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Abstract: Short-term energy-consumption forecasting plays an important role in the planning of en-
ergy production, transportation and distribution. With the widespread adoption of decentralised
self-generating energy systems in residential communities, short-term load forecasting is expected to
be performed in a distributed manner to preserve privacy and ensure timely feedback to perform
reconfiguration of the distribution network. In this context, edge computing is expected to be an en-
abling technology to ensure decentralized data collection, management, processing and delivery. At the
same time, federated learning is an emerging paradigm that fits naturally in such an edge-computing
environment, providing an AI-powered and privacy-preserving solution for time-series forecasting. In
this paper, we present a performance evaluation of different federated-learning configurations resulting
in different privacy levels to the forecast residential energy consumption with data collected by real
smart meters. To this aim, different experiments are run using Flower (a popular federated learning
framework) and real energy consumption data. Our results allow us to demonstrate the feasibility of
such an approach and to study the trade-off between data privacy and the accuracy of the prediction,
which characterizes the quality of service of the system for the final users.
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1. Introduction

Short-term energy-consumption forecasting will represent a crucial functionality for
the management of the future energy grid infrastructure. An accurate energy demand
prediction is essential to accurately plan energy production and transportation, which is
crucial for the grid management, especially in the future energy infrastructure characterized
by a large share of renewable energy sources with variable production [1].

An accurate energy-consumption forecast for the next 48 h for households, offices and
industrial plants, could be used to increase the power system stability by minimizing the
peaks of demand: an inactivation system, e.g., by dynamically varying the energy price, can
be introduced to foster the usage of energy demanding appliances/industrial equipment
when the most renewable energy is being generated, and an automated management
system for electric vehicles can be introduced to schedule their charge only in periods with
low-energy consumption.

Energy consumption prediction requires the analysis of both real-time and historical
consumption data. The collection of energy consumption readings in real time is usually
performed by smart meters, i.e., connected power meters that can communicate their
readings to a cloud platform, for instance. On the cloud platform, a machine-learning
(ML) service could analyse the data and predict future energy consumption as was already
demonstrated to be effective in [2]. Energy consumption data, however, is sensitive data as
it can disclose sensitive and personal information that could be used maliciously. House-
hold energy consumption data could reveal periods in which nobody is at home, while
warehouse energy consumption could disclose additional information about production
quantities or production processes.
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For this reason, a cloud-based solution where data is continuously offloaded to an
external system through an internet connection is not desirable as it exposes personal
data to external threats and attacks. In order to implement future energy management
systems, we have the need for energy forecast solutions that preserve privacy while still
providing the prediction information that is crucial for energy production configuration or
appliance optimization. Towards this direction, recently, two computing paradigms have
been introduced: edge computing and federated learning.

Edge computing is a novel computing architecture that goes beyond the centralized
cloud-based architecture by installing an intermediate computing layer, the fog/edge-
computing layer [3]. Fog/edge-computing nodes are installed in the proximity of (or
co-located with) the cyberphysical systems to support the deployment of applications and
data analysis services that have latency and privacy requirements. Privacy, in particular,
is preserved with Fog/Edge computing as sensitive data can be analysed on Fog/Edge
nodes, i.e., in systems placed on the same infrastructure of the data owners, thus, allowing
the implementation of data analysis processes that do not require transmission to external
systems. For instance, an ML based predictor could be deployed at the edge to analyse
energy consumption data and predict future demand from a single household.

ML solutions, however, still require a training phase that is usually performed in
a cloud-based environment, which can provide storage and computing capabilities to
analyse large historical data. In order to avoid this practice, data security can be further
enforced by adopting federated learning (FL) [4,5], a novel ML technique that trains models
across multiple decentralized edge devices. With FL, each edge device can train on a local
dataset and transmit to a centralized server only the trained model and not the data. The
centralized server can exploit the different trained models from the edge devices to create a
global model with higher confidence, which eventually can be transmitted back to each
edge device for data analysis.

In this paper, we investigate the possibility of adopting FL for residential energy
forecasting. The goal is to derive an approach that can enforce data protection by using FL
and edge computing, while it still guarantees the proper quality of service. A good quality
of prediction from the model is a crucial non-functional requirement, essential to ensure the
precision of the operations of other services for grid management and an energy production
plan. In this work, we first train a long short-term memory (LSTM) neural network using a
dataset with energy consumption data from real smart meters in a residential area.

