
Citation: Shakya, S.;

Taparugssanagorn, A.;

Silpasuwanchai, C. Convolutional

Neural Network-Based

Low-Powered Wearable Smart

Device for Gait Abnormality

Detection. IoT 2023, 4, 57–77.

https://doi.org/10.3390/iot4020004

Academic Editor: Amiya Nayak

Received: 6 February 2023

Revised: 14 March 2023

Accepted: 16 March 2023

Published: 23 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

IoT

Article

Convolutional Neural Network-Based Low-Powered Wearable
Smart Device for Gait Abnormality Detection
Sanjeev Shakya *,†, Attaphongse Taparugssanagorn *,† and Chaklam Silpasuwanchai †

Department of ICT, School of Engineering and Technology, Asian Institute of Technology, 58 Moo 9, Km. 42,
Paholyothin Highway, Pathumthani 12120, Thailand
* Correspondence: sanjeevshakya@ait.asia (S.S.); attaphongset@ait.asia (A.T.); Tel.:+66-08-8628-8820 (A.T.)
† These authors contributed equally to this work.

Abstract: Gait analysis is a powerful technique that detects and identifies foot disorders and walking
irregularities, including pronation, supination, and unstable foot movements. Early detection can
help prevent injuries, correct walking posture, and avoid the need for surgery or cortisone injections.
Traditional gait analysis methods are expensive and only available in laboratory settings, but new
wearable technologies such as AI and IoT-based devices, smart shoes, and insoles have the potential
to make gait analysis more accessible, especially for people who cannot easily access specialized
facilities. This research proposes a novel approach using IoT, edge computing, and tiny machine
learning (TinyML) to predict gait patterns using a microcontroller-based device worn on a shoe. The
device uses an inertial measurement unit (IMU) sensor and a TinyML model on an advanced RISC
machines (ARM) chip to classify and predict abnormal gait patterns, providing a more accessible,
cost-effective, and portable way to conduct gait analysis.

Keywords: TinyML; machine learning; deep learning; IoT; edge computing

1. Introduction

Human gait is a complex phenomenon of locomotion that develops as a child grows
and learns to move forward using the cyclic movement of the lower limbs [1]. It is a
distinguishable biological feature of a human being. Any deviation from a normal gait
pattern can be due to old age or maybe a sign indicating the onset of neurological diseases
such as Parkinson’s [2], ALS [3], cerebral palsy [4], COVID-19 [5], stroke [6], and vertigo [7].
The study of gait is not only relevant to medical applications but also extends to other
fields [8].

Currently, the technology for gait analysis uses a combined movement capture
system with non-wearable force platforms. However, this state-of-the-art technology
is expensive due to the optical equipment required and is limited by the need for a lab
setup and constrained environment [1]. As a result, the cost of developing, installing,
and maintaining these complex systems can be a barrier to their commercialization and
practical use. In contrast, the use of micro-electro mechanical systems (MEMS) tech-
nology, especially in the form of inexpensive Internet of Things (IoT) devices equipped
with accelerometers and gyroscopes, has become widely used for gait data acquisition,
analysis, and prediction [9–11].

These wearable devices are typically attached to the ankles and waist to capture ac-
celerometer and gyroscope signals, which are used to identify the gait cycle and movement
of a single limb, distinguishing between the stance and swing phase. The real-time classifi-
cation of abnormal human gait using these devices can be used to develop control devices
for orthotics and prosthetics, monitor rehabilitation, and create fall detection systems for
elderly individuals [8].

This paper presents a novel device that captures and preprocesses gyroscope and
acceleration signals from both legs using Euler angles and a Madgwick orientation filter.

IoT 2023, 4, 57–77. https://doi.org/10.3390/iot4020004 https://www.mdpi.com/journal/iot

https://doi.org/10.3390/iot4020004
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/iot
https://www.mdpi.com
https://orcid.org/0000-0002-5991-8858
https://doi.org/10.3390/iot4020004
https://www.mdpi.com/journal/iot
https://www.mdpi.com/article/10.3390/iot4020004?type=check_update&version=1


IoT 2023, 4 58

It utilizes the various variations of a CNN neural network, a custom data logger, and
deep learning techniques to find the optimal model. The final model is then exported and
optimized for use on resource-constrained devices such as ARM for inference.

2. Related Work

The revolution in connected devices has proven to be a technological advancement for
the future. Edge AI offers an alternative to traditional cloud computing and enables new
types of applications to be as close as possible to end-users and data sources [12]. This is
especially useful for running machine learning (ML) inferences as close to the sensor that
produces the data as possible, as the edge device does not require constant connectivity
for data transmission and is energy-efficient [13]. Typically, an IoT device connects to a
designated gateway via radio and sends data to the cloud for further processing. However,
executing instructions at the edge can be more energy-efficient than transmitting data [13].
This paragraph describes existing techniques for activity recognition using inertial mea-
surement unit (IMU) sensors, enabling TinyML, and recent trends in TinyML for human
activity recognition (HAR).

The action of bipedal and biphasic forward propulsion of the center of gravity of the
human body, known as human gait, consists of two principal phases: the swing and stance
phases. These phases are also divided into four sub-phases for the stance phase and three
sub-phases for the swing phase, as shown in Figure 1. The study of human movement
(human gait analysis) has been extensively studied and researched over the past decade [8],
leading to the development of numerous devices to detect abnormalities in these patterns.

Figure 1. Human gait phases [14].

Firstly, Mantyjarvi et al. in [15] attempted to identify gait patterns with IMU sensors
and devise a device by capturing standard gait patterns using IMU data. The data consist
of subjects walking at a fast, regular, and slow pace; these data are then correlated with
a standard existing walking pattern to detect abnormalities. The study used histogram
statistics, fast Fourier transform (FFT) coefficients, and correlation to generate a model and
compare it to a standard and regular walking pattern. Gait analysis can be characterized as
a biometric signal as every person’s walking pattern is different.

Secondly, Gao et al. and Patil et al. in [16,17] used the ML approach to address
the nonlinear and complex problem. In [17], Patil et al. also utilized K nearest neighbor,
support vector machine, extreme learning machines, and multi-layer perceptrons (MLP)
for abnormal gait classification. Their process included data acquisition, data smoothing,
dimension reduction, feature selection, and classification that allowed them to obtain a
classification accuracy of 85%, 90%, 93%, and 96% using KNN, MLPs, ELM, and SVM,
respectively. They found that MLP had the worst performance while KNN had the best,
with an inference time of 0.02 s on a decent workstation during the inference of these
models. Similarly, Gao et al. in [16] combined long short-term memory and CNN to classify
gait patterns such as hemiplegic, tiptoe, and cross-threshold gait pattern detection using
the IMU sensor and Euler angle. The study primarily investigated the different overlapping
window lengths, the use of simple CNN networks only, and the accuracy of these models
in resource-constrained devices.



