
based health-monitoring devices connected to fog nodes. In this paper, we present publish/subscribe
and interest/resource-based non-DHT-based peer-to-peer (P2P) RC-based architecture for resource
discovery. The publish/subscribe communication model provides a scalable way to handle large
volumes of data and messages in real time, while allowing fine-grained access control to messages,
thus enabling heightened security. Our two-level overlay network consists of (1) a transit ring
containing group-heads representing a particular resource type, and (2) a completely connected
group of peers. Our theoretical analysis shows that our search latency is independent of the number
of peers. Additionally, the complexity of the intra-group data-lookup protocol is constant, and the
complexity of the inter-group data lookup is O(n), where n is the total number of resource types
present in the network. Overall, it therefore allows the system to handle large data throughput in a
flexible, cost-effective, and secure way for medical IoT systems.

Keywords: Healthcare 4.0; fog computing; IoT devices; peer-to-peer network; non-DHT-based;
interest/resource-based P2P

1. Introduction

In the past two decades, electronic gadgets have become an integral part of human life,
with the incorporation of artificial intelligence and machine learning making them “smart”
devices. One area where this is particularly relevant is in healthcare, where smart devices
are being used for health monitoring, diagnosis, and even treatment. The interconnection
of these medical devices, known as the Internet of Medical Things (IoMT), allows remote
monitoring capabilities with fewer hospital visits for patients. The market for smart
health devices is expected to grow at an average rate of 16.2% between 2020 and 2027.
Advancements in the IoMT have made preliminary diagnostics possible at the patient’s
home, shifting healthcare from a hospital-centric to a home-centric service.

The introduction of Healthcare 4.0 standards in the healthcare industry has led to the
integration of various technologies such as the Internet of Things (IoT), big data analysis,
artificial intelligence (AI), robotics, continuous data sensing, cloud computing, and real-time
actuators to create digital healthcare products, technologies, services, and enterprises. This
shift in the healthcare industry requires various applications to meet the dynamic demands
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of the industry, and involves procuring and developing well-equipped, efficient, concise,
and cost-effective solutions to the problems of the healthcare industry. These technologies
are leading towards revolutionizing healthcare systems, enabling them to provide real-time
support to patients, aiming at the early prediction and prevention of diseases.

Despite the advantages, there are significant challenges associated with this paradigm
shift. The architecture of healthcare applications and devices that rely on sensors collecting
data on clouds can be constrained by delays in communication between sensors and clouds,
and the high cost of storing and transferring large amounts of data on cloud-based storage.
Additionally, the data associated with these healthcare applications may be time-sensitive,
along with privacy concerns, especially for storage with third-party cloud service providers.
Furthermore, network failures or congestion can disrupt communication between sensors
and cloud services, which could risk a patient’s life. The security of personal health
information has previously been addressed in several studies [1–4].

To solve these latency, privacy, and scalability issues, fog computing combined with
cloud-based data analytics for healthcare data has become a reasonable solution. Fog
computing acts as an interface between IoT sensors/actuators and cloud services, and uses
edge devices/networking devices with limited resources that may limit their ability to
analyze large datasets and add to processing time. It leverages a distributed data-processing
architecture closer to the sensor nodes, significantly reducing latency, where complex jobs
are divided into simpler ones to reduce processing time and efficiently analyze the data
received. However, fog computing performs initial processing on sensed data by bringing
a complete or partial set of cloud services to the edge/fog devices.

Due to resource constraints, not every fog device can render complete services. There-
fore, a single cloud-based service or API may be located at a single edge device or dis-
tributed among different devices. This placement of services ensures prompt data analy-
sis/processing at nearby nodes. This approach helps to lower the latency, enhance security,
and reduce the overall cost of data processing and storage. In summary, fog computing
is a way to bring data processing and analysis closer to the source, using edge devices
and networking devices with limited resources. This allows for faster data analysis and a
reduction in the amount of data stored in the cloud, and can help overcome the challenges
of resource discovery and management in the healthcare industry. However, there are
still challenges that need to be addressed, such as ensuring the availability of services and
self-reorganization infrastructure. These can be solved using event-based publish/subscribe
systems and P2P overlays based on Distributed Hash Tables (DHTs) [5].

In this context, we state now what is meant by a DHT-based system. A distributed
hash table (DHT) is a class of decentralized distributed system that provides a lookup
service similar to a hash table; (key, value) pairs are stored in a DHT and any node in
the system can find the value associated with a given key efficiently. Responsibility for
maintaining the mapping from keys to values is distributed among all nodes in the system
in such a way that a change in the set of participants does not cause any major disruption.
This is why DHT can scale to very large numbers of nodes and can efficiently handle
node arrivals, departures, and failures. Any system designed based on the idea that DHT
is known as a structured system. There exists another type of decentralized distributed
structured system that does not use the idea of DHT; one such system is known as a Residue
Class (RC)-based system. RC-based architecture is covered in detail in the next section.