Subsequently, we perform a set of experiments to compare the centralized and fed-
erated approaches to analyse the accuracy of the forecasting in both the configurations.
Different edge-computing/federated-learning configurations with varying levels of privacy
are considered. The results of our experiments, obtained using Flower, a popular frame-
work to test federated-learning solutions and real energy consumption data, highlighted
the feasibility of using an approach based on federated learning, as it does not result in a
significant reduction in the accuracy of the prediction w.r.t. a centralized approach.

The experiments considering different federated-learning configurations with different
privacy levels showed only a small reduction of accuracy among the different configura-
tions, with each one, however, resulting in a different level of privacy. Our results also
highlighted a small overhead in terms of the network communication for the federated-
learning solution, thus, confirming the feasibility of its adoption with any wired and
wireless wide-area communication technology.

To summarize, the contributions of the paper are twofold:

• The feasibility of exploiting federated learning for energy forecast prediction is as-
sessed via a realistic set of experiments that compare the performance of federated
learning against a centralized approach.

• Multiple edge-computing/federated-learning architectures with different privacy
levels are evaluated to measure the overhead of each configuration and the provided
level of accuracy.
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Our experimental investigation is achieved by means of four research questions that
are addressed in our experiments: two research questions, RQ1 and RQ2, that aim at
assessing the performance of an LSTM model in a centralized (RQ1) and federated (RQ2)
architecture, respectively, and two research questions, RQ3 and RQ4, that aim to assess the
performance penalty (RQ3) and the issues (RQ4) in adopting a federated approach in the
considered use case.

The paper is structured as follows: In Section 2, we overview the related work. In
Section 3, we provide a short introduction to the technical background. In Section 4,
we report the methodology that we used in our experiments, while in Section 5, we
offer a report of the results obtained by our experiments. Finally, in Section 6, we draw
our conclusions.

2. Related Work

Recently, several works have been proposed in the literature for energy forecasting,
exploiting different heterogeneous techniques [6]. Auto Regressive Integrated Moving
Average (ARIMA) models represent the first major family of techniques to model time series
for future prediction. Recurrent neural networks—in particular LSTM networks—represent
the second major family of approaches and have been demonstrated to be effective to
analyse historical data and predict future demand in the short-term.

Focusing on power consumption forecasting, Wang et al. [7] demonstrated that LSTM
models can outperform ARIMA models by up to a 22% reduction in terms of the root mean
square error (RMSE), by using a dataset composed of 20,000 users from one supply station
over one year. Mpawenimana et al. [8] performed a comparison of ARIMA and LSTM
models on the IHEPCD dataset (https://archive.ics.uci.edu/ml/datasets/individual+
household+electric+power+consumption, accessed on 5 July 2022), composed of a sin-
gle user over a period of four years. The IHEPCD dataset contains around 1.25% of missing
values; thus, different replacement strategies have been implemented. For any replacement
strategy, the LSTM model outperforms the ARIMA model in terms of the RMSE.

The majority of such works, however, adopt a centralized approach for data collection
and analysis, e.g., [9–11]. For instance, [10] is one of the first works to propose an LSTM-
based algorithm to predict energy consumption [10] in the context of individual residential
households. The authors compared multiple benchmarks using a real-world dataset. The
comparison showed that better results could be achieved by using an LSTM rather than
other types of networks. This is achieved due to the ability of LSTMs to learn long-term
temporal connections.

A centralized approach requires all the data to be offloaded to a centralized system,
thus, representing a significant security issue that can be critical in some cases depending
on the scope of the data [12]. Such solutions, however, do not consider data privacy at
all; nonetheless, this aspect is widely investigated in the context of IoT. Multiple privacy-
preserving solutions have been proposed, for instance, in [13], a privacy-preserving ap-
proach to prevent the disclosure of data produced by IoT devices based on techniques, such
as k-anonymity and t-closeness is proposed.

A privacy-preserving approach by design is federated learning, which has been
adopted in the context of smart buildings to implement a wide range of functionali-
ties related with energy consumption and production prediction. For instance, in [14],
a federated-learning approach to predict the energy demand of charging stations was
proposed to optimize the electric vehicle charging network. In [15], the authors proposed
a federated-learning-based solution for anomaly detection in the energy consumption of
smart buildings.