IoT 2023, 4 59

Finally, a comprehensive survey study of human gait-based AI applications [8] intro-
duced the term smart gait (SG). The study discussed the applications and challenges faced
by SG. The preliminary study of the survey was to identify and provide future areas of
application for using ML in gait research. The application areas include gait phase detec-
tion, gait abnormality detection (stroke, neurological disease, Parkinson’s disease), human
posture estimation, localization for simultaneous localization and mapping, individual
identification, physical mobility, and fall risk assessment. Most studies were performed in
controlled environments such as watching a smiley on the wall, performing a gait activity,
and walking on a treadmill to collect data. The survey concludes that there is a gap to fulfill
the space between the controlled and the real-life setup.

One of the challenges in this field of research is the collection of pathological gait
data from actual patients, as most analyses are typically conducted on normal subjects.
Additionally, the commercialization of these products requires government approvals and
food and drug administration certification, as well as the acceptance and adoption by
doctors and therapists. To be successful, the product development life-cycle cost must be
practical and affordable to overcome the barrier of adoption. Despite these challenges,
AI-based gait research is a rapidly growing area of investigation, with ongoing efforts to
develop nonlinear solutions for abnormality gait detection. However, much of the current
research and development in this area focuses on larger computing devices, and relatively
little research has been devoted to targeting tiny, resource-constrained devices. This study
aims to fill that gap by investigating the use of such devices for abnormal gait detection

Main Contributions

This paper introduces a cutting-edge context-aware IoT device designed to identify
and analyze irregular gait patterns. Utilizing gyroscope and acceleration signals from both
legs, the device preprocesses the signals and employs the Madgwick orientation filter to
calculate Euler angles. With the use of various CNN models and a custom data logger,
the device generates overlapping datasets for multiple data channels and employs deep
learning techniques to determine the optimal model, which is then exported to a format
suitable for ARM to run the inference process. To the best of our knowledge, this is a
first-of-its-kind solution in the field.

The following sub-objectives are required as an essential step toward the main contributions:

• To make a data logger device to capture gait patterns using a wearable device on
multiple human subjects.

• To collect, split, and train an ML model to classify various gait patterns by employing
the use of an IMU sensor.

• To compress the ML model using post-training quantization to reduce the memory footprint.
• To deploy the ML model and inference from an ARM chip.
• To evaluate the model using classification accuracy, precision, recall, and F1-score to

determine the best model from overlapping datasets.
• To evaluate the performance of the inference using execution time and throughput for

the best model.

3. Methodology

The methodology section outlines the process for creating a novel device to capture
human gait patterns from a defined group of subjects. The standard ML process, including
data collection, preprocessing, model design, and deployment, was applied to address the
problem. The section is structured into sub-sections to clarify the ML pipeline, from data
acquisition to the ML model deployment on an ARM SoC. It also provides insight into the
sophisticated architecture and technologies used to create a data logger that generates a
dataset into multiple groups of overlapping windows to determine whether overlapping
data improve performance in a simple CNN architecture. The ML training and testing
process is described to create an efficient model, and the best model is then deployed on
the microcontroller and evaluated using various classification metrics.



IoT 2023, 4 60

3.1. Data Acquisition

The quality of data plays an essential role in any supervised learning task. The data
collection process is the most crucial and initial part. The data logger hardware, as shown
in Figure 2, makes use of an IoT development device called Arduino Nano Bluetooth Low
Energy (BLE) Sense [18] connected with a Raspberry Pi. This enables the Arduino board
to receive data or instructions from a nearby device or sensor using the BLE, which is
one of the most widely applicable low-power connectivity standards. The two devices
communicate with each other using universal asynchronous receiver-transmitter (UART)
communication. This protocol was chosen because it is easier to debug and establish a
connection between the microcontroller and the Raspberry Pi. The data logger firmware
and software used to preprocess, transform, and save the collected data in the desired file
format on the Raspberry Pi is discussed as follows:

Figure 2. Data logger hardware component block diagram.

The data logger captures labeled datasets similarly to a video recorder, with software
states of INIT, RECORD, and PAUSE, as shown in Figure 3. This allows participants to
quickly wear the device, walk for a few minutes, and easily capture all the gait data. Once a
connection is established with the parent controller and all necessary sensors are initialized,
the data logger is in the INIT state. State transition occurs when a peripheral device, such
as a laptop or phone, sends a fixed message. The data are in the format “action:payload”
and when a peripheral device sends “2:record”, the microcontroller transitions the status
from led to red, read sensor data, constructs a payload in the desired format, and sends
the data via UART. Using a serial connection allows for the fast capture of the data as it is
generated at the highest baud rate to capture the nuances of the signals produced by the
accelerometer. Figure 3 shows more details of the working mechanism and state transition
written in C++ language, which is deployed onto the microcontroller.

Figure 3. State transition diagram of data logger firmware.

Figure 4 is written in general purpose high-level language, NodeJs, and consists of
a serial listener, event emitter, application server, HTTP server for static frontend files,
sockets for client communication, and a database for storing subject details such as name,
age, and height. The gait logger and data logger server are serially connected, while the
client application and server are connected using TCP/IP. The event emitter API is used to
facilitate interprocess communication between the serial listener and the application server.



IoT 2023, 4 61

The application server formats the captured data into overlapping windows and saves it in
a file structure.

Figure 4. Software architecture diagram of data logger.

The data logger was constructed based on the hardware and software architecture
described above and was used to collect a set of three pathological gaits and two standard
human activity datasets, as shown in Table 1. Two GAIT logger hardware devices were
attached to both legs of a human subject. The participant was asked to carry out these five
motions, and the data logger captured the associated data and saved it in a database for
training purposes.

Table 1. Activity labels for different gait activity.

Activity No. Activity Name

1 Normal Gait
2 Spastic Gait
3 Waddling Gait
4 Propulsive Gait
5 No Motion

The gait logger software is designed to immediately convert received data into the
appropriate dataset, requiring less preprocessing to format the data for training. The
software creates overlapping datasets comprising 6 channels of acceleration data and 3
channels of Euler angles. For each data collection session, the software generates overlap-
ping datasets as well. Overlapping windows Wn with an interval of n = 10 are chosen,
where 0 < n < 100. The purpose of generating overlapping datasets at the same time is
to facilitate the training and testing of the dataset and to validate whether overlapping
window data has an impact on the performance of the model inference process.

3.2. Preprocess and Data Augmentation

Some preprocessing is required to augment the data based on the sensor’s limitation.
Hence, the data from different sensors are normalized against the full specification of the
sensor limits. The normalization of the accelerometer data point is given by

an = a4/8 = a/2, (1)

where the sensor value for the part LSM9DS1 [19] sensor varies in any of the x, y, and z
direction from −4g to +4g. Similarly, the normalization of gyroscope values is carried out by

gn = g2000/4000 = g/2, (2)



IoT 2023, 4 62

where the gyroscope sensor value in any x, y, and z varies from −2000 to +2000 degrees
per second (DPS). The data are shifted towards the mean before being sent into the deep
learning network as suggested in [20].

