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Abstract: To detect each network attack in an SDN environment, an attack detection method is
proposed based on an analysis of the features of the attack and the change in entropy of each
parameter. Entropy is a parameter used in information theory to express a certain degree of order.
However, with the increasing complexity of networks and the diversity of attack types, existing
studies use a single entropy, which does not discriminate correctly between attacks and normal traffic
and may lead to false positives. In this paper, we propose new state determination standards that
use the normal distribution characteristics of the entropy value at the time which an attack did not
occur, subdivide the normal and abnormal range represented by the entropy value, improving the
accuracy of attack determination. Furthermore, we show the effectiveness of the proposed method
by numerical analysis.
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1. Introduction

In recent years, as sensors become smaller and more energy efficient and networks
become more diverse, the Internet of Things (IoT) [1] is being more widely used in various
fields. As a result of connecting various “things” to the Internet, traffic increases due to the
transmission of real-time data and status confirmation messages, making the composition of
the network increasingly complex. Therefore, flexibility in various network environments
is a challenge in designing new network architectures [2]. Conventional networks cannot
be centrally managed by administrators because routers, switches, firewalls, etc., must
be changed individually when servers or network devices are added or the network
configuration is changed. To solve these problems, the concept of an SDN (software-defined
network), “network virtualization,” in which the entire network is controlled by software,
has become popular [3]. The most prominent feature of an SDN is the separation of the
data and control planes, i.e., the “transmission function” and the “control function” are
implemented by different network devices. Therefore, network devices in the data plane do
not send messages to each other to share the network status but only forward packets. On
the other hand, the SDN controller in the control plane manages the entire network and can
quickly change and update network settings according to traffic conditions. By leveraging
the characteristics of an SDN network, an IoT environment with complex networks such as
sensor networks, wireless networks, etc., can also achieve unified network management [4].

However, one of the most pressing concerns in the realm of IoT security is the threat of
Distributed Denial of Service (DDoS) attacks, which can cause significant disruption to IoT
networks and systems. DDoS attacks involve overwhelming a network with traffic from
multiple sources, rendering it inaccessible and disrupting normal operations. The potential
consequences of a successful DDoS attack on an IoT network can be severe, ranging
from data loss and theft to physical harm and even loss of life in critical infrastructure
environments such as healthcare, transportation, and energy. The impact of these attacks
can be amplified by the sheer scale and complexity of IoT networks, which often involve
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multiple devices and layers of connectivity. Moreover, many IoT devices are designed with
limited security features, making them easy targets for attackers. To this end, a growing
body of research is focused on developing new security mechanisms and techniques that
can protect IoT networks and systems from DDoS attacks. These include approaches such
as machine learning-based anomaly detection, intrusion detection and prevention, and
network-based defense mechanisms.

Additionally, in the SDN environment, with the separation of the “transmission
function” and the “control function”, attacks on the control plane will become even more
valuable than those on the data plane, which merely transfers data [5]. Attackers can target
the SDN controller and send a large number of request messages from data plane devices
to make the SDN controller inoperable. Therefore, it is necessary to detect attacks not only
by considering attack methods that have been used in conventional architectures but by
also considering new attack methods that have been introduced in SDN architectures.

The IDS (intrusion detection system) [6] is a system that detects attacks such as those
described above. In general, an IDS collects traffic information such as IP addresses and
port numbers in advance for intrusion detection. It then defines attack patterns, which are
traffic sets that match attack communications, and normal patterns, which are traffic sets
that match normal communications. For example, Figure 1 assumes that users and servers
communicate via an external network. In this case, the green arrows represent the traffic
between the server and user, and the IDS acquires and analyses this traffic to determine
normal and abnormal communication.

Figure 1. Intrusion detection system.

As shown in Figure 2, an IDS can be broadly classified into two types: the signature
type, in which a new communication is judged on the basis of whether it matches an attack
pattern; and the anomaly type, in which it is judged on the basis of whether it matches
a normal pattern [7]. Each red arrow represents an attack pattern extracted from conven-
tional attacks on the system, and the blue arrows are the ranges determined by referring
to normal traffic. In other words, the signature type judges traffic to be an attack commu-
nication when it matches the red attack pattern in the figure. The anomaly type defines
a normal pattern and determines an attack to be occurring when traffic that differs from
the normal range occurs. Since the anomaly type has the advantage of being able to detect
unknown attacks outside the normal range, many studies have been conducted [8–10].
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Figure 2. Anomaly-type and signature-type IDS.