Only a few works proposed distributed solutions for residential energy prediction
based on federated learning. In [16], a federated-learning approach for the load forecasting
of Smart Meter data was proposed. Specifically, the authors assessed two federated-learning
strategies—namely, FedSGD and FedAVG. The model adopted was an LSTM, as it has been
demonstrated in the literature to provide good results in energy prediction. The two FL

https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
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methods are compared with central training and individual LSTM models, i.e., an LSTM
model trained for each Smart Meter without using FL.

The experiments showed that the two federated-learning strategies adopted achieve
an higher level of accuracy w.r.t. the central model and the individual LSTMs considering
one hour forecasting. The proposed approach also considered a dynamic environment
where some Smart Meters join the federation after the training is complete and use the
already trained model for load forecasting. The results demonstrated that, even in this
scenario, FedAVG and FedSGD can result in high accuracy.

With respect to [16], in this work, we aim at assessing the performance of FL for en-
ergy prediction, considering different edge-computing/federated-learning configurations
resulting in different privacy levels. Compared with other works, we not only assess the
resulting prediction quality of federated learning against the centralized approach but also
also evaluate different distributed configurations, as they can be suitable to accommodate
the heterogeneous deployments of the power grid.

3. Technical Background

In this section, we offer an overview of the technical background. Specifically, we first
introduce the concept of federated learning (FL) in Section 3.1, and then we present the
long short-term memory model in Section 3.2.

3.1. Federated Learning

In a centralized architecture for energy monitoring and forecast, local data from the
users is continuously offloaded to a central server, e.g., a cloud-based system. These data
are used to train a forecast model and to create a global model. This approach does not
preserve the privacy of the users, as they need to share their personal data. An example
of a centralized architecture for energy monitoring and forecast is presented in Figure 1:
each household is equipped with a smart meter to collect data on energy consumption,
periodically the local data is offloaded to a centralized server that collects all the data on
a centralized data repository that is used to train a global model for energy prediction.
After the training phase, such model is then used to predict the energy demand of each
household based on the local data periodically provided by each smart meter.

A approach to overcome such a limitation is federated learning, FL for short, that
introduced a new approach to train models from data distributed in different edge devices
without requiring their transmission to an external system. Each client stores sensitive
data locally and trains a local model, the model is shared globally in order to improve the
precision of all the clients. A centralized server for sharing the models across the clients is
still required; however, it does not receive and process any sensitive data from the clients.

In Figure 2, the overall architecture and workflow of a FL system is depicted. The
overall process starts with a global model common to all the clients. The learning pro-
cess is performed over time through different rounds, each one characterized by the
following steps:

1. The server selects a subset of the clients (or all) that participate in the next training
round.

2. The server distributes the current global model weights to the selected clients. In
addition, the server provides the instructions on how the training should be performed
(e.g., number of local epochs).

3. The selected clients receive the model weights, configure its local model with those
weights and train it on their local data set, according to the instructions received.
When the training is concluded, each client sends back the updated model weights to
the server.

4. The server receives all the updated models and aggregates them. Subsequently, the
old global model is replaced with the new aggregated weights.
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Figure 1. Centralized architecture schema.

Steps 2–4 are repeated for more than one round, as typically FL algorithms require
several rounds to converge. At the end of each round, the clients assess the performance
of the model via some metrics, which are also transmitted to the server. Through these
metrics, the server obtains a global view on the performance of the distributed training and
decides when the process should be stopped.
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Figure 2. Federated-learning architecture schema.

A crucial step in the distributed training process is how the weights are aggregated
by the central server across different rounds. The aggregation can be performed adopting
multiple policies, the most widely-adopted are Federated Stochastic Gradient Descent
(FedSDG for short) and the Federated Averaging (FedAvg for short).

FedSDG is an aggregation procedure in which each client performs a single step of the
Stochastic Gradient Descent (SGD) at every round, subsequently, it sends the local model
weights to the server. The server averages the weights received on the basis of the number
of training examples used by each client.

FedAvg adopts a similar process, with some differences in how each client behaves at
each round. Specifically, the client runs multiple local epochs using its local data to train
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the model implementing a single SGD step. This results in two main advantages: less
interactions between the server and the clients are needed, and the global model training
converges more rapidly than does FedSGD [17].