The 9DoF IMU LSM9DS1 is a system-in-package with a 3-axis accelerometer, 3-axis
magnetometer, and 3-axis gyroscope. It has a maximum sampling frequency of 104 Hz
for the accelerometer and gyroscope. This frequency is chosen based on the Nyquist
criteria and the maximum possible frequency for human movement, which is around
8.5 Hz, as mentioned in the work by Qiao et al.’s [21]. To further aid the CNN model in
extracting features, the data are augmented with the resultant accelerometer, gyroscope,
and orientation angle. This results in a vector of size N× 128× 12, appended to the original
vector of size N × 128× 9 as

Ra =
√

A2
x + A2

y + A2
z , (3)

Rg =
√

G2
x + G2

y + G2
z , (4)

Ro =
√

O2
φ + O2

θ + O2
ψ, (5)

where Ra, Rg, and Ro are the resultant vector of acceleration, gyroscope, and orientation
components. A data tensor of size N × 128× 12× 1 is constructed from N × 128× 9× 1
using the Equations (3)–(5) as shown in Figure 5, and the dataset is further divided into the
training, test, and validation sets.

A new tensor with 12 channels (i.e., the original nine channels plus three additional
channels for the combined vectors) can potentially help the ML model learn more complex
patterns and improve the generalization and robustness of the model by increasing the
diversity of the training data, which leads to a better performance on new, unseen data.

Figure 5. Augmentation of input tensor from 9 channel to 12 channel.

3.3. Model Design

The output of the data acquisition procedure, as defined in Section 3.1, yields datasets
comprising various overlapping windows. A total of exactly 10 datasets are generated
for each overlapping window. Each dataset is then trained using the Tensorflow Keras



IoT 2023, 4 63

library, and the data are split based on the subject for testing on signals that are unknown
to the deep-learning network. The training–test split involves selecting 80% of the data for
training and 20% for testing, using a list of unique individuals. This process is repeated for
all datasets with different overlapping windows. The datasets are mainly trained using
three deep-learning architectures, where a simple architecture CNN is taken as the baseline,
and the final architecture is obtained after fine-tuning the models, as described below:

3.3.1. CNN Architecture

The proposed CNN system architecture, which is summarized in Table 2, uses 2D
convolution (Conv 2D). It consists of a combination of accelerometer data, gyroscope data,
and output from the Madgwick filter. The input data pass through an initial convolutional
layer with a filter size of 64 and a kernel size of 4× 12, followed by a batch normalization
layer and ReLU nonlinear activation. Then, an average-pooling layer is used to reduce
the feature representation, followed by a dropout layer to reduce overfitting. This process
is repeated with a kernel size of 12× 1, a filter size of 8, batch normalization, nonlinear
ReLu activation, and average pooling of 3× 1. The output is then flattened and sent to a
dense neural network layer with nonlinear ReLu activation, followed by a dropout layer to
further reduce overfitting. Finally, the softmax layer computes the probability distribution
over all five activity classes.

Table 2. Detailed CNN architecture.

Layer Name Kernel Size Filters Output Shape Parameters Count

Input - - (128, 12, 1) -
Conv2D 4 × 12 64 (128, 12, 64) 3136

BachNormalization - - (128, 12, 64) 256
ReLu - - (128, 12, 64) 0

AveragePooling2D 3 × 3 - (128, 12, 64) 0
Dropout - - (42, 4, 64) 0
Conv2D 12 × 1 8 (42, 4, 8) 6152

BatchNormalization - - (42, 4, 8) 32
Relu - - (42, 4, 8) 0

AveragePooling2D 3 × 1 - (42, 4, 8) 0
Dropout - - (14, 4, 8) 0
Flatten - - (448) 0
Dense - - (8) 3592

Dropout - - (8) 0
Dense + Softmax - - (5) 45

3.3.2. CNN-Statistics

The proposed method combines automatic feature extraction from CNN layers with
statistical features. The statistical features are calculated for data-augmented channels with
a window length of 128 and are concatenated with the output of the CNN network before
being passed into a fully connected layer. The statistical features are only computed for the
resultant vectors of acceleration, gyroscope, and orientation angles. A total of 12 statistical
features (median, maximum, average, and standard deviation) are calculated from the
resultant vectors of Ra, Rg, and Ro as follows:

• Mean value of resultant vectors {3}: Mi =
1

Nw
∑Nw

j=1 x[j], for i = Ra, Rg, Ro.

• Standard deviation of resultant vectors {3}: Si =
√

1
Nw

(∑Nw
j=1 xi[j]−Mi)2, for

i = Ra, Rg, Ro.
• Maximum value of resultant vectors {3}: Ai = max(i), i = Ra, Rg, Ro.
• Median value of resultant vectors average {3}: Bi = med(i), i = Ra, Rg, Ro.

The details of the architecture are shown in Table 3 and described as follows.



IoT 2023, 4 64

This architecture was explored because the authors in [20,22] found a significant
improvement in real-time accuracy inference using the combination of statistical features
and CNN. Additionally, just a few input parameters were increased compared to the
architecture defined in the ”CNN architecture” section. The proposed architecture in this
paper combines a CNN network with signal statistic features to improve the performance
of activity recognition. The process starts with an input shape of N × 128× 12, which is
passed through a primary convolutional layer with a filter size of 64 and a kernel size of
4× 12. This is followed by a batch normalization layer and ReLU nonlinear activation.
An average-pooling layer with a kernel size of 4 × 12 is applied to reduce the feature
representation, and a dropout layer is used to prevent overfitting. The process continues
with a Conv 2D layer, a batch normalization layer, a nonlinear ReLu activation, and an
average pooling of 3× 1. In addition to this, 12 statistical features are computed from the
resultant vectors of Ra, Rg, and Ro, and they are concatenated with the flattened output of
the CNN network. The concatenated output is sent to a dense layer with ReLU activation,
followed by a dropout layer and a softmax layer to compute the probability distribution
over all five activity classes.

Table 3. Detailed as follows. Before the paragraph above “This architecture. . . ” CNN-Statistics
architecture.

Layer Name Kernel Size Filters Output Shape Parameters Count

Input - - (128, 12, 1) -
Conv2D - 64 (128, 12, 64) 3136

BachNormalization - - (128, 12, 64) 256
ReLu - - (128, 12, 64) 0

AveragePooling2D - - (128, 12, 64) 0
Dropout - - (42, 4, 64) 0
Conv2D - 8 (42, 4, 8) 6152

BatchNormalization - - (42, 4, 8) 32
Relu - - (42, 4, 8) 0

AveragePooling2D - - (42, 4, 8) 0
Dropout - - (14, 4, 8) 0
Flatten - - (448) 0
Input - - (12) -

Concatenate - - (460) -
Dense - - (8) 3688

Dropout - - (8) 0
Dense + Softmax - - (5) 45

3.3.3. CNN-LSTM

An emerging approach to HAR activity recognition uses a combination of CNN and
LSTM, as explored in this paper [16,23,24]. The rationale behind proposing this approach
is to improve the accuracy of the detection. The architecture mostly uses a time-distributed
(TD) layer function provided by the Keras API to maintain temporal integrity for the
LSTM layers. The TD layer expects 3D input, so the inputs were reshaped from a shape
of 128× 12× 1 to 4× 32× 12× 1, with a window length of 128 decomposed into 4-time
slices and 32 timesteps. The details of the architecture are shown in Table 4 and described
as follows.