However, previous entropy methods [9], when implemented in SDN environments,
should also consider attacks on the control plane on the basis of the SDN architecture
features. However, there are only entropy detection methods for flooding attacks in
existing methods.

The normal traffic range in the anomaly type is also important. As shown in Figure 3,
false positives can occur if the normal traffic range is too large or too small compared
with the actual normal traffic range. For example, when an event is held, there could be
a network failure due to a flash crowd, which is a rapidly increasing number of
accesses [11]. In such a case, the traffic may be considered to be attack traffic even though
it is normal traffic. In other words, to apply the entropy method to an SDN, the range of
normal traffic should be re-examined after fully considering the changes in the network
structure caused by the SDN.

In this study, we propose an attack detection method using conditional entropy based
on the anomaly-based entropy method, which takes into account the changes in the network
structure due to an SDN and multiple traffic factors, such as flash crowds. In addition,
by focusing on traffic outside the set normal traffic range, such as a flash crowd, we use
a signature-based detection method to define the normal traffic range by determining the
type of normal traffic and attack traffic with similar characteristics.

The contributions of this study are summarized below.

- Taking into account the practical implementation of the SDN architecture, this study
extends the recognition of packet-in attacks and flash crowds on the basis of prior
research, thereby reducing false positives.

– For different attack strengths, this method can make accurate judgment of the
attack type possible and facilitate the subsequent targeted treatment of the attack.

- By utilizing conditional entropy in conjunction with the existing method, the parameters
for evaluating normal flows are expanded, thereby enhancing the detection accuracy.

– The accuracy in judging traffic with similar characteristics is improved on the
basis of existing methods.
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- The detection methods of the anomaly and signature types are combined to ensure that
the difference between abnormal traffic with similar characteristics can be determined,
while also providing protection against attacks that have not yet been identified.

Figure 3. False detection in an IDS of anomaly type.

The remainder of this paper is organized as follows. Section 2 describes related
research in DDoS attack detection, and Section 3 defines conditional entropy and describes
the data processing procedure for the proposed method. Section 4 presents a numerical
analysis, and Section 5 summarizes and discusses problems and issues in this study.

2. Related Works

As described in the previous section, detection methods can be divided into two types:
signature-type methods [12,13], which determine an attack by matching the attack traffic
pattern; and anomaly-type methods [8–10,14,15], which determine an attack by matching
the normal traffic pattern.

In the former attack detection method, attack patterns are registered one by one in
advance, and when attack traffic occurs, the signatures of the predefined attack patterns
are checked to determine whether the traffic is an attack or not [16]. The advantage of this
method is that it is based on attack patterns that have been experienced in the past, and
control can be achieved through clarified characteristics. However, it has the disadvantage
that when a new attack occurs, it is judged as normal because it does not match an attack
signature. An attack traffic list needs to be stored, updated, and maintained, which increases
the processing load. P. Ioulianou et al. [12] proposed signature-based intrusion detection to
deal with two variations of DDoS attacks. The simulation outcomes demonstrated that these
attacks may affect the reachability of specific IoT devices and their energy consumption. M.
Aldwairi et al. [13] proposed facing the problem of significant overheads due to memory
usage and execution time due to the signature pattern matching operation by parallelizing
the process on a multi-core CPU.

The latter method defines a normal pattern and determines whether or not a pat-
tern is an attack. This method determines illegal communication by comparing traffic
with the defined pattern. In other words, it is not necessary to include all attacks; un-
known attacks can be detected after defining normal patterns, which is an advantage
of the anomaly-type method. On the other hand, if there is a mistake in the defini-
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tion of the normal pattern, or if anomalous traffic similar to the normal pattern occurs,
false positives are likely to occur. Currently, many studies are focusing on the anomaly-
type method and using statistical, neural network, machine learning, and other methods
to reduce the false positive rate while consolidating the range of normal patterns [17].
Kyaw et al. [14] proposed a method that increases the detection rate of DoS flooding attacks
by switching to a polynomial SVM algorithm over the traditional linear SVM algorithm.
Liu et al. [15] proposed a method using a CGAN neural network algorithm focusing on
fast flooding attacks. Carvalho et al. [9] computed entropy using a target IP as the only tick.
They proposed a method for defining a normal pattern with reference to the change in
entropy. However, since SDNs have more attack patterns than conventional networks, the
probability of false positives increases if the decision is based solely on the target IP.