3.2. Long Short-Term Memory Network

Long short-term memory network (LSTMs) are a type of recurrent neural network
specifically designed to mitigate the problem of vanishing/exploding gradients. This issue
is caused by the back-propagating effect that can occur during training, as the gradients
go through continuous matrix multiplications during the back-propagation process due to
the chain rule, which can cause the gradient to shrink exponentially (vanish) or to blow
up exponentially (explode). An overly small gradient prevents the weights from being
updated and learning; on the other side, overly large gradients result in a model that is
unstable. As a consequence, classical recurrent neural networks cannot work with longer
sequences, as they are characterized by short-term memory.

LSTMs, instead, have a more complex structure: for each step, an LSTM cell requires
three different inputs, specifically the current input data, the short-term memory from the
previous cell and the long-term memory. The short-term memory is also referred to as
the hidden state, while the long-term memory is also known as the cell state. The cell uses
gates to decide if the information should be kept or discarded. The role of such gates is
to selectively remove any irrelevant information. To this aim, the gates should be trained
accurately to identify what is useful and what is not. These gates are called the Input Gate,
the Forget Gate and the Output Gate; see Figure 3.

Let us see what these gates are:

• Input Gate: decides the new information that will be stored in the long-term memory.
• Forget Gate: decides which information from the long-term memory should be kept

or discarded.
• Output Gate: regulates the flow of information to the rest of the network.

cell state

hidden state

new cell state

input

new hidden state

X +

output

Forget 
Gate

Input 
Gate

Output 
Gate

Figure 3. LSTM cell structure.

Each LSTM cell receives as input the hidden state of the previous cell and the current
input (note that the input gate receives both input twice). Hence, each LSTM cell is
characterised by eight weights and four biases to be learned.

4. Dataset and Methodology

In this section, we present the dataset used in our experiments and the methodology
adopted. We start by presenting the details on the dataset used in our experiments in
Section 4.1, and then we present the configuration of the LSTM model used for the energy
prediction in Section 4.2. We conclude the section by introducing the Flower framework
used in our experiments in Section 4.3.

4.1. Dataset

In this work, the dataset made available for the FUZZ-IEEE competition on Explainable
Energy Prediction [18] is used. The dataset contains historical half-hourly energy readings
for 3248 Smart Meters from the first January 2017 to the 31st December 2017, expressed in
kWh. Each smart meter has associated the type of housing that can be one of the following
five types:
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• Bungalow: a small house or cottage that is either single-story or has a second story
built into a sloping roof.

• Detached House: a stand-alone residential structure that does not share outside walls
with another house or building.

• Flat: a set of rooms for living, usually on one floor and part of a larger building. A flat
usually includes bedrooms, a kitchen and a bathroom.

• Terraced House: a house built as part of a continuous row in a uniform style.
• Semi Detached House: a single family duplex dwelling house that shares one com-

mon wall with the next house.

The dataset was initially analysed in order to assess its quality and highlight anomalies
in the data. Our assessment highlighted that many traces report null values for an extensive
period of time; consequently, such traces were excluded from the dataset in order to keep
the quality of the dataset high.

Only 4 months out of 12 months available are taken into consideration in order to
analyse the months with the highest amount of data, i.e., from June to September, and to
ensure that there was less impact from the weather fluctuations and seasons. Moreover,
to reduce the dataset size while preserving the seasonality patterns and reducing the
forecasting frequency, the data samples were aggregated to obtain a trace with a coarser
granularity of 1 h, thereby, resulting in 2928 data samples per smart meter. Finally, the data,
thus, processed were used to produce six different datasets as reported in Table 1.

Table 1. The number of smart meters for each dataset.

Housing Type Number of Smart Meters Distribution

Bungalow 141 17%
Detached House 160 19%
Flat 38 5%
Semi Detached 321 39%
Terraced House 161 20%

All 821 100%

Finally, the traces for each of the six datasets were divided into three groups, each
one used for training, validation and test, respectively, using a stratified K sampling
procedure. Specifically, the 70% of the data was used as the training set, and the remaining
30% was used as the test set.The training smart meters were further partitioned with the
same procedure: 80% was used for actual training, while the remaining 20% was used for
validation and hyperparameter tuning.

4.2. Neural Network Setup

This section aims at describing how the LSTM hyperparameters were chosen in the
federated architecture. The differences between the models adopted in the centralized
architecture and in the federated architecture are also highlighted.

