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Abstract: We investigate the quantum forces occurring between the defects and/or boundaries of a
conformal field theory (CFT). We propose to model imperfect defects and boundaries as localized
relevant double-trace operators that deform the CFT. Our focus is on pointlike and codimension-one
planar defects. In the case of two parallel membranes, we point out that the CFT 2-point function
tends to get confined and develops a tower of resonances with a constant decay rate when the
operator dimension approaches the free field dimension. Using a functional formalism, we compute
the quantum forces induced by the CFT between a variety of configurations of pointlike defects,
infinite plates and membranes. Consistency arguments imply that these quantum forces are attractive
at any distance. Forces of the Casimir–Polder type appear in the UV (ultraviolet), while forces of
the Casimir type appear in the IR (infrared), in which case the CFT gets repelled from the defects.
Most of the forces behave as a non-integer power of the separation, controlled by the dimension of
the double-trace deformation. In the Casimir regime of the membrane–membrane configuration, the
quantum pressure behaves universally as 1/ℓd; however, information about the double-trace nature
of the defects still remains encoded in the strength of the pressure.
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1. Introduction

Quantum field theory (QFT) predicts that macroscopic bodies can experience forces
of a purely quantum nature [1,2]. Such quantum forces are usually computed within the
framework of weakly coupled QFT; see, e.g., Refs. [3–8] for modern reviews. In this paper,
we propose to explore the quantum forces that arise in a particular class of QFTs for which
calculations are possible, even with strong coupling: conformal field theories (CFTs).

Conformal field theories are ubiquitous in the real world. Many thermodynamic and
quantum critical points exhibit conformal invariance. For example, the liquid–vapor critical
points, the superfluid transition in liquid helium, and Heisenberg magnets are all described
by the same family of scalar 3D (3-dimensional) CFTs; see, e.g., Refs. [9,10] . CFTs are also
ubiquitous in the space of quantum field theories: most renormalisation group (RG) flows
end on a CFT, either in the infrared (IR) or the ultraviolet (UV). Reversing the logic, one can
also think of generic weakly coupled QFTs as CFTs deformed by operators that are either
relevant or irrelevant.

The CFTs that appear in the real world are not ideal. Critical systems obtained in the
laboratory certainly have boundaries. Moreover, real-world CFTs can contain impurities
of various codimensions. A subfield of CFT studies focuses on extracting data from
CFTs with boundaries and defects using inputs from symmetry, unitarity and causality;
see, e.g., Refs. [11–15] for some seminal papers, Refs. [16–27] for recent progresses, and
Refs. [28,29] for recent reviews. The present study does not pursue this approach. Our
focus is rather a set of observable phenomena that we compute via QFT methods adapted
to the CFT context.
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Boundaries and defects in the real world are not ideal either. Physical defects cannot,
in general, be thought as ideal truncations of the spatial support of a field theory with
fluctuations of any wavelength. A more realistic description of defects should feature some
notion of smoothness. The modeling of such imperfect defects and boundaries is somewhat
familiar from weakly coupled QFT. There, a defect is sometimes modeled by a bilinear
operator, whose spatial support represents the defect [30–32]. Within such a model, the
defect ideally repels the field only asymptotically in the IR. More generally, for arbitrary
wavelengths, the quantum field propagates to some extent inside the defect [33,34]. One of
the points of this paper is to model imperfect defects in CFTs in an analogous manner. This
is performed in Section 3.

The second aim of this paper is the computation of observable quantities: the quantum
forces induced by the CFT between pairs of defects and/or boundaries. We assume that
spacetime dimension is equal to or larger than three; see, e.g., Refs. [35–39] for Casimir-type
computations in 2d CFT. We mainly focus on quantum fluctuations in spacetime; however,
our approach can analogously apply to thermal fluctuations in Euclidean space since
quantum and statistical field theories are related via Wick rotation. In the thermodynamic
context, the fluctuating field describes an order parameter of a continuous phase transition.
One commonly uses the term critical Casimir forces [10] to refer to forces appearing near
criticality, where the system becomes a CFT. The quantities computed in the thermal case
are, however, slightly different from the ones in QFT. In QFT, one computes a force or
potential between non-relativistic bodies, while in the thermal case, one typically computes
the free energy at criticality.

Our results on quantum forces are presented in Section 5, where we also discuss
monotonicity and the connection to critical Casimir forces. In the process, we analyze the
properties of 2-point correlators confined between membranes in Section 4. Section 2 con-
tains the necessary introductory material, and Section 6 contains a summary of our results.

2. Basics
2.1. CFT Rudiments

A conformal field theory is a field theory that is invariant under the conformal group
SO(d, 2)—or SO(d + 1, 1) in Euclidean space. The symmetries of the conformal group are
so strong that they fully constrain both the 2-point and 3-point correlation functions of any
operator. Still due to symmetries, operators and states are in one-to-one correspondence,
and the operator product expansion (OPE) has a finite radius of convergence. The OPE,
combined with crossing symmetry, provides nontrivial constraints on 4-point correlators,
which is the theme of the “Conformal Bootstrap” program; see [40–45] for modernreviews
on CFTs. In this paper, we only need the most basic features of CFTs, and no prior CFT
knowledge is needed.

The symmetries of the conformal group impose that so-called primary operators Oi
have 2-point positon correlators of the form

⟨Oi(x1)Oj(x2)⟩ =
aiδij

x2∆i
12 ,

(1)

with x2
12 = (x1 − x2)

µ(x1 − x2)µ. ∆i is the scaling dimension of Oi under the dilata-
tion operator, δij is the Kronecker delta, the brackets ⟨· · · ⟩ denote the quantum averaging,
the Latin latter indexes labelling the primary operators, and the Greek letter indexes taking
0 (temporal), 1, . . . , d − 1 (space) values.

The overall constant ai is not fixed by symmetries. In this paper, we adopt the nor-
malization ai ≡ 1. CFT unitarity implies that an operator is a free field if and only if
∆ = (d − 2)/2, where d denotes the dimension of space-time. For a canonically normalized
4D free field, we have ai → 1/(4π2). We convert to this normalization when comparing
with the 4D free field results throughout this paper.
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The formal CFT operators Oi can be understood as traces of combinations of matrices,
such as the irreducible representations of an internal SU(N) group. This is why operators
of the form [O(x)]n are commonly called n-uple trace operators. In this paper, a central
role is played by the double-trace operators [O(x)]2. An operator is said to be relevant,
marginal and irrelevant if ∆ < d, ∆ = d, and ∆ > d, respectively.