To fulfill the demands for scalability and flexibility, event-based publish/subscribe
systems contain a variety of features. Three main parts make up a publish/subscribe
system: a publisher, a subscriber, and an event-notification service or broker. A registered event
triggers the publisher to notify the broker, which is the workhorse for the entire architecture.
Subscribers can sign up with the broker by indicating their interest in a certain category
of events. To the interested subscribers, the broker asynchronously distributes the events
produced by the publisher. Decoupling between other parts of these systems is introduced
via the use of an intermediary broker. In terms of synchronization, time, and location, the
publishers and subscribers are unrelated [6]. The publish/subscribe architecture allows
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for decoupling between publishers and subscribers, making the system more flexible.
Publishers do not need to interact with each subscriber individually, and subscribers do
not need to check for new events periodically. This type of architecture is well suited
for large-scale, many-to-many interactions, and allows for the easy integration of new
components. Additionally, the system is also flexible, as a publisher of one or more events
can also act as a subscriber for other events, and vice versa.

The literature suggests a variety of publish/subscribe implementation designs. These
are peer-to-peer, distributed, and centralized. A centralized broker is suggested by cen-
tralized solutions for event distribution. However, when the number of events rises, it
experiences inherent scaling problems. The scalability issues of a centralized method are
solved by distributed infrastructure. This is appropriate for the quick and effective distribu-
tion of temporary data. Peer-to-peer infrastructure, the third option, offers greater flexibility,
scalability, and adaptability. Peers are utilized in this instance to store subscriptions and
route events to the correct subscribers.

Due to its flexibility and scalability, peer-to-peer (P2P) overlay networks are preferable
solutions for large-scale applications. Mobile networks can use P2P system principles.
P2P systems treat each node equally and directly promote resource sharing between these
nodes. As a result, the system is more resilient because the loss of one node will not affect
the others. P2P networks also can accommodate users’ dynamic nature and are economical
since resources are shared. They may be divided into two types of systems: structured and
unstructured. Performance problems plague unstructured peer-to-peer systems such as
Kaaza [7] and Gnutella [8]. Distributed hash tables (DHTs), which offer remarkable load
balancing, search efficiency, minimal overhead, and fault tolerance under high network
dynamics, are typically used in structured peer-to-peer networks. Therefore, it is thought
that DHT is a preferable option for implementing a publish-subscribe system. Content
Addressable Networks (CAN) [9], Chord [10], Pastry [11], and Tapestry [12] are a few
examples of well-known DHT-based peer-to-peer systems.

Application-layer implementations are the only ones allowed for traditional pub-
lish/subscribe systems. These systems have several difficulties, including a lack of self-
organization, the absence of effective matching algorithms, and scale problems. Imple-
menting a publish/subscribe system over a P2P overlay network can address these innate
problems. The literature has some implementations of publish-subscribe systems based
on DHT, including PastryStrings [13], Scribe [14], Meghdoot [15], and Hermes [16]. For
publish-subscribe applications, each of them uses a separate DHT.

DHTs incur operational costs due to the churn issue, which demands a workaround
for delivering a reliable data query service. Several significant research [13,15,17–19] have
addressed creating hybrid systems to combine the benefits of both structured and un-
structured designs with significant trade-offs. An interest/resource-based non-DHT-based
structural design technique has also received a lot of attention [20,21]. Alongside attempt-
ing to lessen the complexity of churn handling, it offers the benefits of DHT-based systems.
In the current study, we propose a publish/subscribe and interest/resource-based non-DHT
fog-computing architecture that enables effective resource sharing for sensor data analy-
sis. For the design of the architecture, we took into account the interest/resource-based
non-DHT-based architecture proposed in [20,21].

Our Contribution

Our main objective is to show the superiority of our publish/subscribe and interest/resource-
based non-DHT fog-computing architecture over publish/subscribe DHT-based architectures from
the viewpoints of search latency and data-lookup complexity. We have considered a number
theoretic approach to building the architecture. The following facts support our decision to
consider such an architecture: (1) In contrast to any structured DHT-based network, our overlay
network’s search latency is independent of the total number of peers present, (2) the complexity
of the intra-group data-lookup protocol is constant, while the complexity of the inter-group
data lookup is O(n), where n is the total number of resources types present in the network.
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The organization of the paper is as follows. In Section 2, we talk about the difference
between DHT-based and RC-based architecture, and some related preliminaries of the
proposed RC-based architecture. In Section 3, we present the Publish/Subscribe and RC-
Based P2P Architecture for Fog Computing, the data-lookup protocols. In Section 4 we
describe the comparison of our proposed architecture and its performance with some noted
DHT-based systems. Finally, Section 5 concludes.

2. Distributed Hash Table P2P vs. RC-Based P2P

In this section, we go over the functionality, benefits, and challenges of DHT-based
and Residue Class (RC)-based P2P architecture. This section explains why the RC-based
P2P model was selected for P2P fog computing as opposed to alternative DHT-based P2P
models. We also present theoretical results in support of RC-based P2P architecture for the
resource/interest paradigm.

2.1. DHT-Based P2P

The term “structured P2P systems” refers to all DHT-based P2P systems. In a structured
peer-to-peer system, the data items are given keys, and a graph is created that connects each
key to the node that holds the appropriate data. There are several P2P algorithms based on
DHT, including Chord [10], Can [9], Pastry [11], Tapestry [12], and others. Distributed Hash
Tables (DHTs) must first be understood before we can examine P2P that is DHT-based. A
unique data structure known as a hash table may map keys to values. It utilizes a unique
algorithm known as the hash function, which accepts the original key as input and produces a
key that is the distinct numerical representation of the original key. The value that corresponds
to the number key is mapped. As a result, the hash table stores data as (key, value) pairs
among millions of peers using a distributed hash table (DHT). Every peer can use a key to
query the database, which then returns the key’s value. A query is resolved in a DHT-based
peer-to-peer system via a limited number of message exchanges among peers. Just a select
few of the other peers—not all of them—are known to each peer.