In our experiments, we trained an LSTM model with an input layer with 24 neurons,
one hidden LSTM layer and one output layer. The time series were processed in batches
of 1024 elements. For regularization purposes, we also employed a dropout strategy by
setting the dropout rate to 0.2. The training of the LSTM was performed by minimizing the
squared error, i.e., adopting the minimum squared error (MSE) loss, until the learning. The
learning rate was set to 10−3, and training was terminated after a maximum of 50 epochs,
or when the validation loss did not improve across five training epochs (early stopping
condition), with an absolute tolerance of 10−4. Federated learning was performed by locally
training the models for three epochs and by performing model averaging for a maximum
of 50 rounds.

The number of neurons in the hidden layer was calibrated with a grid search on the
values {10, 20, 30, 40, 50}, by selecting the value producing the smallest MSE loss on the
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validation dataset. The results of the hyperparameter optimisation, for each dwelling type,
are reported in Table 2.

Table 2. LSTM hidden layer size for each dataset calibrated on the validation dataset.

Housing Type Hidden Layer Size

Bungalow 20
Detached House 40
Flat 40
Semi Detached 50
Terraced House 40

All 30

To summarise, the training parameters adopted are reported in Table 3.

Table 3. Summary of the training parameters.

Parameter Name Value

Number of centralized epochs 50
Number of federated epochs 3
Number of federated rounds 50
Learning rate 10−3

Drop out 0.2
Early stop threshold 5
Early stop tolerance 10−4

4.3. Flower

Flower is an open-source framework for rapid deployment and experimentation of FL
solutions [19]. The framework offers the following main advantages: it takes into account
client heterogeneity (computing, memory and communication resources), and it scales
with the number of clients. Rapid deployment is guaranteed by the high-level abstraction,
which allows researchers to rapidly implement and experiment multiple solutions, thereby,
exploiting the functionalities of the framework that implements the basic functionalities
of FL solutions. The framework, in particular, allows to experiments on both distributed
cloud servers or simulating the complete system on a single machine.

One of its key feature is that it is both language- and ML-framework-agnostic. This
means that the tools offered by Flower are independent from the ML framework solution
adopted and the language, i.e., PyTorch, TensorFlow, etc. Flower provides basic building
blocks that are designed to be customized, thus, allowing developers to implement custom
FL solutions, whose parameters can be changed on a per-experiment basis.

The framework is composed of three main components: a client, a server and a strategy.
The client and the server implement the basic functionalities of the clients and a server in a
FL solution, implementing local and global logic, respectively. The strategy, instead, is an
abstraction introduced in Flower that implements the overall training/evaluation functions
that run on the clients and the server.

The strategy simplifies the implementation of the FL algorithm, as the framework
already offers popular FL solutions. For instance, via the strategy implementation it can be
decided how to aggregate the parameters of the model on the server and how to select the
clients that will participate to the FL process. A user can decide whether to implement a
custom strategy, or use an existing one. The framework includes popular FL algorithms,
such as FedAvg [17] and FedYogi [20].

The server is responsible for connection handling, client life cycle management, per-
forming rounds of federated learning (that can be customized), distributed and/or cen-
tralized validation, implement the weight update aggregation strategy, metric collection



IoT 2022, 3 389

and error handling. The server controls the clients by gRPC, a modern open-source high-
performance Remote Procedure Call (RPC) framework.

Another advantage of Flower is the Virtual Client Engine (VCE). VCE is a tool that
enables the deployment of virtualized Flower clients that run on the same machine. By
exploiting VCE, large experiments can be run in a short time to test solutions on a large
scale. Flower VCE handles the execution of virtual clients in a resource-aware manner,
ensuring that the hardware is properly utilized. VCE is used in our experiments to emulate
a large number of clients.

5. Results

In this section, the results of our experiments are presented. We first start by in-
troducing the different experimental scenarios considered in Section 5.1, followed by a
presentation of the research questions under investigation in Section 5.2, while in Section 5.3,
we present and analyse the results obtained.

5.1. Experimental Scenarios

In order to assess the performance of the prediction with different configurations the
following scenarios are considered: a centralized scenario, in which a central server collects
all the data and perform the LSTM model training and three distributed scenarios, where
the smart meters are connected to edge servers organized with different topologies. Each
edge node is in charge of the local LSTM model training, which is periodically transmitted
to a central server that runs the federated learning workflow. A more detailed description
of the scenarios considered in our experiments is provided in the following.

Each scenario results in a different level of data privacy, as the server(s) performing
the training of the energy prediction model(s) are deployed with different configurations,
each one using a different set of users among which data is shared, thus, resulting in a
different privacy level range.