The architecture uses a time-distributed (TD) layer function provided by the Keras
API to maintain temporal integrity for the LSTM layers. An input shape of (Ts, 32, 12, 1)
is used where a timestep of Ts = 4 is chosen, and reshaped from (128, 12, 1) as TD input
requires a 3D shape. The input is passed onto distributed Conv2D layers with a filter size
of 64 and a kernel size of 12, followed by TD batch normalization, TD ReLu activation,
and TD dropout of 0.5 to avoid overfitting. The output from the convolutional layer is
passed onto a GlobalAveragePooling2D layer [25], TD flattened and sent to an LSTM layer,
followed by a dropout layer to avoid overfitting. A fully connected dense layer is followed



IoT 2023, 4 65

by the dropout output and finally, the softmax layer computes the probability distribution
over all five activity classes.

Table 4. Detailed CNN-LSTM architecture.

Layer Name Kernel Size Filters Output Shape Parameters Count

Input - - (128, 12, 1) -
TD (Input) - - (Ts, 32, 12, 1) -

TD (Conv2D) 12 64 (Ts, 21, 1, 64) 9280
TD (BachNormalization) - - (Ts, 21, 1, 64) 256

TD (ReLu) - - (Ts, 21, 1, 64) 0
TD (Dropout) - - (Ts, 21, 1, 64) 0
TD (Conv2D) 12 64 (Ts, 10, 1, 64) 49,216

TD (BatchNormalization) - - (Ts, 10, 1, 64) 256
TD (Relu) - - (Ts, 10, 1, 64) 0

TD (Dropout) - - (Ts, 14, 4, 64) 0
TD (GlobalAveragePooling2D) - - (Ts, 64) 0

TD (Flatten) - - (Ts, 64) 0
LSTM - - (100) 66,000

Dropout - - (100) -
Dense - - (100) 10,100

Dense + Softmax - - (5) 505

3.4. Model Training

The goal was to create an optimized model for deployment on an ARM chip and
inference using Raspberry Pi. The deep learning models were trained using the TensorFlow
Keras API, with data trained for 100 epochs using categorical cross-entropy loss and an
Adam optimizer with a learning rate of 0.0001. The model was fed with training data in
batches of 128 and evaluated using accuracy as the metric. Callback methods were used to
save model checkpoints using the minimum validation loss. A validation set of 20% from
the training set was also used. The training was carried out on a machine with an Intel 8th
generation CPU and Nvidia RTX 1050Ti 4GB graphics card.

3.5. Evaluation Metrics

The following performance metrics are used to evaluate our proposed model:
The accuracy is measured by the ratio of correctly predicted labels to the total number

of predictions given by

Accuracy =
tp + tn

tp + tn + f p + f n
, (6)

where tp (true positive) is the sum of successfully predicted classes, tn (true negative) is
the sum of valid classes that were negatively classified, fn (false negative) is the sum of
instances belonging to the positive class that were incorrectly predicted as negative, and fp
(false positive) is the sum of false predictions that should have been another class. Precision
is calculated by taking the rate of correctly predicted classes over the total number of
predictions given by

Precision =
tp

tp + f p
. (7)

The recall metric is the ratio calculated using the rate of a correctly predicted class over
the fundamental data attributes of the class given by

Recall =
tp

tp + f n
. (8)



IoT 2023, 4 66

The F1-score metric computes a value that is a mixture of the precision and recall
metrics given by

F1-score =
2RecallPrecision

Recall + Precision
. (9)

The average execution time would be helpful to compute the throughput of the above
architecture run in a microcontroller. The unit of the execution time is in milliseconds (ms).
The average execution time calculation, which is denoted by ExecutionTime, is calculated as

ExecutionTime =
1
N

N

∑
j=1

It[j], (10)

where It is a set of inferences taken at a certain interval of t.
Throughput denoted by Throughput is the reciprocal of estimated operations denoted

by OpsCount computed over the execution time denoted by ExecutionTime, which is ex-
pressed as

Throughput =
OpsCount

ExecutionTime
. (11)

4. Model Compression: Quantization

While performing summation and multiplication operations on single-precision floating-
point format (sometimes called float32) values, the resultant operands, products, and accu-
mulations are also float32. Quantization reduces the precision of operations by converting
from higher representations of bits to lower primitive representations, for instance, from a
32-bit floating-point number to an 8-bit integer value. This process reduces the number of bits
needed to designate weights. It is a probabilistic conversion based on the [min, max] range of
the weight values shown in Figure 6. For instance, one of the methods to achieve this is to first
calculate the standard deviation and mean of all weights, choose the number of bits to assign,
and then represent the integer portion to cover a range [26]. Many other kinds of literature
propose an effective way of quantization, such as linear quantization, log-based quantization,
and k-means clustering.

Quantization is transforming an ML model into an approximated representation with
available precision resources. The methodology enlists three types of quantization tech-
niques available in TFLM API. These techniques are post-training quantization techniques,
and their description is given as follows.

Figure 6. Thirty-two bit float tensor to 8-bit integer conversion [27].

4.1. Reduced Float

The model parameters are converted from a 32-bit floating-point representation to a
16-bit word. The TFLM provides this conversion mechanism by simply checking some flags.
It presents a 2× size reduction and promotes faster inference with negligible accuracy loss.



IoT 2023, 4 67

4.2. Hybrid Quantization

Weight parameters are an 8-bit integer; the activations are a 16-bit float and biases as
an 8-bit float. It includes both integer and floating-point computations. According to the
documentation, it can reach a four-times reduction in model size, 10–50% faster inference
for convolutional models, and 2–3× faster on fully connected layers.

4.3. Integer Quantization

The model compression is similar to hybrid quantization, but all the computations
are performed in integers. However, it requires a small amount of data, approximately 100
samples, to represent floating-point values to int-8 representation.

To reduce the model size, the study implements integer quantization, where small
samples of the dataset are fed into the quantization function and use the open APIs of the
TensorFlow quantization technique to port the best model, as shown in Section 3.4, and
find the evaluation metrics shown in Section 3.5.

4.4. Model Deployment

The best model was selected through the training and evaluation procedures defined
previously. To accurately detect human gait patterns on a resource-constrained device,
the deployment of an ML model involves several components, as shown in Figure 7. The
process begins with the preparation of IMU data and Euler angles in a window format,
which is then used as input to an externally trained model. The model produces a classified
output, which is sent to other devices via a serial connection for display purposes.

Figure 7. Inference system block diagram.



IoT 2023, 4 68

The program’s main loop comprises five major parts for the TinyML system architec-
ture. Firstly, the accelerometer handler captures accelerometer data in a specific window
circular buffer with fixed overlapping factors that were determined in the model evaluation
process. The data from the accelerometer, gyroscope, and orientation angles are combined
into resultant vectors in a particular window length before being sent to the OpResolver
(Model inference method) of the TfLite Interpreter for ARM deployment.