We further assume that the CFT has a large enough number of degrees of freedom,
i.e., large N such that ’t Hooft’s large-N expansion applies. This assumption renders many
calculations possible; here, we only need to work at the leading order of the large N
expansion. (Moreover, we only focus on 2-point correlators. At large enough N, the 2-point
correlators that we compute amount to those of a scalar generalized free field (GFF), i.e.,
a free scalar with dimension ∆ > (d − 2)/2 [46]. An actual GFF would appear by taking
N → ∞, in which case all the higher-point correlators of a GFF are trivially expressed as a
function of the 2-point GFF correlator via Wick’s theorem; see, e.g., Ref. [47]. In this paper,
we do not need to take infinite N, which is known to be an ill-defined limit in CFT and
beyond; see, e.g., Refs. [48,49]. We assume large enough but finite N, and all our results are
given up to O(1/N2) corrections.) In this regime, the scaling dimension of the double-trace
operator is only ∆O2 = 2∆ + O(1/N2).

CFTs in the real world live in finite volumes with boundaries. Furthermore, they
may contain impurities. This has triggered a formal program of studies constraining CFTs
with boundaries and defects—the boundary conformal bootstrap; see [46–49] for general
references. In this paper, we do not use bootstrap techniques. It might be fruitful to apply
bootstrap techniques to the class of defects and boundaries that we introduce further below;
this is left for future work.

2.1.1. Momentum Space

We compute the CFT 2-point function of a scalar primary O in momentum space

(pM). The Fourier transform convention is O(x) =
∫ dd p

(2π)d O(p)e−ip·x . We introduce the
reduced correlator

⟨O(p1)O(p2)⟩ = (2π)dδ(d)(p1 + p2)⟪O(p1)O(p2)⟫ , (2)

where δ(d)(·) is the d-dimensional Dirac delta function and the brackets ⟪· · ·⟫ denotes the
reduced correlator where the momentum conservation has been used.

One has ⟨O(x1)O(x2)⟩ =
∫ dd p

(2π)d e−ip·x12⟪O(p)O(−p)⟫ and obtain

⟪O(p)O(−p)⟫ = −i
πd/2Γ(d/2 − ∆)

Γ(∆)

(
4

−p2

)d/2−∆
, (3)

where Γ represents the gamma function.
A convenient way to compute the Fourier transform is via the Schwinger parametriza-

tion; see Appendix A.

2.1.2. Momentum–Position Space

Since we are interested in codimension-one defects, it is also useful to single out
one of the spatial dimensions corresponding to the orthogonal direction to the defects,
xM = (yµ, z). We compute the CFT correlator in mixed position–momentum space (pµ, z).
For this, we introduce the reduced mixed-space correlator

⟨O(p1, z1)O(p2, z2)⟩ = (2π)d−1δ(d−1)(p1 + p2)⟪O(p1, z1)O(p2, z2)⟫ . (4)
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We have ⟨O(x1)O(x2)⟩ =
∫ dd−1 p

(2π)d ⟪O(p, z1)O(−p, z2)⟫e−ip·y12 and obtain

⟪O(p, z1)O(−p, z2)⟫ = −i
2π

d−1
2

Γ(∆)

(
4z2

12
−p2

) d−1−2∆
4

K d−1
2 −∆

(√
−p2z2

12

)
, (5)

that, again, as in Section 2.1.2, can be obtained using the Schwinger parametrization; see
Appendix A. Kα is the modified Bessel function of the second kind of order α. A useful
integral representation is

Kα(z) =
1
2

(
2
z

)α ∫ ∞

0

dt
t

tαe−t− z2
4t . (6)

We further introduce

⟪O(p, z1)O(−p, z2)⟫ ≡ iG(p; z1, z2) . (7)

With this definition, G(p; z1, z2) is real for spacelike momenta (p2 < 0) or if one
Wick-rotates p to Euclidean space.

2.2. Casimir Forces in the Functional Formalism

In this paper, our interest lies in computing Casimir and Casimir-type forces between
the defects and/or boundaries of a CFT. To this end, we use a variational approach intro-
duced long ago in, for example, Ref. [50], and recently exploited/developed in Ref. [34]. In
Ref. [51] a similar approach was used; see also [52] for related developments.

In this formalism, one considers the generating functional of the correlators of the
system (i.e., the free energy in Euclidean space) in the presence of a static source J(x),

E[J] = iT log Z[J] , Z[J] =
∫

DΦeiS[Φ,J], (8)

where Φ refers collectively to the set of quantum fields.
The quantity E[J] can be referred to as the vacuum energy evaluated in the presence

of the source J. In the present study, the source is ultimately identified with the defects
and/or boundaries of the system.

A variation of the source produces a variation in the vacuum energy. This variation in
energy is identified as a quantum version of the notion of the work. We write this quantum
work as

Wλ = −∂λE[Jλ] , (9)

where λ is a deformation parameter, and ∂λ ≡ ∂/∂λ. In cases where the deformation of
the source is simple enough, the quantum work can be factored out as displacement times
force. The force that emerges from Wλ encodes all the effects of the quantum fluctuations.
This is how we compute quantum forces in this note.

The functional formalism sketched above applies, by definition, to any field theory
(either weakly or strongly coupled), and admits any kind of deformation. While the
principle of the approach is conceptually straightforward, the precise formulation is slightly
technical due to the finding that one needs to parametrize a generic deformation of the
source. Assuming for simplicity that the density is constant in λ and x, i.e., that the source
is incompressible and homogeneous, the source is written as Jλ(x) ≡ n1J(x) ≡ n Θ[lλ(x)]
with the support function lλ(x) > 0 on the support of J, lλ(x) = 0 at its boundary and
is negative otherwise. (The general case including compressible, heterogenous sources is
presented in Ref. [34].) The deformation of Jλ is described by a vector field L referred to as
the deformation flow such that

lλ+dλ(x) = lλ(x − L(x)dλ) . (10)
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Introducing ∂λ, one obtains the definition of the quantum work as a variation in λ,
written in Equation (9).