Based on the existing entropy method [9], we introduce conditional entropy based not
only on the target IP but also on the actual attack features, so that we can understand the
changes of the entire network in a multidimensional manner. In terms of defining patterns,
we use anomaly-type methods that define normal patterns among all traffic in combination
with signature-type methods that define similar patterns for each of them, in order to avoid
false positives while maintaining detection rates based on the diversity of normal patterns.

3. Proposed Method
3.1. Assumed Environment
3.1.1. SDN Environment

In SDNs, two types of planes are used to separate data transfer and control functions:
a data plane for data transfer and a control plane for centralized management. The data
plane is the part of the network equipment that performs the data forwarding process.
Unlike conventional network devices, the OpenFlow switch in an SDN only accepts routing
information from the SDN controller; thus, it only searches for the destination of received
packets in a table, determines the destination, and forwards the packet. If the destination
does not exist in the table, the OpenFlow switch sends a packet-in message to the SDN
controller saying that a new packet is arriving, and the SDN controller decides how to
process the packet before sending another message to the OpenFlow switch informing the
switch of the processing method for the packet [18].

On the other hand, the control plane controls the data plane. It can centrally control
the entire network and plays the role of creating and controlling routing information, such
as routing tables and MAC address tables, necessary for forwarding data [19].

For these reasons, both the SDN controller and OpenFlow switch are indispensable
for building an SDN. However, in an SDN, since the SDN controller centrally manages
the directed traffic, attacks on the control plane belonging to the SDN controller are more
valuable from an attacker’s point of view [20].

3.1.2. DDoS Attacks and Other Anomalous Traffic

Before explaining the proposed attack detection method, we first explain the working
principle and characteristics of DDoS attacks. A DDoS attack is an attacker launching
a simultaneous attack on a specific server using multiple devices. The goal of this attack is
to abnormally increase traffic and stop server functions [21]. Since the number of attacker
devices is larger than that of conventional DoS attacks, the damage is larger than that of
conventional DoS attacks. Specifically, the name of the attack can be classified as SYN ACK
flooding, UDP flooding, or ICMP flooding depending on “which part” of the mechanism
the attack uses to send messages [22].

In particular, a new DDoS attack called a packet-in attack exists against the SDN
architecture focused on in this study [23]. The packet-in attack is an attack that increases
the number of packet-in messages sent to the SDN controller by the OpenFlow switch,
which cannot refer to a routing table, by sending a large number of fake packets to an IP for
which the attacker does not exist. The purpose of this attack is to cause the controller to lose
control of the SDN network by abnormally increasing the number of packet-in messages.
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On the other hand, flash crowds [24], which are similar to DDoS attacks, are accesses
to servers caused by events that increase people’s interest, such as bargain sales and the
World Cup. For example, the number of user accesses to a particular web site may increase
so much in a short period of time that some users are denied access as legitimate [25]. The
result is the same as a DDoS attack, despite it not being an attack.

3.2. DDoS Detection Method Using Conditional Entropy
3.2.1. Disorder State Based Attack Detection

In this research, we propose an attack detection method based on the “state of disor-
der”. Here, “state of disorder” means whether the traffic parameters are random or not
during a certain time period, as shown in Figure 4. For example, if parameters such as
the destination IP and source IP of packets generated during a certain time period are
concentrated at the same value, an attack may be occurring [26]. We introduce entropy to
quantify the degree of concentration.

Figure 4. Randomness of a single parameter.

In a normal usage environment, there exists a certain correlation between various
parameters of data packets based on user operations and business requests, while a single
entropy can reflect the degree of dispersion of a single parameter, it cannot represent the
overall situation of multiple parameters. As depicted in Figure 5, the occurrence frequency
of destination IP addresses and source ports for 10 packets within 1 and 2 s are the same, and
calculating the single entropy of the two parameters will yield identical results. However, it
cannot indicate the complete consistency of the two parameters in combination. Therefore,
in this study, we introduced conditional entropy as a measure of the uncertainty of multiple
parameters as a whole.