Then, the program maintains a history of all the classified motions, which is sent to a
motion predictor algorithm. The algorithm checks whether the forecast is the same class
for a certain number of windows, which helps to further rule out false positives or noisy
input. Finally, the final classified class is sent as input to call the necessary output method.

The inference logic is handled by Raspberry Pi during ARM deployment. The program
is designed to allow for the runtime selection of the inference method, with the model
selection defined in a configuration file on the server. In conclusion, the proposed method
combines automatic feature extraction from CNN layers with statistical features and uses a
combination of CNN and LSTM for activity recognition. It is optimized for deployment on
an ARM chip and inference using a Raspberry Pi, and has the ability to accurately detect
abnormal gait patterns using a resource-constrained device.

5. Experimental Results and Discussion
5.1. Experimental Setup

The study involved capturing gait patterns from 21 participants, who simulated both
pathological and normal gait in a department hallway. Prior to the experiment, participants
signed a consent form and wore a data logger instrument on both their left and right feet.
The data logger instrument was custom-built to record and pause activities, which allowed
for an average capture duration of approximately 18 min for all five gait classes. In total,
16K window samples were recorded for all five gait activities.

5.2. Data Description

The participants’ descriptions are shown in Table 5, ranging in age from 24 to 37 years,
with an average age of 27.8 years. The maximum weight of the participants was around
90 kg, and the minimum was approximately 49 kg. The average height of all participants
was approximately 166 cm, with maximum and minimum heights of 181 and 150 cm,
respectively. The overall average body mass index of the participants was approximately
24, which was considered a typical value for a healthy participant.

Table 5. Participants’ age, weight, and height description.

- Min Mean Max

Age (years) 24 27.8 37
Weight (kg) 49 66.4 90
Height (cm) 150 166.44 181

The sampling rate was set to 104 Hz (maximum resolution for the accelerometer), and
the distribution of the recorded windows for all gait classes is similar, this is done so to
reduce the biases in the data set.

Figure 8 depicts the walking pattern of a healthy participant randomly chosen partici-
pant out of 21, which shows the characteristic signals of acceleration, gyroscope, and Euler
angle components versus time. The figure shows that a gait pattern repeats after a certain
interval, indicated by dotted lines in Figure 8a–c. For this participant, the interval for the
pattern repetition was approximately 1.2 s for the walking activity.



IoT 2023, 4 69

(a) (b)

(c)

Figure 8. Acceleration, gyroscope, and Euler angle component for a normal walking pattern of a
random person from the dataset repeating at an interval of approximately 1.2 s. (a) Acceleration
pattern in the X, Y, and Z directions versus time for normal gait; (b) Gyroscope pattern in the X, Y,
and Z directions versus time for normal gait; (c) Euler angles pattern in yaw, pitch, and roll versus
time for normal gait.

5.3. Best Models

The dataset underwent the model training procedure as described in Section 3.4,
followed by the model evaluation procedure as described in Section 3.5. The best model
was chosen from the output of the various overlapping datasets for each deep learning
architecture. Almost all of the best models for all architectures were found at an 80% overlap
of datasets. The training process description and testing results for all three architectures
are discussed below:



IoT 2023, 4 70

Firstly, Figure 9a shows the results of the train/test loss and accuracy versus the total
number of epochs for 80% overlap. The loss starts at approximately 1.6 and gradually
decreases until the 40th epoch, while the training and validation accuracy increases sharply
until the 10th epoch and gradually increases afterward until approximately 70%.

(a) CNN architecture training accuracy and loss curve. (b) CNN-Statistics architecture training accuracy and loss curve.

(c) CNN-LSTM architecture training accuracy and loss curve.

Figure 9. Loss and accuracy convergence during training for CNN, CNN-Stats, and CNN-LSTM
architectures.

Secondly, a similar result was found using the CNN-Statistics model (80% overlap)
in Figure 9b. Using statistical features also helps the training procedure achieve faster
convergence, as the loss decreases sharply at the beginning. The main difference with a
simple CNN model is that the optimizer’s convergence at the beginning of the training
procedure is relatively fast. The values of the training loss and testing loss are close to
each other, and the accuracy of the training and test data is also close, indicating that no
overfitting occurred during the training procedure.

Finally, Figure 10c shows the training and testing results of the CNN-LSTM model from
the 80% overlap dataset. The train/validation accuracy is similar to the train/validation
losses. The maximum validation accuracy is approximately 95%, and the minimum valida-
tion loss is approximately 0.2. The best model was saved to infer the test data.

In conclusion, among the above CNN and CNN-Statistics architecture, the CNN-LSTM
outperformed both models during the training and testing procedure. The validation
accuracy achieved for this model was approximately 84%, while the test accuracy achieved
for this model was approximately 88%.



IoT 2023, 4 71

(a) CNN architecture: Precision, Recall, and F1-score trend with overlap datasets.

(b) CNN with statistical features: Precision, Recall, and F1-score trend with overlap datasets.

(c) CNN-LSTM: Precision, Recall, and F1-score trend with overlap datasets.

Figure 10. Comparison of evaluation metrics of three deep learning models versus overlap percentage
of the dataset.

5.4. Evaluation Metrics

Figure 10a shows the recall, precision, and F1-score for all gait activities with over-
lapping datasets. The results indicate that for the no-activity class, all models across all
overlapping datasets can generalize the class with approximately 100% precision, recall,
and F1-score. For the other classes, precision, recall, and F1-score range from approximately
40% to 90%. Furthermore, the figure shows that the CNN model struggles to generalize to
other gait classes, with the exception of the no-movement activity. However, there is an
upward trend in precision, recall, and F1-score for all datasets as the overlap increases.

Figure 10b shows the precision, recall, and F1-score for the CNN-Statistics model for
all gait activities for different overlapping datasets. A trend can be seen where precision,
recall, and F1 values increase as the overlap increases for all gait activities. Comparatively,
the CNN-Statistics model has better generalization than the CNN network, as seen in the
training dataset of 80% overlap where the F1-score, recall, and precision values are all
above 65%, while for the CNN model, they are just above 40%. The figure shows that
precision, recall, and F1-score decrease for 90% overlap, indicating overfitting. However,
until 80% overlap, the model has the highest precision, recall, and F1 values, indicating
neither overfitting nor underfitting.

Figure 10c shows that the CNN-LSTM has higher generalization capability compared
to the other architectures during the testing process. The precision, recall, and F1-score for
all overlapping datasets are above 70%. The maximum precision, recall, and F1-score can be
observed at 80% overlap, where for all captured gait activities, the percentage is above 80%.



IoT 2023, 4 72

5.5. Loss and Accuracy Evaluation

Table 6 shows the validation/training loss and validation/training accuracy for all
model architectures, as well as the relationship between overlapping datasets and loss
and accuracy metrics. For the CNN architecture, the maximum validation accuracy and
minimum validation loss are achieved at 80% overlap. The test loss is at approximately
0.33 and the test accuracy is approximately 0.90. As overlap increases, there is a significant
improvement in the test loss and test accuracy.