If the fields couple bilinearly to the source,

S[Φ, J] =
∫

dxd
(
L[Φ(x)]− ξ

2
Φ2(x)J(x)

)
, (11)

then the quantum work is found to be [34]

Wλ = − ξ

2

∫
dd−1x⟨Φ(x)Φ(x)⟩J∂λ Jλ(x) . (12)

Here, ⟨Φ(x)Φ(x)⟩J is the 2-point correlator of Φ evaluated in the presence of the J
source and taken at the coincident point. Equation (12) is the general formula we use in
this paper. When the deformation is simple enough, the quantum work can be written as
Wλ = L · F, where F is identified as the quantum force.

A crucial feature highlighted by the quantum work formalism is that the matter in
the source must be conserved [34]. Otherwise, nonphysical divergences would appear in
the quantum work, while it must be finite by definition. At constant density, i.e., for an
incompressible homogeneous source, the statement of matter conservation becomes that
the deformation flow must be divergence-less, ∂ · L(x) = 0, where ∂ denote the ... . This
is a firm condition that constrains the admissible deformations of J. An example of the
arbitrary deformation of an arbitrary source is shown in Figure 1.

Figure 1. Deformation of a source. The arrows represent the divergence-less deformation flow.

3. Double-Trace Deformations as Defects and Boundaries
3.1. Modeling Imperfect Defects and Boundaries

In weakly coupled QFTs, it is common to model an imperfect boundary using a
mass term localized in space, J(x) = m21J(x)where 1J is the function whose value is
unity on the support of J. This mass term dresses the ϕ propagator, forming a Born
series Gϕ(x1, x2)− i

∫
ddxGϕ(x1, x)J(x)Gϕ(x, x2) + . . . (the Born series can be derived by

integrating out the ϕ field in the partition function of the theory). In the m2 → ∞ limit, the
ϕ field is repelled from the support of J, and thus acquires a Dirichlet boundary condition
on ∂J. This can be shown at the level of the equation of motion [34], or by inspecting the
dressing of the propagator as shown further below.

The mass term is, in any d, a relevant operator. Accordingly, the m2 → ∞ limit can be
understood as the limit of low momentum, i.e., the infrared regime of the RG flow. With
this viewpoint, one deduces that the field is repelled from J at a long distance while it
propagates to some extent inside J at a short distance. This provides a straightforward
picture of an imperfect defect/boundary in weakly coupled QFT. We now define a model
that reproduces such a behavior in CFT.

The natural CFT analogue of a mass term is the CFT double-trace deformation. A
double-trace deformation can be just thought as a term added to the CFT action,
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SCFT
deformed = SCFT − ξ

2

∫
dxdO2(x)J(x) , (13)

where ξ is coupling constant.
The deformation breaks the conformal symmetry unless ∆O2 = d exactly. Still, in the

large-N limit, we can compute the correlator of the deformed 2-point CFT by dressing the
correlator in the absence of defect.

Following the features of weakly coupled QFT, we require that the O2 be relevant. At
the leading order in the large-N limit, this implies that the dimension of O must satisfy

d − 2
2

≤ ∆ <
d
2

. (14)

In this Section, we further motivate this bound.
Let us first review the effect of a double-trace operator occupying the whole space. In

that case, J = 1. The CFT 2-point correlator is strightforwardly expressed in momentum
space (at the leading order in the large-N limit, the leading effect in the dressing comes
from insertions of the −iξ vertex; the contributions built from higher-point correlators are
automatically N-suppressed and thus negligible):

⟨OO⟩J =
1

⟨OO⟩−1 + iξ
. (15)

Like in the weakly coupled case, this can be derived from the partition function, which
produces a Born series representing the 2-point CFT correlator dressed by insertions of −i J.
If the O operator satisfies Equation (14), the dressed correlator takes the form

⟨OO⟩J = − i
ξ
+

1
ξ2 ⟨OO⟩−1 + O(ξ−3), (16)

in the IR. The first term is a mere contact term. The second term features the inverse 2-point
correlator, that turns out to be proportional to the 2-point correlator of an operator Õ with
dimension ∆̃ = d − ∆ with d/2 < ∆̃ < d/2 + 1. One says that the deformations induce a
RG flow from a UV CFT with an operator of dimension ∆ to an IR CFT with an operator of
dimension d − ∆. See [53] and the references therein, and the seminal papers [54,55].

Let us now model imperfect defects and boundaries in CFT via a localized relevant
double-trace deformation. Like in the weakly coupled case, the 2-point correlator can be
expressed as a Born series. To express it rigorously in position space, we introduce the
convolution product ⋆ as f ⋆ g(x1, x2) =

∫
ddx f (x1, x)g(x, x2) and introduce the inverse

A ⋆ A−1(x) = δd(x) . (17)

We also introduce Σ(x, x′) = −i J(x)δd(x − x′). Using this notation, we can write the
propagator entirely using convolutions. The exact resummed Born series is expressed as

⟨O(x1)O(x2)⟩J = ∑∞
r=0⟨OO⟩[⋆ ξΣ ⋆ ⟨OO⟩]r(x12) (18)

=
[
⟨OO⟩−1 − ξΣ

]−1
(x12) . (19)

If O2 is relevant, then in the infrared, the ξ term must dominate at any point of the J
support. We thus obtain that, for any x1 or x2 in J,

⟨O(x1)O(x2)⟩J =
1
ξ

δd(x12) +
1
ξ2 ⟨O(x1)O(x2)⟩−1 + O(ξ−3) . (20)

One can see that the deformed CFT 2-point correlator tends not to propagate in-
side J in the infrared regime. Asymptotically in the IR, when ξ → ∞, we obtain that
⟨O(x1)O(x2)⟩J → 0 anywhere on J and its boundary. Therefore, the 2-point correlator
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satisfies a Dirichlet condition on the boundary of J in the IR. Such a behavior appropriately
models an imperfect defect/boundary for a CFT.