IoT 2023, 4 101

Figure 5. Randomness of complex parameters.

3.2.2. Entropy and Conditional Entropy

In this study, we use entropy and conditional entropy together to quantify the degree
of concentration of each parameter of the traffic at the observed time of T seconds. As
shown in Algorithm 1, first, the collected packets are sorted in order of arrival, and these
data are divided into N pieces. Let W = {W1,W2 . . . ,WN} be the set of these divided
data. For eachWi, i ∈ N = {1, 2, . . . , N} of this dataset, m packets are randomly selected,
and the selected set is redefined as windowWi =

{
ai

1, ai
2, . . . , ai

m
}

. In each windowWi,
the number Di of different IP addresses dj, 1 ≤ j ≤ Di ,Si of different source port numbers
sj, 1 ≤ j ≤ Si, Li and Li of different packet sizeslj, 1 ≤ j ≤ Li are expressed in the form of
set Di, Si, and Li.

The probability pdi
i,j of the occurrence of the target IP dj in each windowWi is calculated

as follows, and f di
j is the number of occurrences of each objective IP in window i.

pdi
i,j =

f di
j

m
, i ∈ N , j ∈ Di (1)

Then, using the probability pdi
i,j, 1 ≤ j ≤ Di of the target IP, the entropy Hdi

i , i ∈ N of
the target IP is calculated as follows.

Hdi
i = −

Di

∑
j=1

pdi
i,j log2

(
pdi

i,j

)
(2)

To clarify the type of abnormal traffic, the conditional probability psp
i,j,k, pps

i,j,n of the
source port and packet size for a given destination IP is calculated using the following
equation with condition 1 ≤ k ≤ Si, 1 ≤ n ≤ Li, 1 ≤ j ≤ Di.

psp
i,j,k := P(sk|dj), sk ∈ Si, dj ∈ Di (3)

pps
i,j,n := P(ln|dj), ln ∈ Li, dj ∈ Di (4)
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Using the obtained conditional probabilities, the conditional entropy of the source
port and packet size for a given destination IP is obtained by the following equation.

Hsp
i = −

Di

∑
j=1

pdi
i,j

Si

∑
k=1

psp
i,j,k log2

(
psp

i,j,k

)
i ∈ N (5)

Hps
i = −

Di

∑
j=1

pdi
i,j

Li

∑
n=1

pps
i,j,n log2

(
pps

i,j,n

)
i ∈ N (6)

Algorithm 1 Entropy calculation algorithm.

1: For the collected data packets, classify the data packets that occur at the same second
and randomly select m put into the windowWi, i ∈ N .

2: Classify the different destination IP addresses, source port, and packet size in setWi as
Di, Si, Li.

3: Calculate the probability pdi
j , psp

jk , pps
jn according to Equations (1), (3) and (4). Then,

calculate the entropy whose output is Hdi
i , Hsp

i , Hps
i according to Equations (2), (5)

and (6).
4: These steps stop if the predefined loop N is reached; otherwise, they return to step 2.

Algorithm 2 Abnormal traffic determination algorithm.

Require: a set of entropy values for normal trafficWt, total trafficWi,Wt ⊂ Wi, i, t ∈ N ,
average Hdi, Hsp, Hps, standard deviation σdi, σsp, σps

Ensure: 0: attack, 1: normal
1: for eachWi, i ∈ N do
2: if Hdi + 2σdi < Hdi

i then
3: Traffic type← Normal traffic
4: return 1
5: end if
6: if Hdi − 2σdi ≤ Hdi

i ≤ Hdi + 2σdi then
7: Traffic type← Normal traffic
8: return 1
9: end if

10: if Hdi − 2σdi > Hdi
i then

11: if Hsp + 2σsp < Hsp
i and Hps + 2σps < Hps

i then
12: Traffic type← Flash Crowd
13: return 1
14: end if
15: if Hsp − 2σsp > Hsp

i and Hps − 2σps > Hps
i then

16: Traffic type← Flooding Attack
17: return 0
18: end if
19: if Hsp + 2σsp < Hsp

i and Hps − 2σps > Hps
i then

20: Traffic type← Packet-in Attack
21: return 0
22: end if
23: else
24: Traffic type← Unknown attack
25: return 0
26: end if
27: end for
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3.2.3. Proposed Detection Method

As shown in Algorithm 2, to determine if an attack is occurring, we first determine
the average entropy Hdi,Hsp,Hps and the standard deviation σdi, σsp, σps of each entropy
in the windowWt ⊂ W , t ∈ N during which no attack is occurring.