DHT also employs a few churn-management techniques. All the peers have organized
themselves into a ring in a circular DHT (like a Chord). A pair of (key, value) values and a
distinct ID from the ID space are given to each peer. Moreover, only the peer’s immediate
predecessor and successor are known to each peer (and have IP addresses). When a peer
inside the circular DHT receives a query message asking for information about a value
connected to a certain key, it first determines if it oversees the value of the key being
requested. If it does, it unicasts the information to the peer that originated the inquiry
message. If not, it would, depending on the key, pass the query message to either its successor
or predecessor. In this manner, a query message is sent through peers in a circular DHT until
a query hit is made. Since n is the total number of peers in the network, we can state that the
time complexity for a search in DHT-based P2P is O(log n). Nevertheless, maintaining DHT
and dealing with the churn issue is a difficult process that demands a lot of work.

2.2. RC-Based P2P Architecture [20]

Definition 1. A resource is defined as a tuple of the characters < Ri, V >, where Ri stands for a
resource’s type and V for its value. Please note that a resource might have several values.

For illustration, let V symbolize a specific actor and Ri denote the resource category
“movies”. Therefore, < Ri, V > represents movies (some or all) acted by a particular actor V.

Definition 2. In a peer-to-peer system with n different resource kinds, let S be the set of all peers
(i.e., n distinct common resources). Then S = {Ci}, 0 ≤ i ≤ n − 1, where Ci represents the
subset of peers that have the same resource type Ri. This subset Ci is referred to as group i in this
study. Furthermore, we presume that Ch

i is the first peer among the peers in each group Ci to join
the system. The group-head of group Ci is referred to as Ch

i . The following two − level overlay
architecture as shown in Figure 1 has been proposed in [20].
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Figure 1. A two − level RC-based structured P2P architecture with n distinct resource types.

1. At level 1, there is a ring network consisting of the peers Ci (0 ≤ i ≤ n− 1). The ring
has n peers, which corresponds to the number of different resource kinds. This ring
network is known as a transit ring since it is utilized for quick data search.

2. There are n totally linked networks (groups) of peers at level 2. Each of these groups,
say Gi, is made up of the peers of the subset CRi , 0 ≤ i ≤ n− 1, in such a way that all
of the peers (∈CRi ) are logically connected and the network has a diameter of 1. Each
Gi has a group-head Ch

i that connects it to the transit ring network.
3. Each peer on the transit ring network maintains a global resource table (GRT) that

consists of n number of tuples. GRT contains one tuple per group and each tuple is
of the form <Group-Head Logical address, IP address>, where Group-Head Logical
Address refers to the architecture. Additionally, Resource Code is the same as the
group-head logical address.

4. Each group-head Ch
i also maintains a local resource table (LRT) that consists of k

number of tuples, where k is equal to the number of members present in that group
Gi. LRT contains a tuple of the form <Group member Logical address, IP address>.
This LRT is also maintained by all the group-members of Gi.

5. Any communication between a peer Ci ∈ group Gx and Cj ∈ group Gy takes place
only through the corresponding group-heads Ch

x and Ch
y .

2.2.1. Relevant Properties of Modular Arithmetic

Consider the set Sn of non-negative integers less than n, where Sn = {0, 1, 2, . . . (n − 1)}.
This is known as the residue set or residue classes (mod n). In other words, each integer in
Sn represents a residue class (RC). These residue classes are denoted by the symbols [0], [1],
[2], . . . , [n − 1], where [r] = {a: a is an integer, a ≡ r (mod n)}.

For example, for n = 3, the classes are:
[0] = {. . . , −6, −3, 0, 3, 6, . . . }
[1] = {. . . , −5, −2, 1, 4, 7, . . . }
[2] = {. . . , −4, −1, 2, 5, 8, . . . }
Thus, any class r (mod n) of Sn can be written as follows:
[r] = {. . . , (r − 2n), (r − n), r, (r + n), (r + 2n), . . . , (r + (j − 1).n), (r + j.n), (r + (j + 1).n), . . . }
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A few relevant properties of the residue class are stated below.

Lemma 1. Any two numbers of any class r of Sn are mutually congruent.

Proof. Let us consider any two numbers N′ and N′′ of class r. These numbers can be written as:

N′ ≡ r(modn); therefore,(N′ − r)/n = an integer, say I′ (1)

N′′ ≡ r(modn); therefore,(N′′ − r)/n = an integer, say I′′ (2)

Using (1) and (2) we obtain the following,

(N′ − N′′)/n = ((N′ − r)− (N′′ − r))/n = I′ − I′′ = an integer. (3)

Therefore, N′ is congruent to N′′; that is, N′ ≡ N′′ (mod n);
Additionally, N′′ ≡ N′ (mod n) because congruence relation (≡) is symmetric. Hence,

the proof.