5.1.1. Scenario 0: Centralized Server

This scenario does not employ edge nodes or federated learning; instead, all the smart
meters offload their energy consumption data to a centralized server, e.g., a cloud service,
that trains the models for energy prediction. In our experiments, five different models, one
for each housing type, were trained, thus, to aim at a fine-grained energy prediction for
each dwelling type. This scenario is the least privacy-preserving one, as all smart meters
share their data to a third party in order to perform energy prediction.

5.1.2. Scenario 1: One Edge-Computing Node per Household

This scenario assumes that one edge-computing node is installed in each household to
collect and analyse energy consumption data from a single smart meter. The edge nodes,
together with a central server, employ federated learning to train the energy prediction
models, while still ensuring privacy. This configuration offers the highest privacy level, as
data is not shared as it is analysed in the local edge-computing node, while only the model
is shared to improve the forecast performance through federated learning.

As presented in Figure 4a, in this scenario each smart meter offloads its data to a
dedicated edge-computing node that trains a local model. The edge node communicates its
local model to a centralized server that trains one or more energy prediction models based
on the models provided by each edge node, following the federated learning workflow. In
this case, five different models are trained via federated learning, one for each housing type.
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Figure 4. Federated-learning scenarios. (a) Scenario 1: One edge-computing node per household. (b)
Scenario 2: One edge-computing node per neighbourhood. (c) Scenario 3: One edge-computing node
per building.

5.1.3. Scenario 2: One Edge-Computing Node per Neighbourhood

This scenario assumes that one edge-computing node is installed for each neighbour-
hood. The smart meters of the houses transmit their data to an edge node that performs the
local training and prediction for the neighbourhood. This configuration offers a trade-off
between Scenario 0 and Scenario 1, in terms of privacy on the one hand and cost reduction
on the other hand. In fact, data is shared only on a neighbourhood basis, thus, providing a
certain level of privacy, while edge nodes are not installed on each house but are deployed
on each neighbourhood. As presented in Figure 4b, in this scenario, the smart meters of
a certain neighbourhood offloads their data to a single edge node deployed in the area,
the edge node trains one or more local models, which are periodically transmitted to a
centralized server that collects the model of the whole grid to train one or more global
models, which are subsequently provided to the edge nodes to improve the accuracy. Fur-
thermore, in this case, the edge node trains five different models, one for each housing type,
in a collaborative manner across different neighbourhoods via federated learning. For our
experiments, a neighbourhood is assumed to include up to 45 households, independently
of the dwelling type.
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5.1.4. Scenario 3: One Edge-Computing Node per Building

In this scenario, one edge node is deployed per building. The smart meters of the
apartment of a building send their data to the edge node of the building for training
and forecast. In this case, the number of smart meters connected to an edge node varies
significantly, as it depends on the configuration and type of the building. This scenario
can be considered a further trade-off between privacy preservation and cost reduction
between Scenario 1 and 2, as it can offer more privacy than Scenario 2, although with a
higher number of edge nodes to be deployed. As presented in Figure 4c, in this scenario,
each smart meter offloads its data to the edge node installed in the building. The latter
trains one or more local models that are transmitted to one or more central servers for the
computation of the global models.

In order to create this scenario, a real use case was considered, the “Porta a Lucca”
neighbourhood in the city of Pisa, a mixed area that includes both offices and residential
buildings as reported in Figure 5. Specifically, the map was used to empirically estimate
the distribution of households per dwelling type. The different dwelling types present the
following household distribution:

• Flat: from 6 to 22 households.
• Detached house: from two to four households.
• Terraced house: from 3 to 12 households.
• Semi-detached house: from three to four households.
• Bungalows house: from one to three households.

Two different configurations are considered in this scenario:

• Scenario 3.1—average household density: for each building in the map, the number
of households corresponds to the average number of household depending on the
dwelling type.

• Scenario 3.2—random household density: for each building in the map, the number of
households is sampled uniformly at random depending on the dwelling type.

Figure 5. “Porta a Lucca” Neighbourhood in Pisa.

5.2. Research Questions

In the following section, we present a detailed analysis of the experiments performed.
The goal is to address the following research questions (RQs):

• RQ1: What are the performance of the LSTM model(s) trained on a cloud server
w.r.t. the LSTM model(s) trained on edge servers with federated learning considering
different configurations?