Table 6. Validation loss, test loss, validation accuracy and test accuracy for various overlapping
windows for CNN, CNN-Stat and CNN-LSTM model.

CNN CNN-Stat CNN-LSTM

OP VL VL TL VA TA VL TL VA TA VL TL VA TA

0 0.67 0.78 0.78 0.73 0.88 0.95 0.71 0.68 0.23 0.73 0.92 0.78
10 0.78 0.98 0.77 0.69 0.61 0.72 0.77 0.74 0.52 0.45 0.82 0.86
20 0.70 0.80 0.70 0.67 0.42 0.58 0.84 0.81 0.41 0.90 0.88 0.77
30 0.97 0.87 0.64 0.64 0.35 0.77 0.87 0.72 0.60 0.68 0.79 0.82
40 0.66 0.43 0.73 0.84 0.36 0.69 0.86 0.74 0.45 0.46 0.86 0.86
50 0.73 0.68 0.77 0.77 0.35 0.68 0.87 0.77 0.57 0.28 0.79 0.91
60 0.57 0.89 0.78 0.64 0.35 0.81 0.88 0.71 0.61 0.58 0.78 0.84
70 0.38 0.82 0.87 0.70 0.34 0.58 0.89 0.80 0.18 0.99 0.94 0.78
80 0.66 0.33 0.75 0.90 0.50 0.55 0.83 0.83 0.49 0.44 0.84 0.88
90 0.33 0.54 0.88 0.79 0.56 0.76 0.80 0.76 0.22 1.55 0.93 0.74

Overlap percentage (OP), validation loss (VL), test loss (TL), validation accuracy (VA), test accuracy (TA).

For the CNN-Stats architecture, the highest validation accuracy and lowest validation
loss are achieved at 70% overlap. However, the minimum test loss and accuracy are
achieved at 80% overlap, with values of 0.55 and 83%, respectively. At 80% overlap, the
validation loss and test loss are similar, indicating that the model is neither underfitting nor
overfitting. The best model for the CNN-LSTM architecture is found at 50% overlap, with
the highest test accuracy and lowest loss of approximately 0.91 and 0.28, respectively.

Based on validation/test losses and validation/test accuracy, the best models for
CNN, CNN-Stats, and CNN-LSTM are chosen with 80%, 80%, and 50% overlapping
data, respectively.

5.6. Overlapping Dataset Accuracy and Loss Trend

Increasing both the test and validation accuracy can be seen as the overlapping of data
increases. Similarly, a trend of decreasing loss can be seen for both test and validation loss
as the overlapping of data increases. For a simple CNN network, a significant impact on
the test accuracy and loss can be seen in Figure 11a.

In Figure 11b, it can be seen that the validation and test accuracy increase as the
percentage of overlapping data increases, and similarly, the validation and test loss decrease
as the overlap percentage increases. However, accuracy decreases and loss increases at
higher percentages of overlapping data, suggesting that the model tends to overfit a higher
percentage of the overlapping dataset for the CNN statistical feature network. On the
other hand, in Figure 11c, the relationship between accuracy and loss for the CNN-LSTM
architecture shows that the overlapping dataset does not significantly impact the accuracy
or loss during training. The trend for all overlapping data is quite similar. However,
the test loss is observed to be higher at higher percentages of overlapping datasets for
this architecture.



IoT 2023, 4 73

(a) CNN accuracy and losses trend for different overlapping windows

(b) CNN with statistical features accuracy and losses trend for different overlapping windows

(c) CNN LSTM accuracy and losses trend for different overlapping windows

Figure 11. Loss and accuracy trend curve of the overlapping dataset for CNN, CNN-Stats, and
CNN-LSTM architecture.

5.7. Deployment Results

The final model was chosen based on the minimum test loss and maximum accuracy
and was subject to post-training quantization. Table 7 shows the size of the deep learning
models in kilobytes (kB). The smallest model is the CNN model with approximately
224.5 kB, and the largest one is the CNN-LSTM with approximately 1700 kB.

Table 7. Model sizes for CNN, CNN-Stats, and CNN-LSTM.

SN Model Name Size in kB

1 CNN 224.5
2 CNN-Statistics 232.4
3 CNN-LSTM 1700

The Keras model was converted to TensorFlow.js [28] format to run the inferences on a
Raspberry Pi 3. The data logger software was modified to include a feature for handling the
inference. A circular buffer was implemented to store the accelerometer data for a length of
128. All of the converted TensorFlow.js models were deployed to the Raspberry Pi.



IoT 2023, 4 74

The benchmarks for the inference can be seen in Figure 12, where the time taken
for the CNN-LSTM model is much faster for 1000 inferences than for CNN models. The
total and average inference times for both CNN and CNN statistic models are similar. In
contrast, the average inference time for the CNN-LSTM model is faster than other models
by approximately 300 milliseconds for 1000 inferences.

Figure 12. Inference time and throughput benchmarks on Raspberry Pi.

In summary, the test results for the CNN, CNN-Stats, and CNN-LSTM models were
satisfactory, with accuracy levels above the 85% confidence level. The inference time for
these models on a single CPU of 1.2 GHz Raspberry Pi 3 was less than 0.2 s. Among the
models, the simple CNN network had the smallest memory footprint, while CNN-LSTM
had the largest memory footprint. However, during the post-quantization conversion,
the generalization capability of the models was not preserved, resulting in damage to
the models. Consequently, the deployment of the models to the microcontroller was not
entirely successful. However, an alternative method was used to deploy the models to the
Raspberry Pi B+ model. The detailed summary is provided in Table 8.

Table 8. Results summary.

Algorithm Max Test
Accuracy Comment

CNN 90

Overlapping datasets have a significant impact on the
trend of training and testing accuracy. Precision, re-
call, and F1-score were well above 60% for all the gait
classes. The average throughput for inference was ap-
proximately between 0.2 and 0.22 s.

CNN-Statistics 83

Overlapping datasets have a significant impact on the
trend of the training and testing accuracy. Precision,
recall, and F1-score were well above 70% for all the gait
classes. The average inference time was approximately
between 0.2 and 0.22 s.

CNN-LSTM 91

Overlapping have minimal effect on the trend of train-
ing and testing accuracy. Precision, recall, and F1-score
were well above 75% for all the gait classes. The aver-
age inference time is approximately 0.17 s.

The results of the proposed study and other research are listed in Table 9. Most of the
research has not focused on deployment and inference on low-powered embedded devices.
Our study fills the gap between model deployment and inference techniques in ARM SoC.
In comparison with [29], which employs a single IMU sensor attached to the participant’s



IoT 2023, 4 75

waist, our study attaches the sensor to a single foot during the inference stage, opening
up the possibility of targeting a wider audience with wearable foot sensors instead of
belts. Additionally, our study provides proof of concept for the multi-label classification of
pathological gait, whereas the previous study is limited to binary classification. Compared
with other studies such as [16,29], our accuracy is slightly lower because the main focus
of the study was model deployment and inference on memory-constrained devices. It
would have been possible to achieve higher accuracy by taking more parameters into
consideration, but this would have increased the model size. Therefore, we aimed to strike
a balance between accuracy and memory size to make the model deployable without
sacrificing too much accuracy during the inference process. This study was able to provide
a bridge between the gap using the above methodology and results.