2.2.2. Assignments of Overlay Addresses

Assume that in a resource/interest-based P2P system, there are n distinct resource
types. Please note that n can be set to an extremely large value a priory to accommo-
date many distinct resource types. Consider the set of all peers in the system given as
S = {CRi } ((0 ≤ i ≤ n− 1)). Additionally, as mentioned earlier, for each subset CRi (i.e.,
group Gi) peer Ci is the first peer with resource type Ri to join the system.

In the suggested overlay architecture [20–22], the positive integers belonging to distinct
classes are utilized to determine the following parameters:

1. Logical addresses of peers in a subset CRi (i.e., group Gi): It will be shown how to
use these addresses to support the claim that all peers (∈Gi) are (logically) directly
linked to one another, producing an overlay network of diameter 1. Each Gi, as used
in graph theory, is a whole graph.

2. Identifying which peers on the transit ring network are neighbors with one another.
3. Identifying each distinct resource type with a unique code.

The assignment of logical addresses to the peers at the two levels and the resources
happen as follows:

1. At level 1, the smallest non-negative number (r) of the residue class r (mod n) of the
residue system, Sn is assigned to each group-head Ch

r of group Gr.
2. At level 2, the group Gr (i.e., the subset CRr ) will be formed by all peers with the

same resource type Rr, with the group-head Ch
r connected to the transit ring network.

Given to each new peer that joins group Gr is the group membership address (r + j.n),
where j is 1, 2, 3 . . . .

3. Resource class Rr possessed by peers in Gr is assigned the code r which is also the
logical address of the group-head Ch

r of group Gr.
4. A corresponding tuple of <Group-Head Logical Address, IP Address> is added to the

global resource table (GRT) each time a new group-head joins.

Remark 1. GRT remains sorted with respect to the logical addresses of the group-heads.

Definition 3. Two peers Ch
i and Ch

j on the ring network are logically linked together if (i + 1) mod
n = j.

Remark 2. The last group-head Ch
n−1 and the first group-head Ch

0 are neighbors based on Definition
3. It justifies that the transit network is a ring.
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Definition 4. Two peers of a group Gr are logically linked together if their assigned logical addresses
are mutually congruent.

Remark 3. The diameter of the transit ring network is n/2.

Lemma 2. Each group Gr forms a complete graph.

Proof. A pair of peers in a group Gr are said to be logically connected by Definition 4,
if their assigned logical addresses are compatible with one another. Additionally, from
Lemma 1, we see that any two numbers of any class r of Sn are mutually congruent. Hence,
every peer has direct logical connectivity with every other peer in the same group Gr. Thus,
the evidence.

2.2.3. Salient Features of Overlay Architecture

We summarize the salient features of this architecture.

1. It is a two − level hierarchical overlay network architecture with a structured network
at each level.

2. A group-head address would be identical to the resource type held by the group using
modular arithmetic described in Section 2.2.1.

3. Unlike distributed hash table-based works that are now in use, some of which put a
ring network at the center of their proposed design [10,23], the number of peers on
the ring is equal to the number of different resource kinds.

4. Assume in general that there are already i group-heads (C0, C1, . . . Ci−1) in the ring.
The address i will then be given to the following peer joining the system as the group
leader with resource type i. As an illustration, the sixth group-head joining the system
will have the logical address 5 and the resource type code 5, respectively.

5. The diameter of the transit ring network is n/2. Please note that in any P2P network,
the total number of peers N >> n.

6. In level 2, every overlay network is fully connected, i.e., in terms of graph theory, it is
a full graph made up of the group peers. Its diameter is therefore just 1. The design
provides the lowest feasible search latency inside a group due to its smallest diameter
(in terms of overlay hops).

2.2.4. Fault Tolerance of the Architecture

To achieve fault tolerance, we assume that an existing group-head always saves a
copy of the list of all peers in this group to the peer with the next logical address. In the
architecture, we assume the following fault model. Any peer in any group may be faulty.
First, let us consider that in a group, its group-head becomes faulty. After detection, it will
be replaced by the peer with the next logical address in the group; the logical address of
the faulty group-head now becomes the new logical address of this peer and this peer will
start acting as the new group-head. Therefore, in GRT, only the IP address of this new
group-head will be entered replacing the IP address of the faulty group-head. The new
group-head will unicast the modified GRT to every other group-head. It will also save
a copy of the updated list of peers to the peer with the next logical address. Next, let us
consider that a peer in a group other than the group-head is faulty. All that is required
is to delete the entry of the faulty peer in the list of peers and this will be done by the
group-head; the group-head will save a copy of this updated list to the peer with the next
logical address. It may be noted that in the present research, peer movements in and out of
the architecture (i.e., churn) are not considered because the application may require stable
peers. Therefore, the process of the replacement of a faulty peer may be viewed as if a peer
has left the system (somewhat similar to churn). Please note that the structure of the group
remains a connected network.
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2.2.5. Scalability of the Architecture

It should be observed that in every overlay network, there are very few different resource
kinds n, in comparison to the number of peers. A very large value of n can be chosen during
the design process to handle a very large number of potential resource types, preventing
the risk of having to modify the architecture when new groups are formed (if needed in the
future). If new groups are established in the future with new resource types in the system,
additional residue classes in sequence will be accessible for their addressing. This implies
that if at first there are few resource types present, just the first few residue classes will be
used initially for addressing. As an illustration, suppose that n is originally set to 1000. There
are 1000 potential residue classes, starting with [0], [1], [2], [4], [5], . . . , [999]. The residue
classes [0], [1], and [2] will be used to address the peers in the three unique groups if there are
originally only three groups of peers and three different resource types present. The leftover
classes [3] and [4] will be used to address the peers in the two new groups in order of their
entering the system if later two new groups with two new resource kinds are generated. As
we can see, any group size is unlimited since any residue class may be used to conceptually
address an infinite number of peers that have a shared interest. As a result, there are no
drawbacks to the suggested architecture’s scalability.