3.2. The Double-Trace Membrane

A simple extended double-trace defect is the one whose support is a codimension-one
plane. We refer to it as a membrane. The support of the membrane is defined (from now
on, we include the coupling constants ξ in J) as follows:

J(x) = ξδ(z − z0) . (21)

To compute the dressed propagator, one uses the position–momentum space 2-point
correlator Equation (5). Dressing the propagator with a membrane necessarily involves
evaluating ⟪O(p, z1)O(−p, z2)⟫ at z12 = 0. Let us investigate its behavior for relatively
small z12 at fixed p. In this limit, the Bessel function has quite a small argument expansion.
We find

⟪O(p, z1)O(−p, z2)⟫d =

(
⟪O(p)O(−p)⟫d−1 +

c
z2∆−d+1

12

)[
1 + O

(
(pz12)

2
)]

, (22)

with

c = −i
Γ(∆ + 1−d

2 )

Γ(∆)
. (23)

The two terms shown in Equation (22) are the leading non-analytical and analytical
ones. These two terms correspond respectively to the regions of relatively small and large pz
momenta covered by the corresponding Fourier integral. The ⟪O(p)O(−p)⟫d−1 correlator,
which is independent of z12, corresponds exactly to the 2-point correlator of an operator of
dimension ∆ in d − 1 dimensions. One could equivalently obtain it by averaging over z12
in the original position space correlator.

The c/z2∆−d+1
12 term corresponds to a relatively large pz momentum. One could

equivalently obtain it by averaging the transverse coordinates in the original position
space correlator. One can see that this term diverges when z12 → 0 if ∆ > (d − 1)/2. This
divergence might need to be treated via renormalization of the defect. This would deserve
a separate treatment that is beyond the scope of this note. Therefore, in the presence of a
membrane, we restrict ∆ as

d − 2
2

≤ ∆ <
d − 1

2
. (24)

We denote the 2-point function in the presence of the defect J as

⟪O(p, z1)O(−p, z2)⟫J ≡ iGJ(p; z1, z2) . (25)

In the case of the membrane (21), we obtain

GJ(p; z1, z2) = G(p; z1, z2) + G(p; z1, z0)
ξ

1 − ξG0(p)
G(p; z0, z2) . (26)

where G0(p) = G(p; z0, z0) = ⟪O(p)O(−p)⟫d−1 corresponds to the 2-point function in
(d − 1) space defined in Equation (22). Explicitly,

G0(p) = −
π

d−1
2 Γ( d−1

2 − ∆)
Γ(∆)

(
4

−p2

) d−1
2 −∆

. (27)

If the double-trace operator is relevant, G0(p) grows when p decreases. In the limit for
which ξG0(p) ≫ 1, we have, therefore,

GJ(p; z1, z2) −−−−→
small p

G(p; z1, z2)− G(p; z1, z0)G−1
0 (p)G(p; z0, z2), (28)
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which satisfies the Dirichlet boundary condition on the membrane.
The membrane defect can serve as an approximation for a plate-shaped defect of finite

width. The approximation appears in the IR regime when the plate width is smaller than
all other distance scales of the problem such that, by dimensional analysis, the correlator
must see the plate approximately as a membrane.

3.3. AdS/CFT Motivation

Another motivation for implementing relevant double-trace deformations as defects
and boundaries comes from the AdS/CFT correspondence; see [47,56–58] for some anti-de
Sitter AdS/CFT reviews.

Let us consider the (d + 1)-dimensional Poincaré patch with a boundary at y = y0,
ds2 = L2(dxµdxµ + dy2)/y2, y ≥ y0. Consider a scalar field in the bulk of AdS with mass
m2

Φ = ∆(∆ − d)L2. For any ∆ > (d − 2)/2, the brane-to-brane propagator of Φ behaves as
the one of a d-dimensional free field ϕ mixing with the 2-point function of a CFT operator
of dimension ∆ via an operator ϕO. The same is true for higher-point correlators. This is
sometimes referred to as the ∆+ branch of the correspondence.

When ∆ < d/2, a second possibility appears: the brane-to-brane correlators can be
directly identified as the CFT correlators of an operator with dimension d − ∆; see [59,60]
and, for example, Refs. [53,61,62] for more recent studies. We refer to this identification
as the ∆− branch of the correspondence. Here, we write the general statement of the ∆−
branch as ∫

DφCFTeiSCFT+iS0[O,J] ≡
∫

DΦ0eiS0[Φ0,J]
∫

Φ0

DΦeiSAdS[Φ], (29)

where Φ0 denotes the value of the fields on the boundary, here Φ0 = Φ|z=z0 . (The S0
action can contain a linear source term S0[X, J̄] =

∫
ddxXJ̄, that can be used to define the

correlators on both sides upon functional derivative in J̄.)
In our model of defect CFT, the general double-trace deformation (13) corresponds to

setting the S0 action to

S0[X, J] ≡ − ξ

2

∫
ddxX2 J . (30)

Using Equation (29), one sees that this corresponds to a boundary-localized mass term
for Φ on the AdS side. Therefore, the double-trace deformation on the CFT side is encoded
as a deformation of the boundary condition of Φ on the AdS side. The double-trace defect
of the CFT is realized as a boundary mass term with a support that is localized along the
boundary volume. In brief, the defect is on the boundary (Figure 2).

Figure 2. The double-trace defect of the CFT. See text for details.
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The domain for which the ∆− correspondence applies is precisely the range given in
Equation (14). Thus, our model of defect CFT can always be realized holographically from
the AdS viewpoint: the double-trace deformation defined via AdS is automatically relevant.

At the level of the vacuum energies, we have the identification

ECFT[J] = EAdS[J] (31)

with

EAdS[J] = iT log ZAdS[J] , ZAdS[J] =
∫

DΦ0ei
∫

∂ ddx ξ
2 J(x)Φ2

0

∫
Φ0

DΦeiSAdS[Φ] . (32)

When the correspondence (31) holds, applying the functional formalism of Section 2.2
to ECFT means on the AdS side that we deform the support of the boundary-localized
mass term. In other words, the boundary condition for the bulk fields gets deformed. The
phenomenon of the 2-point correlator being repelled from the defect in the IR is understood
on the AdS side as the bulk field being repelled from the boundary due to the mass term.
For ξ → ∞, the AdS propagator vanishes on the boundary of the defect localized on the
AdS boundary.