Table 9. Comparison of previous literature with the proposed study.

Reference Algorithm Data Collection Accuracy ARM Inference Pathology/Task
Output

Proposed study CNN

Wearable IMU device
on both foot of
21 subjects.

90 Yes
Pathology gait
classification:
propulsive, spastic,
waddling, and
normal.

Proposed study CNN-Statistics

Wearable IMU device
on both foot of
21 subjects.

88 Yes
Pathology gait
classification:
propulsive, spastic,
waddling, and
normal.

Proposed study CNN-LSTM

Wearable IMU device
on both foot of
21 subjects.

88–91 Yes
Pathology gait
classification:
propulsive, spastic,
waddling, and
normal.

Iosa et al. (2021)
[29] ANN

IMU at waist belt. 93.9 N/A
Stroke prognostic
tool for binary
classification of
ability to work.

Mutegeki and Han
(2020) [30] CNN DREAM-PDDB

challenge AUC = 0.87 N/A Pathology gait.

Gao et al. (2019)
[16]

LSTM-CNN,
LCWSnet

IMU on ankle. 92 N/A
Abnormal gait
hemiplegic, tiptoe,
and cross-threshold
gait.

Ignatov (2018) [20] CNN-Statistics UCI-HAR, WISDM 82.4 N/A Activity recognition.

6. Conclusions

The ability to detect walking abnormalities, or gait patterns, has a significant impact
on the quality of life for individuals. This study was able to develop a wearable device that
captures walking patterns, trains the dataset using advanced deep-learning algorithms, and
infers the model using SoC. The most effective models were identified using classification
evaluation metrics and deployed on a portable single-board computer for multi-CPU
inference to detect abnormal walking patterns. The study also evaluated the single-CPU
execution time for these models to determine the time required for inference. Furthermore,
the study was able to show the performance improvement of the overlapping dataset in
the CNN and CNN-Statistics models. In conclusion, this study successfully created a gait
abnormality detection device that can distinguish various abnormal gait activities and has
the potential to improve individuals’ quality of life.



IoT 2023, 4 76

7. Future Enhancement

During the implementation and deployment of the gait abnormal detection device
model, the initial goal of the study was to evaluate the models in Nordic nRF52840. How-
ever, CNN-LSTM had a larger memory footprint and the post-trained quantized model was
not able to predict gait activities due to existing issues in the TFLM library. To overcome
these limitations, a different target device ARM was chosen for the study and all three mod-
els were successfully deployed. Thus, the deployment of CNN-LSTM in Nordic nRF52840
can be revisited with model-pruning with post-training quantization. Furthermore, for
future enhancement, the device can be extended to track gait patterns for an individual
for a longer period of time and then make an alert system that the gait pattern is either
normal or has changed due to some underlying conditions. In addition, future research
could explore other deep learning architectures to achieve state-of-the-art results.

Author Contributions: Conceptualization, S.S. and A.T.; methodology, S.S. and A.T.; software, S.S.;
writing—original draft, S.S.; writing—review and editing, S.S., A.T. and C.S.; visualization, S.S.;
supervision, A.T.; project administration, A.T.; funding acquisition, A.T. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Semwal, V.B.; Katiyar, S.A.; Chakraborty, P.; Nandi, G. Biped model based on human Gait pattern parameters for sagittal plane

movement. In Proceedings of the 2013 International Conference on Control, Automation, Robotics and Embedded Systems
(CARE), Jabalpur, India, 16–18 December 2013; IEEE: New York, NY, USA, 2013; pp. 1–5.

2. Flagg, C.; Frieder, O.; MacAvaney, S.; Motamedi, G. Real-time Streaming of Gait Assessment for Parkinson’s Disease.
In Proceedings of the 14th ACM International Conference on Web Search and Data Mining, Jerusalem, Israel, 8–12 March
2021; pp. 1081–1084.

3. Aich, S.; Choi, K.; Hee-Cheol, K. A Machine Learning Approach to Discriminate the Parkinsons Disease from Other Neurological
Diseases Using Different Feature Selection Techniques Based on Gait Parameters. In Proceedings of the International Conference
on Future Information & Communication Engineering, Pune, India, 11–13 July 2018; Volume 10, pp. 355–358.

4. Darbandi, H.; Baniasad, M.; Baghdadi, S.; Khandan, A.; Vafaee, A.; Farahmand, F. Automatic classification of gait patterns in
children with cerebral palsy using fuzzy clustering method. Clin. Biomech. 2020, 73, 189–194. [CrossRef] [PubMed]

5. Maghded, H.S.; Ghafoor, K.Z.; Sadiq, A.S.; Curran, K.; Rawat, D.B.; Rabie, K. A novel AI-enabled framework to diagnose
coronavirus COVID-19 using smartphone embedded sensors: Design study. In Proceedings of the 2020 IEEE 21st International
Conference on Information Reuse and Integration for Data Science (IRI), Online, 4–6 August 2020; IEEE: New York, NY, USA,
2020; pp. 180–187.

6. Cui, C.; Bian, G.B.; Hou, Z.G.; Zhao, J.; Su, G.; Zhou, H.; Peng, L.; Wang, W. Simultaneous recognition and assessment of
post-stroke hemiparetic gait by fusing kinematic, kinetic, and electrophysiological data. IEEE Trans. Neural Syst. Rehabil. Eng.
2018, 26, 856–864. [CrossRef] [PubMed]

7. Cao, Z.; Zhu, C.; Zhou, Y.; Wang, Y.; Chen, M.; Ju, Y.; Zhao, X. Risk factors related balance disorder for patients with
dizziness/vertigo. BMC Neurol. 2021, 21, 1–9. [CrossRef] [PubMed]

8. Harris, E.J.; Khoo, I.H.; Demircan, E. A Survey of Human Gait-Based Artificial Intelligence Applications. Front. Robot. AI 2021,
8, 749274. [CrossRef] [PubMed]

9. Chen, P.z.; Li, J.; Luo, M.; Zhu, N.H. Real-time human motion capture driven by a wireless sensor network. Int. J. Comput. Games
Technol. 2015, 2015, 4. [CrossRef]

10. Chang, H.C.; Hsu, Y.L.; Yang, S.C.; Lin, J.C.; Wu, Z.H. A wearable inertial measurement system with complementary filter for
gait analysis of patients with stroke or Parkinson’s disease. IEEE Access 2016, 4, 8442–8453. [CrossRef]

11. Fridriksdottir, E.; Bonomi, A.G. Accelerometer-based human activity recognition for patient monitoring using a deep neural
network. Sensors 2020, 20, 6424. [CrossRef] [PubMed]

12. Edge, J.S.; O’Kane, S.; Prosser, R.; Kirkaldy, N.D.; Patel, A.N.; Hales, A.; Ghosh, A.; Ai, W.; Chen, J.; Jiang, J.; et al. Lithium ion
battery degradation: What you need to know. Phys. Chem. Chem. Phys. 2021, 23, 8200–8221. [CrossRef] [PubMed]

13. Kumar, A.; Goyal, S.; Varma, M. Resource-efficient machine learning in 2 kb ram for the internet of things. In Proceedings of the
International Conference on Machine Learning. PMLR, Sydney, NSW, Australia, 15–17 November 2017; pp. 1935–1944.