2.3. Comparison of Distributed Hash Table P2P vs. RC-Based P2P

As the average number of hops needed for each search in Chord [10] is N/2, where
N is the total number of peers in the system, following the chord is not done since it is
exceedingly inefficient in big peer-to-peer systems. According to [20], the average number
of hops needed for each search (on the ring network) is n/2, where n is the total number of
different resources. Because there are often more peers than there are different resource
categories or n, a search along the transit ring network in [20] can be extremely effective.
The difficulty involved in data lookup is a function of the number of peers N in the
system in Chord [10] and other structured P2P systems [9,11,12], but it is a function of
the number of different resource categories n in the proposed design [20]. The important
thing to note is that the search procedure has been made easy and effective using the
same code to indicate a resource type Ri and the related group-head Ci. As a result,
the time complexity for data search in the architecture shown in [20] is constrained by
(1 + n

2 ). Table 1 shows the data search difficulty of both [20] strategy and other significant
already-existing DHT-based systems.

Table 1. Data Lookup: Complexity Comparison.

Can Chord Pastry RC-Based

Architecture DHT-based DHT-based DHT-based RC-Based

Lookup Protocol

{Key, value} pairs to
map a point P in the

coordinate space using
uniform hash functions

Matching Key and
NodeID

Matching Key and
prefix in NodeID

Inter-Group: Routing
through group heads

Intra-Group:
Complete Graph

Parameters
N number of peers in

the network, d-number
of dimensions

N number of peers in
the network

N number of peers in
the network, b-number
of bits (B = 2b) use for

the base of the
chosen identifier

n = Number of distinct
resource types,

N-number of peers in
the network, n << N

Lookup Performance O(dN1/d) O(logN) OB(logN)
Inter-Group: O(n),
Intra-Group: O(1)

3. Publish/Subscribe and RC-Based P2P Architecture for Fog Computing

In this section, we suggest overlaying the actual fog nodes with two networking in-
frastructures to provide effective resource discovery. For our Healthcare 4.0 fog-computing
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architecture, we have made the following modifications described below to employ the
RC-based p2p architecture mentioned in Section 2.2.

First, the network engineer organizes the heterogeneous network in the form of groups
according to meaningful range of computing power, for example, lower group logical address
can cater to nodes with 1–2 cores and <256 MB RAM, whereas higher group logical address
can cater to nodes with higher range can be 16–32 cores with a few GB RAM. This essentially
refers to the capacity to complete the necessary operations and store the results. Assigning
the logical address and the number of groups is at the discretion of the designer based on the
application needs. This implies that the logical address value is not representative of the
abstract value for the computation capacity i.e., for example, group C0 has no compute cores
never happens. This current scheme is a deviation from the prior work on interest-based
group assignments. The range allows the heterogeneous network to accommodate minor
changes in the group’s needs. However, if it changes drastically, then the node will inform
this information to its group-head, who will refer to the GRT and place the node in the
group with the respective computing range.

Second, to incorporate this concept of peer computing power changing drastically and
making data lookup efficient, we have included another column in the GRT which represent
the computing range for each of the groups defined in our RC-based fog-computing archi-
tecture. The range i in our proposed architecture represents the resource Ri in the existing
RC-based architecture. An example, let us consider an RC-based p2p fog-computing net-
work with 3 groups, and their respective computing ranges are defined by R0, R1, R2, the
respective GRT table is shown in Table 2. Now if the requested range falls in the boundary
condition, for example between R1 and R2, the request will be forwarded to the group-head
with a higher computing range R2.

Table 2. Global Resource Table (GRT).

Global Resource Table (GRT)

Group-Head Logical Address IP-Address Computing Range

0 172.16.254.1 R0
1 160.15.244.4 R1
2 171.10.230.7 R2

Figure 2 depicts the fundamental architecture of a fog computing-based healthcare
platform. This demonstrates the existence of a fog controller at the fog-computing layer.
The fog controller can be utilized as the component in charge of gathering data from
the underlying sensor layer. The fog controller will be informed about a group-head
Ch

x logical address and IP address belonging to the RC-based architecture. Once given
the task, it forwards the request to a group-head Ch

x . Ch
x searches for an appropriate fog

node or group of fog nodes to do the required data analysis. Eventually, the output
will be transmitted directly to the sensor layer actuators that are accessible for use or
filtered data may be transferred to the cloud layer for additional processing or storage.
Publish/subscribe and P2P overlays are the two communication paradigms used in our
suggested network architecture.
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Figure 2. Healthcare 4.0: Fog-Computing Architecture.