We do not use further the AdS picture in the following.

4. A CFT between Two Membranes

We explore further the properties of the 2-point CFT correlators in the presence of
two double-trace membranes. The full defect is given by

J(x) = Ja(x) + Jb(x) =
ξa

2
δ(z − za) +

ξb
2

δ(z − zb) . (33)

We define |zb − za| = L. A convenient way to obtain the 2-point function is by dressing it
successively with the two membranes Ja and Jb. We obtain

Ga(p; z1, z2) = G(p; z1, z2) + G(p; z1, za)
ξa

1 − ξaG(p; za, za)
G0(p; za, z2) , (34)

Ga,b(p; z1, z2) = Ga(p; z1, z2) + Ga(p; z1, zb)
ξb

1 − ξbGa(p; zb, zb)
Ga(p; zb, z2) (35)

= G12 +
ξbG1b(ξaGabGa2 + (1 − ξaG0)Gb2) + ξaG1a(ξbGabGb2 + (1 − ξbG0)Ga2)

(ξaG0 − 1)(ξbG0 − 1)− ξaξbG2
ab

.

In the second line of Equation (35), we introduce the notation G(p; zi, zj) ≡ Gij.

4.1. Dirichlet Limit

To understand the behavior of this 2-point function, we take the ξa,b → ∞. At finite
ξa,b, this corresponds to the asymptotic limit associated to the infrared regime. In this limit,
the CFT gets literally confined inside the [0, L] interval. The 2-point correlator becomes

GD(p; z1, z2) = G12 +
G1bGabGa2 − G1bG0Gb2 + G1aGabGb2 − G1aG0Ga2

G2
0 − G2

ab
. (36)

4.2. Poles

We stay in the Dirichlet limit for simplicity. Due to the denominator in Equation (36),
it turns out that GD features a series of poles in the complex plane of p determined by
the condition

G(p; za, zb) = ±G0(p) . (37)
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Explicitly, the poles in p are determined by solving

1
Γ(α)

(√
−p2L

)α

Kα(
√
−p2L) = ±1, α =

d − 1
2

− ∆ , (38)

with − 1
2 < α < 1

2 . We denote the complex values of p solving Equation (38) by m±
n . There

is no massless pole (p = 0) nor light pole (p ≪ 1/L) thanks to the asymptotic behavior
at relatively small p is Gab → G0 (see Equation (22)), in which case Equation (37) is either
trivial or impossible to satisfy.

4.3. Residues

The residues associated to the p = m±
n poles take quite a simple factorized form,

(Ga1 ∓ Gb1)(Ga2 ∓ Gb2),

G(p; z1, z2)
p∼m±

n≈ −1
2

f±n (z1) f±n (z2)

Gab ∓ G0
, fn(z) ≡ G(m±

n , z, za)∓ G(m±
n , z, zb) . (39)

This factorized form is reminiscent of weakly coupled QFT on an interval, which
develops a sequence of discrete modes. In the weakly coupled case, the poles lie on the
real line up to the corrections due to the interactions. Equation (39) then corresponds to the
Kállen–Lehmann representation of the propagator confined in the [0, L] interval. Here, we
see that the factorized structure remains true even if the poles lie anywhere in the complex
plane.

4.4. Free Limit

In the case of the free field in d = 4, we have ∆ = 1. The 2-point correlator becomes

iGfree(p; z1, z2) = −i4π2a
e−

√
−p2|z1−z2|

2
√
−p2

, (40)

where, for a canonically normalized field, a = 1/(4π2). In this case, the poles determined
by Equation (38) are real, with mfree

n = nπ/L, n ∈ N⋆. The propagator dressed by the
two membranes takes the form

iGfree(p; z1, z2) = i
sinh

(√
−p2(za − z<)

)
sinh

(√
−p2(z> − zb)

)
√
−p2 sinh

(√
−p2(zb − za)

) , (41)

where we assume za < zb and define z<(>) = min(max)(z, z′). This matches the result
obtained by solving the free field equation of motion on the interval with Dirichlet boundary
conditions on the membranes (see, for example, the Appendix of Ref. [63]).

4.5. Resonances

Slightly away from the free field case, for ∆ − (d − 2)/2 ≪ 1, it turns out that the set of
poles of the CFT behaves as a tower of narrow resonances at values p = mn ≡ mfree

n − iΓn/2
with Γn ≪ mfree

n . Expanding the relation (38), we find that the resonances feature a common
decay rate Γn:

Γn ≈
(

∆ − d − 2
2

)
π/L . (42)

Details of the computation are given in Appendix B.
One obtains, thus, a notion of unstable particle states directly from a CFT. Since the

CFT has internal degrees of freedom, one may think of these resonances as collective
excitations. The fact that the resonances decay reflects the fact that, for ∆ > (d − 2)/2, the
theory is interacting. However, the decay width is independent of the underlying physics
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of the CFT; it is controlled by the dimension of the double-trace operator that causes the
CFT confinement on the interval.

5. CFT Casimir Forces between Defects and Boundaries

We compute the quantum forces induced by the CFT between localized double-trace
operators with pointlike and planar supports. The planar geometry includes the case of a
flat boundary (for example, z > 0) of a membrane and also the case of a plate of any width.
We consider two disjoint defects, described by

S = SCFT − 1
2

∫
ddxO2(x)J(x) , J(x) = ξa Ja(x) + ξb Jb(x) . (43)

The ξa,b parameters have mass dimension: [ξa,b] = d − [Ja,b]− 2∆.
We consider a rigid deformation of J such that Jb gets shifted along a constant L while

Ja remains identical,

Ja,λ+dλ(x) = Ja,λ(x) , Jb,λ+dλ(x) = Jb,λ(x − Ldλ) , (44)

exemplified as shown in Figure 3.

Figure 3. Rigid deformation. See text for details.

The quantum work is then expressed as

W = − ξb
2

∫
dd−1x⟨O(x)O(x)⟩J∂λ Jb,λ(x). (45)

Equation (45) is the formula we apply throughout this Section.
The CFT propagator in the presence of J can always be written in the form of a Born

series as described in Equation (19). Evaluating the expression in a closed form for, for
example, a plate is more challenging. Here, we limit ourselves to computing analytical
results for the force between Ja and Jb in two limiting cases: the asymptotic Casimir–Polder
and Casimir regimes.