• RQ2: What are the performance of the LSTM models learned with federated learning
by varying the reference scenario and/or the dwelling type?
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• RQ3: Do we have evidence of the most difficult data sample to predict?
• RQ4: What is the impact of federated learning in the training process, in terms of both

time and network overhead?

The performance of LSTM models is measured in terms of the root mean squared error
(RMSE) between the actual and predicted values across the test set. When time is measured,
each experiment is repeated five times in order to ensure statistically sound results for each
dataset and scenario, and the average of the measured values is reported.

5.3. Results Analysis

To address RQ1, we need to report the RMSE measured on the test set when the LSTM
model is trained on a cloud server with all data available for each dwelling, as in Scenario 0,
and the RMSE measured on the train set when the LSTM models are trained in a federated
learning setting. We select Scenario 3.2 for assessing the federated-learning performance,
because it is the more realistic scenario, considering that it was modelled using a real
map of a neighbourhood in the city of Pisa. Figure 6 reports the measured performance
considering different dwelling types.

Figure 6. The forecasting performance comparison between centralized and federated scenarios.

In general, the performance obtained in the centralised scenario is better than the
performance of the federated-learning scenario. The maximum performance gap is reported
with the bungalow dwelling type, which results in a corresponding degradation of 15%.
This can be explained by the fact that, in the federated learning setting, the local LSTM
model trained in bungalow dwellings receive the training data from a single smart meter,
with a corresponding lower accuracy. On the other hand, flat and terraced house dwellings
host the largest number of households, resulting in small or negligible performance losses.

To answer RQ1, we conclude that, as expected, the performance, measured in terms
of the test RMSE, for the LSTM models for residential energy forecasting trained in a
centralized server are better then the performance of the LSTM models trained in a federated
learning setting. The performance degradation can range between 15% and 0%, depending
on the size of the training dataset available at each training server.

To address RQ2, we report, in Figure 7, the RMSE values measured on the test set for
the different federated-learning scenarios: (1) one edge-computing node per household
(Scenario 1), (2) one edge-computing node per neighbourhood (Scenario 2) and (3) one
edge-computing node per building (Scenarios 3.1 and 3.2).
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Figure 7. Forecasting performance comparison between all the scenarios.

As we can see, the best scenario corresponds to one edge-computing node per neigh-
bourhood, since the RMSE is the smallest in all cases. This happens because every edge-
computing node uses a larger amount of data for training its local model w.r.t. the other
scenarios. This allows the local model to better learn the energy consumption patterns and
therefore to better predict the future consumption. Similarly, the worst scenario corresponds
to one edge-computing node per household.

This occurs because the edge-computing nodes use only the training data available
from a single smart meter; therefore, the training of the local models leverage only a limited
amount of data. In the one edge-computing node per building scenarios, instead, the
performance lies in the middle between the two previous cases, and there are no significant
differences between the average and randomly selected cases.

To conclude regarding RQ2, the performance, measured in terms of the test RMSE, of
the LSTM models for residential energy forecasting trained in different federated-learning
scenarios are better when the data available to each edge-computing node are large; how-
ever, in a realistic setting, the performance reduction is less than 10%.

In order to obtain insight regarding the prediction accuracy, in the following, we report
the trace of the real energy consumption versus the predicted value in a single case over
time. Figure 8 shows the actual and predicted traces for a semi-detached house, limited to
the first 200 samples. The same data is reported in Figure 9 as a Bland–Altman plot. As
we can see, the trained LSTM network predicts better the smaller values than large values.
Small consumption values are the most frequent values across all traces. Since the LSTM
network aims at learning the recurring patterns of the data, it is reasonable to obtain better
predictions for more common small values.

At the same time, the LSTM network finds it more difficult to predict the peaks of
energy consumption in the correct way. In fact, in Figure 9, we see that, for peak values, i.e.,
when the mean of the target and predicted measures is large, the difference between the
target and predicted values diverges from the null value. In particular, since the reported
difference is positive in most cases, the LSTM model tends to predict lower values than the
actual ones in the case of peaks.
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Figure 8. The actual and predicted traces for a semi-detached house, limited to the first 200 samples.
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Figure 9. Blend–Altman plot of the actual and predicted traces for a semi-detached house, limited to
the first 200 samples.

To conclude regarding RQ3, the trained LSTM network successfully captures the com-
mon patterns in the energy-consumption traces while performing worse when predicting
the peaks of consumption.