3.1. PubSub-Based Fog-Computing Framework

For effective resource identification and work allocation, we first suggest using a
publish/subscribe-based (PubSub-Based) communication model. In Figure 3, the proposed
architecture is shown. The utilization of a fog controller serving as an event-notification
agent for fog node p2p architecture is one of the main topics of this article. The fog controller
may be duplicated in this framework to create a fault-tolerant system. The fog nodes in
this architecture are arranged in groups as described earlier.

As mentioned in earlier, the group-heads in this architecture maintain the GRT (global
resource table) containing information about the other group-heads present in the RC-based
architecture, as well as LRT (local resource table) containing information about the other
members in its group. The fog controller will be informed about a group-head Ch

x logical
address and IP address belonging to the RC-based architecture. To make things simple,
it can be the information about the first group-head who has joined the architecture Ch

0 ,
but again it can be any group-head belonging to the RC-based architecture. Additionally,
the sensors that are serving as publishers provide the controller. Based on the sensor
releasing the data, the fog controller is configured to determine the computing power
needed to process the data. When a publication is available with the controller, it sends
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the advertised job ReRi to the group-head Ch
x . The group-head Ch

x will now follow the
data-lookup protocol defined in Section 3.2.1.

Figure 3. Publish/Subscribe Resource Discovery.

3.2. RC-Based P2P Fog-Computing Architecture

The three-layer architecture of RC-based P2P fog computing consists of client nodes/IoT
devices in the first layer, fog nodes in the second layer, and a cloud node in the third layer.
Between the client nodes/IoT devices and the fog nodes lies the fog controller. To link
fog nodes and enable resource lookup and data transfers between them, RC-based P2P
fog-computing architecture uses a residue class-based network model as discussed in
Section 2.2. Fog nodes now employ RC-based lookup techniques to find resources and are
connected over P2P. The architecture of RC-based peer-to-peer fog computing is shown
in Figure 4. When a client node requests a resource or piece of data to the fog controller,
based on the data, the fog controller is configured to determine the computing capac-
ity needed ReRi, it forwards the requests to its known group-head Ch

x , the services are
maintained by implementing RC-based lookup protocols. The group-head Ch

x will now
perform the data-lookup protocol in the RC-based architecture. In that case, there are four
different possibilities.

• Scenario 1: The fog node Ch
x itself has ReRi.

• Scenario 2: The fog node who has ReRi is the group member of the group Cx.
• Scenario 3: The fog node who has ReRi is the group-head of another group Ch

y .
• Scenario 4: The fog node who has ReRi is the group member of another group Cy.
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Figure 4. Pub/Sub and RC-Based P2P Fog-Computing Architecture.

3.2.1. RC-Based Lookup Protocol

Assume an RC-based peer-to-peer system with n different computing ranges, let S be
the set of all peers. Then S = {Ci}, (0 ≤ i ≤ n− 1), where Ci represents the subset of peers
that have the computing power within the range Ri. This subset Ci is referred to as group i
in this study. Furthermore, we presume that Ch

i is the first peer among the peers in each
group Ci to join the system. The group-head of group Ci is referred to as Ch

i .
Assume the IoT/client device (Ix) sends some data to the fog controller (FC), based on the

data, the FC is configured to determine the computing capacity needed ReRi. For simplicity,
we have considered that the fog controller FC is informed about the fog node Ch

0 , which
is the group-head of the computing range R0 and also the first one to have joined the RC-
based architecture. FC, after determining the computing capacity required, has forwarded the
advertised job ReRi to Ch

0 . Ch
0 will now perform the lookup service in the RC-based architecture.

Here we present the algorithms for all the scenarios described in Section 3.2.

• Scenario 1 (Section 3.2): The fog node Ch
0 itself has ReRi.

– FC forwards the advertised job ReRi to Ch
0 .

– If ReRi falls in the computing range R0 and the fog node Ch
0 have the resource

ReRi it will provide service to FC.

This scenario is presented in Algorithm 1.
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Algorithm 1 Scenario 1 (Section 3.2): The fog node Ch
0 itself has the resource

1: FC forwards the advertised job ReRi to Ch
0 ;

2: if (ReRi ∈ R0) ∧ Ch
0 possess ReRi then

3: Ch
0 unicasts service to FC;

4: else if Scenario 2 or Scenario 3 or Scenario 4 then
5: Respective Scenario solution
6: else
7: Ch

0 informs FC no one has ReRi;
8: cloud node is contacted by FC for service ReRi;
9: cloud responds with ReRi to FC;

10: end if

Observation 1: The number of hops required for an FC to find a resource in the pro-
posed overlay P2P architecture for Scenario 1 (Section 3.2) is only 2 which is constant.

• Scenario 2 (Section 3.2): The fog node who has ReRi is the group member of the
group of C0.

– FC forwards the advertised job ReRi to Ch
0 .

– Fog node Ch
0 does not have ReRi,

– If ReRi falls in the computing range R0,it will broadcast the advertised message
ReRi in its group C0 using LRT.

– Fog node Fi in C0 who has ReRi will reply with the service to the Ch
0 .

– Ch
0 will reply to FC with the service.

This scenario is presented in Algorithm 2.