5.1. CFT Casimir–Polder Forces

In the UV regime, i.e., in the limit of short separation, the effect of the J insertion in
the Born series tends to be quite small. In this limit, the first terms of the series dominate. It
turns out that the leading contribution to the quantum work is [34]

W = −i
ξaξb

2

∫
dd−1xddx′⟨O(x′)O(x)⟩Ja(x)⟨O(x)O(x′)⟩L · ∂Jb(x′) + O(ξ3) . (46)

Upon integration by part, we recognize the structure of a potential W = −L · ∂Vab
with

Vab = −i
ξaξb

2

∫
dd−1xdd−1x′ Ja(x)Jb(x′)

∫
dt ⟨O(0, x)O(t, x′)⟩2 . (47)
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The Vab potential has a Casimir–Polder-like structure; it is a loop made of two CFT
correlators that connects the two defects. Hence, we refer to this limit as the Casimir–Polder
limit.

5.1.1. Point–Point Geometry

We first consider two defects that are pointlike,

Ja(x) = δd−1(x) , Jb(x) = δd−1(x − r) . (48)

The potential becomes

V(r) = −i
ξaξb

2

∫
dt ⟨O(0)O(t, r)⟩2, (49)

with r = |r|.
We compute Equation (49) by going to the full momentum space. The momentum

space correlator is Equation (3). In momentum space, the potential is given by

V(p) = i
ξaξb

2
πdΓ2(d/2 − ∆)

Γ2(∆)

∫ ddk
(2π)d

(
4

−k2

)d/2−∆( 4
−(k + p)2

)d/2−∆
, (50)

where p0 = 0. We rotate the integral to Euclidean space with Euclidean momentum qM

satisfying q2 = −k2, and go to spherical coordinates,

V(p) = − ξaξb
2

πdΓ2(d/2 − ∆)
Γ2(∆)

∫ ddq
(2π)d

(
4
q2

)d/2−∆( 4
(q + p)2

)d/2−∆
. (51)

We need to evaluate ∫ ddq
(2π)d

(
(p + q)2

)a(
q2
)b

, (52)

for some a, b. We apply the identity

(
(p + q)2

)a(
q2
)b

=
∫ 1

0
dx

(x(p + q)2 + (1 − x)q2)a+b

xa+1(1 − x)b+1
Γ(−a − b)

Γ(−a)Γ(−b)
. (53)

The integral on the right-hand side converges for Re(a), Re(b) < 0. However, provided
the final result of the calculation is analytic in a, b, the result can be extended by analytical
continuation such that restrictions on a, b are ultimately lifted. Shifting the loop momentum
l ≡ q + px, one obtains for Equation (52):

∫ 1

0
dx
∫ ddl

(2π)d
(l2 + x(1 − x)p2)a+b

xa+1(1 − x)b+1
Γ(−a − b)

Γ(−a)Γ(−b)
. (54)

We evaluate the loop integral with

∫ ddl
(2π)d

(
l2 + ∆

)c
=

Γ
(
−c − d

2

)
Γ(−c)

∆c+d/2

(4π)d/2 . (55)

Again, the loop integrals are performed in the domain of (c, d), where the integral
on the left-hand side converges. The functions on the right-hand side are analytic in c
anywhere away from the integral values of c; hence, the final result will be ultimately
analytically continued in c. For certain values of ∆ at even d, a physical divergence appears,
which requires renormalization. However, such divergences are irrelevant for our study as
soon as it is ultimately only the branch cut of V(p) that contributes to the spatial potential;
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see [64]. Hence, no divergence appears in the position space propagators when ∆ is set to
integer values.

Putting Equations (53) and (55) together yields for Equation (52):

1

(4π)
d
2

(
p2
)a+b+ d

2
Γ
(
−a − b − d

2

)
Γ(−a)Γ(−b)

∫ 1

0
dxxb+ d

2 −1(1 − x)a+ d
2 −1. (56)

We identify the remaining integral as being the integral representation of the Beta
function. Evaluating the integral, one obtains for Equation (52):

1
(4π)d/2

(
p2
)a+b+d/2 Γ(−a − b − d/2)

Γ(−a)Γ(−b)
Γ(a + d/2)Γ(b + d/2)

Γ(a + b + d)
. (57)

The potential in momentum space is thus

V(p) = − ξaξb
2

πdΓ2(d/2 − ∆)
Γ2(∆)

4d−2∆ 1
(4π)d/2

(
p2
)2∆−d/2 Γ(−2∆ + d/2)

Γ( d
2 − ∆)Γ( d

2 − ∆)
Γ2(∆)
Γ(2∆)

. (58)

Simplifying,

V(p) = − ξaξb
2

(
p2

4

)2∆−d/2
πd/2 Γ(−2∆ + d/2)

Γ(2∆)
. (59)

We can recognize that Equation (59) is proportional to the momentum space 2-point
correlator of the double-trace operator O2 with p0 = 0. That is, due to the properties of the
CFT, the loop of O can be understood as a tree exchange of O2. (Particle physics models
involving such processes have been considered in Refs. [65–67].) The overall coefficient is
nontrivial; however, our loop calculation is required to determine it. This phenomenon
occurs only in the Casimir–Polder regime.

One may notice that the numerator diverges if ∆ → d/4, which is allowed when
d ≤ 4 since ∆ ≥ (d − 2)2. However, the expression for the potential in position space
computed below is automatically finite even in the case ∆ → d/4, This is because this
is a quantity computed at separated points. Keeping a general, non-integer, dimension
∆ throughout the calculation plays the same role as dimensional regularization weakly
coupled QFT. Finally, we can go back to position space with a (d − 1) Fourier transform,

V(r) =
∫ dd−1 p

(2π)d−1 eiprV(p). We obtain the final result for the CFT Casimir–Polder potential
between two pointlike double-trace deformations,

V(r) = −
√

π
ξaξb

2
Γ(2∆ − 1

2 )

Γ(2∆)
1

r4∆−1 . (60)

As a cross check, taking ∆ = 1 and using the a = 1
4π normalization for each correlator,

we recover exactly the Casimir–Polder potential from the exchange of 4D free massless
scalars, V(r) = −ξ2/(64π3r3). Notice that [ξa,b] = 1 − 2∆; thus, [V] = 1.