Additionally, the entropy of each packet at the same window size follows an ap-
proximately normal distribution [27]. As is well-known, for variables that conform to
a normal distribution, the data within one standard deviation accounts for 68.26% and
within two standard deviations accounts for 95.45%. Therefore, this paper employs the
mean value of the three types of entropy in the normal state at each time point, along with
a system threshold of two times the standard deviation, to measure the degree of disorder
for the three parameters at each time point. This approach minimizes errors that may arise
from sampling randomness and effectively reduces the computational workload for each
time point. The quantification is defined as follows:

- When the mean entropy value is within H ± 2σ, it is judged as normal.
- When the mean entropy value is smaller than H − 2σ, it is judged as concentrated.
- When the mean entropy value is larger than H + 2σ, it is judged as dispersive.

As shown in Figure 6. Using the three types of states defined, an attack decision is
made on the basis of the characteristics of the abnormal traffic. Initially, anomaly-type
methods are used to determine the range of normal traffic.

Therefore, as shown in Table 1, if Hdi
i in window Wi, i ∈ N satisfies condition

Hdi + 2σdi < Hdi
i , or Hdi − 2σdi ≤ Hdi

i ≤ Hdi + 2σdi. According to existing method, if the
target IP in unit time is not concentrated at a specific value, it is judged as normal traffic.

Figure 6. Proposed detection method.

Table 1. Abnormal traffic patterns.

Flash
Crowds

Flooding
Attack

Packet-in
Attack

Normal
Traffic

Others

Hdi 0 0 0 1 or 2 -
Hsp 1 0 1 - -
Hps 1 0 0 - -

Attack 1 0 0 1 0
Type S S S A A

To further reduce the false positive rate, we use a signature-type method to redefine
similar anomalous traffic patterns that are outside the normal traffic range defined above.



IoT 2023, 4 104

First, we define the flash crowd [28], which are traffic patterns that are similar to
attacks but are not attacks. A flash crowd is similar to a DDoS attack in that the traffic is
concentrated on the server side; however, it is due to frequent accesses from users. Thus,
this traffic can be judged as normal traffic. This means that there is little chance that the
exact same packet exists in the flash crowd traffic, but the degree of variation in packet size
is high. On the other hand, as the access frequency increases, the variability of the source
port also increases. In summary, traffic that meets the three conditions of Hdi − 2σdi > Hdi

i ,
Hsp + 2σsp < Hsp

i , Hps + 2σps < Hps
i will be determined as a flash crowd.

Flooding attacks, on the other hand, send the same packets with the goal of increasing
the instantaneous traffic volume [29]. Therefore, the degree of dispersion of source ports
and packet sizes is low. Unlike a flash crowd, traffic that meets the three conditions of Hdi−
2σdi > Hdi

i , Hsp − 2σsp > Hsp
i , Hps − 2σps > Hps

i will be determined as a flooding attack.
The packet-in attack is an attack only in the SDN architecture that exploits the working

principle of the OpenFlow protocol to send fake packets by sending a large number of
request messages from the switch to the controller [30]. Since the size of the packet-in
message is fixed, the degree of dispersion in packet size is low. On the other hand, since
messages are sent from specific ports of each switch to the controller, the packet-in attack
scale increases, and the degree of dispersion of the source port is higher than normal
when the number of affected switches is large. In summary, traffic that meets the three
conditions of Hdi − 2σdi > Hdi

i .Hsp + 2σsp < Hsp
i , Hps − 2σps > Hps

i will be determined
as a packet-in attack.