14. Jain, R.; Semwal, V.B.; Kaushik, P. Stride segmentation of inertial sensor data using statistical methods for different walking
activities. Robotica 2021, 40, 2567–2580. [CrossRef]

http://doi.org/10.1016/j.clinbiomech.2019.12.031
http://www.ncbi.nlm.nih.gov/pubmed/32007827
http://dx.doi.org/10.1109/TNSRE.2018.2811415
http://www.ncbi.nlm.nih.gov/pubmed/29641390
http://dx.doi.org/10.1186/s12883-021-02188-7
http://www.ncbi.nlm.nih.gov/pubmed/33964889
http://dx.doi.org/10.3389/frobt.2021.749274
http://www.ncbi.nlm.nih.gov/pubmed/35047564
http://dx.doi.org/10.1155/2015/695874
http://dx.doi.org/10.1109/ACCESS.2016.2633304
http://dx.doi.org/10.3390/s20226424
http://www.ncbi.nlm.nih.gov/pubmed/33182813
http://dx.doi.org/10.1039/D1CP00359C
http://www.ncbi.nlm.nih.gov/pubmed/33875989
http://dx.doi.org/10.1017/S026357472100179X


IoT 2023, 4 77

15. Mantyjarvi, J.; Lindholm, M.; Vildjiounaite, E.; Makela, S.M.; Ailisto, H. Identifying users of portable devices from gait
pattern with accelerometers. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP’05), Philadelphia, PA, USA, 23 March 2005; IEEE: New York, NY, USA, 2005; Volume 2, p. 973.

16. Gao, J.; Gu, P.; Ren, Q.; Zhang, J.; Song, X. Abnormal gait recognition algorithm based on LSTM-CNN fusion network. IEEE
Access 2019, 7, 163180–163190. [CrossRef]

17. Patil, P.; Kumar, K.S.; Gaud, N.; Semwal, V.B. Clinical human gait classification: Extreme learning machine approach.
In Proceedings of the 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT),
Dhaka, Bangladesh, 3–5 May 2019; IEEE: New York, NY, USA, 2019; pp. 1–6.

18. Arduino. Arduino Nano 33 Ble Sense. 2019. Available online: https://docs.arduino.cc/hardware/nano-33-ble-sense (accessed
on 20 February 2023).

19. Microelectronics, S. iNEMO Inertial Module: 3D Accelerometer, 3D Gyroscope, 3D Magnetometer; ST Microelectronics: Geneva,
Switzerland, 2015.

20. Ignatov, A. Real-time human activity recognition from accelerometer data using Convolutional Neural Networks. Appl. Soft
Comput. 2018, 62, 915–922. [CrossRef]

21. Qiao, D.; Pang, G.K.; Kit, M.M.; Lam, D.C. A new PCB-based low-cost accelerometer for human motion sensing. In Proceedings
of the 2008 IEEE International Conference on Automation and Logistics, Qingdao, China, 1–3 September 2008; IEEE: New York,
NY, USA, 2008; pp. 56–60.

22. Peppas, K.; Tsolakis, A.C.; Krinidis, S.; Tzovaras, D. Real-time physical activity recognition on smart mobile devices using
convolutional neural networks. Appl. Sci. 2020, 10, 8482. [CrossRef]

23. Mutegeki, R.; Han, D.S. A CNN-LSTM approach to human activity recognition. In Proceedings of the 2020 International
Conference on Artificial Intelligence in Information and Communication (ICAIIC), Fukuoka, Japan, 19–21 February 2020; IEEE:
New York, NY, USA, 2020; pp. 362–366.

24. Mekruksavanich, S.; Jitpattanakul, A. A Multichannel CNN-LSTM network for daily activity recognition using smartwatch
sensor data. In Proceedings of the 2021 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern
Section Conference on Electrical, Electronics, Computer and Telecommunication Engineering, Cha-am, Thailand, 3–6 March 2021;
IEEE: New York, NY, USA, 2021; pp. 277–280.

25. Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv 2013, arXiv:1312.4400.
26. Faraone, A.; Delgado-Gonzalo, R. Convolutional-recurrent neural networks on low-power wearable platforms for cardiac

arrhythmia detection. In Proceedings of the 2020 2nd IEEE International Conference on Artificial Intelligence Circuits and
Systems (AICAS), Genova, Italy, 31 August–2 September 2020; IEEE: New York, NY, USA, 2020; pp. 153–157.

27. David, R.; Duke, J.; Jain, A.; Reddi, V.J.; Jeffries, N.; Li, J.; Kreeger, N.; Nappier, I.; Natraj, M.; Regev, S.; et al. Tensorflow lite micro:
Embedded machine learning on tinyml systems. arXiv 2020, arXiv:2010.08678.

28. TFJS. TensorFlow JavaScript Library. 2020. Available online: https://www.tensorflow.org/js (accessed on 20 February 2023).
29. Iosa, M.; Capodaglio, E.; Pelà, S.; Persechino, B.; Morone, G.; Antonucci, G.; Paolucci, S.; Panigazzi, M. Artificial Neural Network

analyzing wearable device gait data for identifying patients with stroke unable to return to work. Front. Neurol. 2021, 12, 561.
[CrossRef] [PubMed]

30. Zhang, H.; Deng, K.; Li, H.; Albin, R.L.; Guan, Y. Deep learning identifies digital biomarkers for self-reported Parkinson’s disease.
Patterns 2020, 1, 100042. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2019.2950254
https://docs.arduino.cc/hardware/nano-33-ble-sense
http://dx.doi.org/10.1016/j.asoc.2017.09.027
http://dx.doi.org/10.3390/app10238482
https://www.tensorflow.org/js
http://dx.doi.org/10.3389/fneur.2021.650542
http://www.ncbi.nlm.nih.gov/pubmed/34093396
http://dx.doi.org/10.1016/j.patter.2020.100042
http://www.ncbi.nlm.nih.gov/pubmed/32699844

	Introduction
	Related Work
	Methodology
	Data Acquisition
	Preprocess and Data Augmentation
	Model Design
	CNN Architecture
	CNN-Statistics
	CNN-LSTM

	Model Training
	Evaluation Metrics

	Model Compression: Quantization
	Reduced Float
	Hybrid Quantization
	Integer Quantization
	Model Deployment

	Experimental Results and Discussion
	Experimental Setup
	Data Description
	Best Models
	Evaluation Metrics
	Loss and Accuracy Evaluation
	Overlapping Dataset Accuracy and Loss Trend
	Deployment Results

	Conclusions
	Future Enhancement
	References