5.1.2. Point–Plate

We calculate the Casimir–Polder potential between a point particle and an infinite
plate located at z < 0. In terms of the support functions, this is described by

Ja(x) = Θ(−z) , Jb(x) = δd−2(x∥)δ(z − ℓ) , (61)

where Θ(·) is the Heaviside function.
We assume that the deformation moves Jb along the z direction, i.e., L = (0, 1). The x∥

are the coordinates parallel to the plate.
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The CFT force between the point and the membrane can be straightforwardly obtained
by integrating the point–point Casimir–Polder potential over Ja. This simplified approach
is valid only in the Casimir–Polder limit. The ξa,b are defined such that the parametriza-
tion (43) holds, now with the defect (61). ξa is related to the pointlike source coupling by
ξa = nξ

point
a , where n is the number density of Ja.

The Casimir–Polder force is given by the potential

V(ℓ) = n
∫ 0

−∞
dz
∫

d2x∥
∫ d3 p

(2π)3 eipz(ℓ−z)eip∥ .x∥V(p) . (62)

The p∥ is the momentum component along the plate. The integral reduces to

V(ℓ) = −πd/2 ξaξb
2

Γ(−2∆ + d/2)
Γ(2∆)

∫ 0

−∞
dz
∫ dpz

2π
eipz(ℓ−z)

(
p2

4

)2∆−d/2

. (63)

The momentum integral can be performed and gives

∫ dpz

2π
eipz(ℓ−z)

(
p2

4

)2∆−d/2

=
Γ(2∆ + 1−d

2 )
√

πΓ( d
2 − 2∆)

1
(ℓ− z)4∆+1−d . (64)

The integral over z converges, provided ∆ > d/4. When computing the force further
below, the divergence matters only when for a free field in d = 3. In the convergent case,
we have

V(ℓ) = − π(d−1)/2

2(4∆ − d)
Γ(2∆ + 1−d

2 )

Γ(2∆)
ξaξb

ℓ4∆−d , (65)

where d > 4. The force is then given by F = −∂V/∂ℓ, which gives

F(ℓ) = −
π(d−1)/2 Γ(2∆ + 1−d

2 )

2 Γ(2∆)
ξaξb

ℓ4∆−d+1 . (66)

For a free field in d = 4, one obtains

F(ℓ) = −π2

2
ξaξb
ℓ

. (67)

This correctly reproduces the ∝ 1
ℓ scalar Casimir–Polder force derived in Ref. [34],

− ξaξb
32π2 ℓ

, once one takes into account the canonical normalization of the free fields, which
introduces the factor a2 = ( 1

4π2 )
2. (A factor of 1

2 is missing in Equation (6.29) of Ref. [34]).
The case of the free field in d = 3 necessitates the assumption that the plane has finite

width L. We obtain

F(ℓ) = −π Γ(2∆ − 1)
2 Γ(2∆)

ξaξb log
(

1 +
L
ℓ

)
. (68)

5.1.3. Plate–Plate CFT Casimir–Polder

We similarly compute the Casimir–Polder pressure between two infinite plates. This
is described by

Ja(x) = Θ(−z) , Jb(x) = Θ(z − ℓ) . (69)

We assume that the deformation moves Jb along the z direction, i.e., L = (0, 1). (In
general, one should require that the plates end far away, i.e., are not formally infinite, in
order for the deformation flow to be divergence-free [34]; while this is necessary in general,
this detail does not affect the present Casimir–Polder calculation.)

The ξa,b are defined such that the parametrization Equation (43) holds, now in the
presence of the defect (61). ξa,b is related to the pointlike source coupling by ξa,b = na,bξ

point
a,b
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with na,b, the number density of Ja,b. Similarly to the point–plate case, we integrate the
point–point potential over the two defects, with, for example,

Fplate−plate(ℓ) = −nbSd−2

∫ ∞

ℓ
dzFpoint−plate(z), (70)

where Sd−2 =
∫

dd−2x∥ is the volume integral in Equation (70) in the directions parallel to
the plate. As long as ∆ > d/4, the integral is IR convergent and gives

F(ℓ)
Sd−2

= − π(d−1)/2

2(4∆ − d)
Γ(2∆ + 1−d

2 )

Γ(2∆)
ξaξb

ℓ4∆−d . (71)

The case of a free field in d = 4 is logarithmically divergent. This is a physical
divergence that signals that we should consider finite plates instead of approximating them
as infinite. It is sufficient to assume that one of the plates, here, the second plate integrated
in Equation (70), has finite width L. We find

F(ℓ)
S1

= −π2

2
ξaξb ln

(
1 +

L
ℓ

)
. (72)

The IR divergent behavior also appears in the result of Ref. [34], in the case where the
free field is massless. There is no IR divergence if the free field is massive.

5.2. CFT Casimir Forces

We compute forces beyond the Casimir–Polder approximation. Our focus is on
membranes. Computing analytical results for plates of finite widths is more challenging.
However, in the IR regime for which the plate width is smaller than other distance scales of
the problem, we expect the results to reproduce the one obtained with membranes.

Since the chosen defects feature membranes, we restrict ∆ to the interval (24). The case
∆ ≥ (d − 1)2 deserves a separate analysis.