Finally, to take advantage of the anomaly-type method and to detect unknown attacks
that have not been defined, we consider traffic patterns outside the normal traffic range
that are not clearly defined as attacks [31]. The presence or absence of an attack (0 or 1)
is determined according to the values shown in Table 1. Note that the entropy values
of 1, 0, or 2 in the table refer to “H + 2σ < Hi”, “H − 2σ > Hi”, and ”H − 2σ ≤ Hi ≤
H + 2σ”, respectively, and the decision types S and A for each pattern refer to signature
and anomaly types.

4. Numerical Analysis
4.1. Simulation Environment

In this simulation, as shown in Table 2, three typical types of anomalous traffic in the
SDN architecture, ICMP flooding, flash crowds, and packet-in attacks, were simulated,
and DDoS attack detection was performed using the proposed detection method on the
parameters of packets collected during the simulation period. The SDN architecture used
the Mininet software to construct the SDN net topology, and Open vSwitch (OVS) and Ryu
controller were used for the SDN controller and OpenFlow switch. For this simulation
environment, it was assumed that there were 12 hosts, 12 OVS switches, and 1 Ryu controller.
A summary of the assumed environment is shown in the following Figure 7.

Table 2. Parameter settings.

Normal
Traffic

Flash
Crowds

ICMP
Flooding

Packet-in
Attack

Host number 1–12 1–11 5–6 —
Destination host

number 1–12 12 12 —

Protocol
85%TCP
10%UDP
5%ICMP

TCP ICMP UDP

Size random random 42 random
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Figure 7. Network topology.

4.2. Analysis and Evaluation

In this paper, we used Scapy to generate normal traffic during T = 150 s and simulate
abnormal traffic in the order of flash crowds, ICMP flooding, and packet-in attacks at
regular intervals. In this simulation, we assumed the same conditions as in an existing
study [9] and assumed that the amount of abnormal traffic was at least 5 times the amount
of traffic arriving at all switches per unit time. To demonstrate the validity of the experiment,
we also collected three datasets of attack intensity, 100%, 75%, and 50%, in order to perform
entropy calculations by holding normal traffic to a constant standard and varying the
frequency of attack traffic transmissions.

In this simulation, as shown in Figure 8:

- 1–25 s is normal traffic only
- 26–54 s is both normal traffic and flash crowd traffic
- 55–65 s is normal traffic only
- 66–82 s is both normal traffic and ICMP flooding traffic
- 83–112 s is normal traffic only
- 113–144 s is both normal traffic and packet-in attack traffic
- 145–150 s is normal traffic only

Figure 8. Amount of traffic.

In addition, As shown in Figure 9 specific normal traffic patterns and attack patterns
were set as follows.
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Figure 9. Attack patterns.

For numerical computation, we used Wireshark to analyse packets successfully sent
from hosts in the SDN constructed during T = 150 s. We also computed entropy by
selecting 100 pieces of data in each time interval, assuming a window size of m = 100.

The destination IP is a significant feature that can be leveraged for detecting DDoS
attacks. As shown in Figure 10, during the period when the three types of abnormal traffic
occurred, there was a substantial increase in the number of data packets sent to a specific
destination IP address, resulting in a lower entropy for the destination IP than that of the
normal state. Additionally, the number of transmissions to the same destination IP tended
to increase. Therefore, the concentration of entropy for a single destination address is one of
the conditions for determining the occurrence of any of the three types of abnormal traffic.

Figure 10. Destination IP entropy.

Figure 11 show the conditional entropy of the source port value change. Flash crowd
occurrences are typically caused by network congestion resulting from frequent user
requests for services. This, in turn, leads to a high frequency of source port changes,
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resulting in an increased entropy of source ports based on the destination IP address
compared to normal periods. During flooding attacks, attackers continuously send a large
volume of packets to a specific destination address, leading to a drastic decrease in the
entropy of source ports based on the destination IP address during the attack. In the case
of packet-in attacks, attackers attempt to involve as many switches as possible in sending
packet-in messages, leading to a slight increase in the entropy of source ports based on the
destination IP address compared to normal periods.

Figure 11. Source port conditional entropy.