Algorithm 2 Scenario 2 (Section 3.2): The fog node that has the resource is the group
member of the group of Cx

1: FC forwards the advertised job ReRi to Ch
0 ;

2: if (ReRi ∈ R0) ∧ Ch
0 does not possess ReRi then

3: Ch
0 broadcast the advertised message ReRi in its group C0 using LRT;

4: if Fi ∈ C0 possess ReRi then
5: Fi unicasts service to Ch

0 ;
6: Ch

0 respond to FC with the service ReRi;
7: else if Scenario 3 or Scenario 4 then
8: Respective Scenario solution
9: else

10: Ch
0 informs FC no one has ReRi;

11: cloud node is contacted by FC for service ReRi;
12: cloud responds with ReRi to FC;
13: end if
14: end if

Observation 2: The number of hops required for an FC to find a resource in the pro-
posed overlay P2P architecture for Scenario 2 (Section 3.2) is only 4 which is constant.

• Scenario 3 (Section 3.2): The fog node that has the resource is the group-head of
another resource type Ch

y .

– FC forwards the advertised job ReRi to Ch
0 .

– Fog node Ch
0 and any Fi ∈ C0 does not have the resource ReRi.

– Ch
0 determines the group-head Ch

y ’s address code from GRT such that ReRi ∈ the
computing range Ry for Ch

y (i = y).
– Ch

0 computes |i− j| = h.
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– Based upon the value of h, it will forward ReRi to its predecessor or its successor.
– Every group-head traversed Ch

i forwards ReRi until i = y.
– If Ch

i has the resource, it will reply with the service to the Ch
0 .

– Ch
0 will reply to the FC with the service.

This scenario is presented in Algorithm 3.

Algorithm 3 Scenario 3 (Section 3.2): The fog node that has the resource is the group-head
of another resource type Ch

y

1: FC forwards the advertised job ReRi to Ch
0 ;

2: if ReRi 6∈ R0 then
3: Ch

0 determines the group-head Ch
y ’s address code from GRT; . ReRi ∈ the

computing range Ry for Ch
y ( i = y)

4: Ch
0 computes |i− j| = h;

5: if h > n/2 then . n = total no. of computing ranges
6: Ch

0 forwards the advertised message ReRi along with Ch
y ’s IP address to its

predecessor Ch
n−1;

7: else
8: Ch

0 forwards the advertised message ReRi along with Ch
y ’s IP address to its

successor Ch
1 ; . Looking for minimum no. of hops along the transit ring network

9: end if
10: All intermediate group-heads Ch

i forwards until i = y . no. of hops along the ring in
the worst case is n / 2

11: if Ch
y possess ReRi then

12: Ch
y unicasts service to Ch

0 ;
13: Ch

0 respond to FC with the service ReRi;
14: else if Scenario 4 then
15: Respective Scenario solution
16: else
17: Ch

0 informs FC no one has ReRi;
18: cloud node is contacted by FC for service ReRi;
19: cloud responds with ReRi to FC;
20: end if
21: end if

Observation 3: The number of hops required for an FC to find a resource in the
proposed overlay P2P architecture for Scenario 3 (Section 3.2) is n + 2, where n is the
total number of computing ranges in the network, the data-lookup complexity is O(n).

• Scenario 4 (Section 3.2): The fog node who has ReRi is the group member another
group Cy.

– FC forwards the advertised job ReRi to Ch
0 .

– Fog node Ch
0 and any Fi ∈ C0 does not have ReRi.

– Ch
0 determines the group-head Ch

y ’s address code from GRT such that ReRi ∈ the
computing range Ry for Ch

y (i = y).
– Ch

0 computes |i− j| = h.
– Based upon the value of h, it will forward ReRi to its predecessor or its successor.
– Every group-head traversed Ch

i forwards ReRi until i = y.
– If Ch

y does not have ReRi it will broadcast the message ReRi in group Cy .
– Fog node Fy in Cy who has ReRi will reply with the service to the Ch

y .
– Ch

y will reply to Ch
0 with the service.

– Ch
0 will reply to FC with the service.
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This scenario is presented in Algorithm 4.

Algorithm 4 Scenario 4 (Section 3.2): The fog node that has ReRi is the group member of
the group of another resource type Cy

1: FC forwards the advertised job ReRi to Ch
0 ;

2: if ReRi 6∈ R0 then
3: Ch

0 determines the group-head Ch
y ’s address code from GRT; . ReRi ∈ the

computing range Ry for Ch
y ( i = y)

4: Ch
0 computes |i− j| = h;

5: if h > n/2 then . n = total no. of computing ranges
6: Ch

0 forwards the advertised message ReRi along with Ch
y ’s IP address to its

predecessor Ch
n−1;

7: else
8: Ch

0 forwards the advertised message ReRi along with Ch
y ’s IP address to its

successor Ch
1 ; . Looking for minimum no. of hops along the transit ring network

9: end if
10: All intermediate group-heads Ch

i forwards until i = y . no. of hops along the ring in
the worst case is n / 2

11: if Ch
y does not possess ReRi then

12: Ch
y broadcast the advertised message ReRi in its group Cy using LRT;

13: if Fy ∈ Cy possess ReRi then
14: Fy unicasts service to Ch

y ;
15: Ch

y unicasts service to Ch
0

16: Ch
0 respond to FC with the service ReRi;

17: else
18: Ch

0 informs FC no one has ReRi;
19: cloud node is contacted by FC for service ReRi;
20: cloud responds with ReRi to FC;
21: end if
22: end if
23: end if

Observation 4: The number of hops required for an FC to find ReRi in the proposed
overlay P2P architecture for Scenario 4 (Section 3.2) is n + 4, where n is the total number
of resources in the network, the data-lookup complexity is O(n).