In order to address RQ4 in the following, we analyse the aggregation time and the
network overhead in one of the FL configurations. For the sake of brevity, we show the
results only for the Scenario 3.1, as the others confirm the same results. The aggregation
time is defined as the time between the reception of all the parameters from the clients
at the server and the completion of the aggregation process. This provides an estimate
of the overhead of the aggregation process at the server for a single round. The network
overhead, instead, is defined as the overall amount of data transmitted between the clients
and the server for the whole experiment.

In Table 4, the average aggregation time for one federated round is reported along
with the standard deviation and confidence intervals in order to assess the variability of
the aggregation time over different rounds. As it can be seen, the overall aggregation time
is low, i.e., always below 100 ms. The standard deviation is small as well, thus, confirming
that the aggregation time does not change significantly from one run to another.
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Table 4. The mean aggregation time of one round. Scenario 3.2. Confidence level = 95%.

Dataset Mean Aggr. Time (s) Std. Dev. Confidence Interval

Bungalow 0.1237 0.0307 [0.1149 0.1325]
Flat 0.0031 0.0004 [0.003 0.0032]

Semi Detached House 0.0854 0.0651 [0.0667 0.1040 ]
Detached House 0.0419 0.0037 [0.0409 0.0430 ]
Terraced House 0.0153 0.0022 [0.0147 0.0159]

In Table 5, we report the network overhead for both the centralized and federated
configurations. As expected, the federated configuration results in a noticeably higher
overhead in terms of the data transmitted between the smart meters and the server (in the
centralized scenario) and between the clients and the server (in the federated scenario). This
can be explained considering that, in the centralized scenario, all the data is transmitted to
the server, while, in the federated scenario, the models are transmitted from each client to
the server—once for each round executed during the experiment. Although the federated
solution results in a higher network overhead, it is important to notice that the overall data
can be transferred easily via any of the wide-area network technologies available today.

Table 5. The network overhead in centralized and federated scenarios (Scenario 3.2).

Dataset Centralized Overhead (MB) Federated Overhead (MB)

Flat 3.15 55.38
Detached House 3.57 79.20

Bungalow 0.84 4.65
Semi Detached House 7.17 207.06

Terraced House 3.60 16.26

5.4. Results Summary

To summarize the results from our experiments, we conclude the following:

• Centralized vs. Federated. In terms of the accuracy, the centralized solution results in
better predictions than any federated configuration. This loss of performance is due
to the partitioning of the overall dataset among the different edge-computing nodes.
Consequently, a centralized solution results in a better accuracy, however, at the cost
of a lower level of privacy.

• Different federated configurations. Different federated configurations with different
privacy levels result in different levels of accuracy depending on how the overall data
is partitioned across different edge-computing nodes. Generally, the higher the level
of privacy, the lower the accuracy. This is due to the fact that increasing the level of
privacy, e.g., by installing one edge node per household, means reducing the amount
of data available for the model training. The federated approach can help in mitigating
this loss, which is, however, still noticeable in our results. If we compare the loss of
accuracy in absolute terms, however, we can notice that the loss is not very significant,
and consequently the adoption of a federated approach is still feasible.

• Overhead. Although a federated-learning solution results in a higher network overhead,
the overall data transmitted in the network is low, and it can be supported by any
wide area network technology with a small cost.

6. Conclusions

In this paper, we presented a study of a residential energy forecasting based on feder-
ated learning and edge computing in order to preserve the privacy of energy consumption
data. The proposed approach was assessed via a real set of experiments in different
configurations with different privacy levels against the traditional centralized approach.
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Our results showed that the federated-learning approach resulted in a lower accuracy;
the loss, however, was limited. Moreover, the results obtained from the scenarios with
different edge-computing configurations highlighted that increased privacy is usually
traded with a reduced accuracy in the overall prediction. In terms of the overhead, in
particular for communication, the federated-learning solutions resulted in a higher data
transfer, which can, however, be easily supported by the wireless/wired communication
technologies available today.

As future work, we plan to run a set of experiments using real devices and investigate
solutions to further reduce the accuracy loss of the federated-learning solutions highlighted
by our results. Moreover, we plan to assess the robustness of federated learning for our
scenarios with asynchronous model updates and heterogeneous power meters. Finally, to
assess the impact of the neighbourhood sizes, we plan to implement different sampling
strategies and dimensions to generate the household clusters under investigation.
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