Figure 12 show the conditional entropy of the packet size value change. In the case
of flash crowds, actual user operations during this period make it nearly impossible for
packet lengths to be completely consistent, resulting in an increased entropy of packet
length based on the destination address. For flooding and packet-in attacks, the former
requires a sufficiently high instantaneous flow rate, where attackers send a large number
of data packets with the same length to conduct a flow attack. The latter is a result of the
high volume of data packets generated in packet-in attacks based on the fixed length of the
special message in the OpenFlow protocol. As a result, the entropy of packet length based
on destination address will decrease during the occurrence of these two attacks.

Figure 12. Packet size conditional entropy.
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In this paper, precision, recall, F1 score, and accuracy were used as evaluation values [32].
By combining two of each detected and actual results, there were four patterns with correct
and incorrect answers, called TP (true positive), FP (false positive), TN (true negative), and
FN (false negative). The precision, recall, F1 score, and accuracy were calculated using the
above TP, FP, TN, and FN as follows. We used the confusion matrix to calculate the above
performance indicators. The confusion matrix is shown in Figure 13.

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1Score =
2× Precision× Recall

Precision + Recall
(9)

Accuracy =
TP + TN

TP + FN + TN + FP
(10)

Figure 13. Illustration of the confusion matrix.

We performed a comparative analysis of various entropy-based algorithms to demon-
strate the efficacy of our proposed algorithm in achieving a balance between calculation
accuracy and speed. Specifically, our proposed approach, along with [33,34], is based on
conditional entropy, while [35] is based on joint entropy and [9,36] are based on single
entropy. The comparison of the results is presented in Table 3.

Table 3. Performance of different methods

Accuracy (%) Precision (%) Recall (%) F1 Score (%) Detecting Time (s)

Proposed method 97.2 100 94.2 97.0 0.74

[33] 93.6 95.9 90.4 93.1 0.75

[34] 97.7 100 96.1 98.0 14

[35] 77.9 100 65.3 79.0 34

[9] 67.9 95.9 59.5 73.4 0.06

[36] 73.2 91.8 64.3 75.8 0.15
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In contrast, As shown in Figure 14, the proposed conditional entropy-based method
achieves the highest accuracy and recall scores while maintaining a high precision score.
This is because the proposed method takes into account multiple parameters, including
source and destination addresses, source and destination ports, and packet lengths, to
evaluate the overall uncertainty of multiple parameters as a whole, which improves the
detection accuracy and reduces false negatives. Therefore, the proposed method is a more
effective and accurate method for DDoS attack detection compared to other entropy-based
methods. Additionally, the proposed method in this paper also takes advantage of the
feature of conditional entropy, which can measure the uncertainty of multiple parameters
as a whole, instead of relying solely on single entropy or joint entropy. This approach
provides a more comprehensive and accurate evaluation of abnormal traffic, especially for
flash crowds, which can be challenging to detect using single entropy- or joint entropy-
based methods. Overall, the proposed method achieves a balance between accuracy and
efficiency, making it a promising approach for real-time DDoS detection.

(a) (b) (c)

(d) (e) (f)

Figure 14. Comparison of the confusion matrix between six entropy methods. (a) Proposed method;
(b) Conditional entropy [33]; (c) Conditional entropy [34]; (d) Joint Renyi entropy [35]; (e) Single
entropy [9]; (f) Single entropy [36].

5. Conclusions

This paper proposes an attack detection method that uses conditional entropy to
reduce the incidence of false positives by considering the similarity of abnormal traffic.
Previous studies have used anomaly-type methods, which have two problems: insufficient
attack patterns and unclearly defined degree of dispersion, leading to a high false positive
rate in complex network environments. Therefore, this research defines attack patterns
and normal traffic clearly by employing both signature- and anomaly-type methods. In
addition, it individually defines parts that are similar to attacks and aggregates the range
of normal traffic. Our proposed method for identifying anomalous traffic quantifies the
concentration of traffic based on the mean and standard deviation, and uses changes in
three types of entropy values to determine the type of traffic, thereby achieving more
precise attack detection. Additionally, pre-processing is performed during traffic collection,
so it is not necessary to traverse all collected packets, but only to process a random sample
of packets to quickly obtain entropy values while maintaining a certain level of accuracy.
Compared with existing methods, this approach has lower false positive rates, higher
detection accuracy, and faster response times.
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As a future challenge, the data collection part should be placed in the controller, and
a system that notifies the switch as soon as traffic changes are detected in real time will
enable higher-performance attack detection.
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