4. Performance Evaluation

In this section, we discuss the performance of the proposed RC-based Lookup Protocol
Algorithm proposed in Section 3.2.1.

In [5] a DHT-based fog-computing architecture has been proposed for Healthcare 4.0.
Specifically, the authors have taken the example of Chord [10] architecture to solve the
problem. As the average number of hops needed for each search in Chord is N/2, where
N is the total number of peers in the system, following the chord is not suitable since it is
exceedingly inefficient in big peer-to-peer systems.

The complexity of the data-lookup protocol in the current study is constant in the
best-case scenario, i.e., Scenario 1 and 2, and is O(n) as discussed in Section 3.2.1 for the
other scenarios. In contrast to the studies in [5], search latency is independent of the total
number of peers in the network. Because of its much lower search latency, we deduce
that the suggested structured interest-based overlay architecture might be preferred over
non-interest-based structured ones. Here, by interest, we refer to the resources of different
computing ranges as described earlier.

The important thing to note is that the search procedure has been made easy and
effective using the computing ranges to indicate a resource type Ri and the related group-
head Ch

i . In addition, the size of the GRT database is only constrained by the variety of
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computing ranges, which is very small. In actuality, there are many more peers than there
are different computing ranges, and the size of the GRT is independent of the total number
of peers N in the P2P system. The freshly joining group-head will always have the greatest
logical address since GRT expands dynamically as additional group-heads join. Because
GRT is always ordered in relation to the logical addresses of the group-heads, searching
inside it is particularly effective.

Experiments

As we already indicated, the major goal of the current study is to demonstrate how our
interest-based, non-DHT design outperforms DHT-based systems in terms of search latency
and data-lookup complexity. We thus conducted three tests to evaluate the data-lookup
latency on all the scenarios mentioned in Section 3.2.1 in terms of overlay hops of the
RC-based Fog computing p2p architecture with a well-known p2p architecture Chord [10],
in addition to the analytical comparison. Results of the experiments with three different
numbers of distinct resource types are shown in Figures 5–7.

• Scenario 1:

Figure 5. Scenario 1: Chord vs. RC-based.

• Scenario 2:

Figure 6. Scenario 2: Chord vs. RC-based.
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• Scenario 3 and 4:

Figure 7. Scenario 3 and 4: Chord vs. RC-based.

We have taken into account RC-based overlay networks with 10, 15, and 20 different
resource kinds; the number of fog nodes in each of the groups corresponding to the
different computing ranges has steadily risen, culminating in a final system fog node count
of 3× 1011 for all the scenarios. Consider N as the total number of fog nodes in the overlay
network. For Chord [10] the data-lookup latency is O(log2N). The data search latency for
Chord grows with the number of fog nodes in the system, as seen in each picture since
this delay is dependent on the total number of fog nodes N in the system. The data search
latency in the RC-based design, however, is unaffected by the size of any individual group
or the system’s total number of fog nodes N. As a result, the RC-based design will have a
constant data-lookup latency for Scenarios 1 and 2 and n for Scenarios 3 and 4, where n
is the total number of resources n << N, as seen in each of the two images as a straight
line with zero gradients as the number of fog nodes in the system grows. In each of the
two pictures, we can see a considerable reduction in data-lookup latency compared to
Chord [10] due to our suggested design.

5. Conclusions

Healthcare 4.0 heralds a transition in the healthcare sector from manual processes
to decisions based on technology. This change intends to make greater use of patient
experience technology. A variety of IoT-based devices are employed to continually collect
patient health data. Initially, these data were processed in cloud-based data centers. Issues
with latency, privacy, and cost were present in this method. Fog computing has provided a
solution to the problems associated with cloud-based data processing. Fog computing also
has its own difficulties in terms of finding and making use of available resources.

In this study, we introduce resource/computing range-based, RC-based fog computing,
a novel method for constructing a scalable Healthcare 4.0 fog-computing system that
performs data-lookup operations with a high degree of efficiency, therefore lowering
latency and delivering more rapid localized services. Because RC-based fog can handle
greater processing needs locally, there are much fewer requests that must be routed to
the cloud, which effectively saves Internet bandwidth. In the RC-based fog-computing
concept, several cloud service types, including SaaS, PaaS, and IaaS, may be grouped
at various level 2 networks. In our upcoming research, we will take into account the
geographic location parameter to include numerous fog controllers supporting many IoT
devices connecting to various group-heads in the RC-based fog-computing architecture
to offer service. The suggested RC-based fog architecture will be further expanded to
support multi-layer hierarchical Healthcare 4.0 P2P fog structures, and its performance
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will be compared to that of current fog architecture. Additionally, in our immediate future
research we plan to simulate our proposed architecture using the fog simulators such as
IFogSim2 [24] and have real-time data generated to provide the architecture’s effectiveness
in realistic Healthcare 4.0 scenarios.
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