5.2.1. Point–Membrane CFT Casimir

We first compute the force between a membrane at z = 0 and a point at distance z = ℓ.
The two defects are parametrized as

Ja(x) = δ(z) , Jb(x) = δd−2(x∥)δ(z − ℓ) . (73)

The membrane is infinitely thin in contrast with the point–plate case of the previous
section, where the plate had a large width. We choose that the deformation moves the
pointlike defect along z, while the membrane stays in place, i.e., it is given by Equation (44),
where L is oriented along z. The deformation of the defect is then given by

∂λ J = −ξbLδd−2(x∥)∂zδ(z − ℓ) . (74)

The quantum force is given by

F(ℓ) = −1
2

∫
dd−1x ⟨O(x)O(x)⟩J ∂λ Jb,λ(x) (75)

= − ξb
2

∂z⟨O(xα, z)O(xα, z)⟩J
∣∣
z→ℓ

. (76)

Here, ⟨O(xα, z)O(xα, z)⟩J is the CFT 2-point function dressed by the membrane at
z = 0. This correlator is computed in Equation (26). Going to the position–momentum
space, one has

GJ(p; z, z) = G0(p) + G2(p; 0, z)
ξa

1 − ξaG0(p)
, (77)
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where G0(p) is defined in Equation (27).
The quantum force is then expressed as

F(ℓ) = − iξb
2

∫ dd−1 p
(2π)d−1 ∂zGJ(p; z, z)

∣∣
z→ℓ

(78)

= − i
2

∫ dd−1 p
(2π)d−1

ξaξb
1 − ξaG0(p)

∂z

(
G2(p; 0, z)

)
z→ℓ

, (79)

where G0(p) does not contribute since it is constant in z.
The derivative piece takes a straightforward form:

∂z

(
G2(p; 0, z)

)
z→ℓ

= −16πd−1ℓ

Γ2(∆)

(
4ℓ2

−p2

) d−2−2∆
2

K 1−d
2 +∆

(√
−p2ℓ

)
K 3−d

2 +∆

(√
−p2ℓ

)
. (80)

One may notice it is proportional to the product of two correlators with dimension ∆
and ∆ + 1.

We can identify the potential directly from the line (79), where the ∂z derivative is
equivalent to ∂ℓ. We rotate to Euclidean momentum qM and use spherical coordinates. We
find the general result:

V(ℓ) = − π
d−1

2

2d−3Γ( d−1
2 )Γ2(∆)

∫
dqqd−2 ξaξb

1 − ξbG0(q)

(
2ℓ
q

)d−1−2∆
K2

1−d
2 +∆

(qℓ) , (81)

F(ℓ) = − π
d−1

2 ℓ

2d−5Γ( d−1
2 )Γ2(∆)

∫
dqqd−2 ξaξb

1 − ξbG0(q)

(
2ℓ
q

)d−2−2∆
K 1−d

2 +∆(qℓ)K 3−d
2 +∆(qℓ) . (82)

One can evaluate the loop integral in both the Casimir–Polder regime ξaG0(p) ≪ 1
and the Casimir regime ξaG0(p) ≫ 1. We write the two Bessel functions using the rep-
resentation (6), and perform the loop momentum integral and then the t and t′ integrals.
The intermediate steps involve hypergeometric functions, but the final results are remark-
ably simple.

In the Casimir–Polder regime, we obtain the potential

V(ℓ) = −
π(d−1)/2 Γ(2∆ + 1−d

2 )

2 Γ(2∆)
ξaξb

ℓ4∆−d+1 . (83)

It is attractive for any ∆ satisfying the unitarity bound. For d = 3 and 4 the Casimir–
Polder force is

Fd=3(ℓ) = −πξaξb
ℓ4∆−1 and (84)

Fd=4(ℓ) =
π3/2Γ(2∆ − 1

2 )

Γ(2∆)
ξaξb
ℓ4∆−2 , (85)

respectively.
For the free field in d = 4, including two factors of a = 1

4π2 to recover canonical

normalization, we find F(ℓ) = − ξaξb
32π2ℓ2 . Notice that this Casimir–Polder limit corresponds

to a loop between a point and an infinitely thin membrane; it differs from the point–plate
geometry of Section 5.1.2, where the width of the plate is quite large.

In the Casimir regime, one obtains

V(ℓ) = −
√

πd Γ(d − 1 − ∆)
2dΓ(1 + d

2 )Γ(
d−1−2∆

2 )

ξb
ℓ2∆ . (86)
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The potential depends only on ξb and is attractive for ∆ in the interval of interest,
d−2

2 ≤ ∆ < d−1
2 . For d = 3 and 4, one obtains the forces

Fd=3(ℓ) = ∆(∆ − 1)
ξb

ℓ2∆+1 and (87)

Fd=4(ℓ) = −
√

π∆ Γ(3 − ∆)
4Γ( 3

2 − ∆)
ξb

ℓ2∆+1 , (88)

respectively.
For the free field in d = 4, including one factor of a = 1

4π2 to recover canonical
normalization, one finds F(ℓ) = −ξb/(16π2ℓ3). This reproduces exactly the Casimir
force obtained from the plate–point configuration taken in the Dirichlet limit computed
in Ref. [34]. This illustrates that, in the Casimir regime, only the boundary of the defect
matters. The V(ℓ) ∝ ℓ−2∆ dependence in the Casimir regime is reminiscent of the feature
that the O2 operator in a boundary CFT admits a vev with profile ⟨O2⟩ ∝ z−2∆.

5.2.2. Membrane–Membrane CFT Casimir

We turn to the force between two membranes at z = 0 and z = ℓ. The two defects are
parametrized as

Ja(x) = δ(z) , Jb(x) = δ(z − ℓ) . (89)

The deformation of the defect is given by

∂λ J = −ξbL∂zδ(z − ℓ) . (90)

Following the same steps as in Section 5.1.1, we arrive at the quantum pressure

F(ℓ)
Sd−2

= − iξb
2

∫ dd−1 p
(2π)d−1 ∂zGJ(p; z, z)

∣∣
z→ℓ

, (91)

with Sd−2 =
∫

dd−2x∥. The 2-point correlator in the presence of two membranes is com-
puted in Equation (35).

Unlike in the other cases previously treated (see Equation (81)), it is not possible
to identify a potential directly from Equation (91). This is due to the feature that the ∂z
derivative cannot be traded for a derivative in ℓ as soon as the dressed 2-point correlator
depends nontrivially on ℓ; see Equation (35). Rather, we first compute the force, which is
the fundamental quantity, then one may optionally infer a potential from it.

Our focus is on the Casimir limit, which amounts to taking quite large ξa,b. Notice that
one cannot use in Equation (91) the Dirichlet limit (36), for which ξa,b = ∞. This would lead
to an indefinite 0 × ∞ form in Equation (91). Instead, one should compute the expansion of
GJ for relatively large but finite ξa,b. The self-consistency of the quantum work formalism
ensures that this expansion and the ξb factor in Equation (91) will conspire to give a finite
result for the pressure.

One finds

∂zGJ(p; z, z)
∣∣
z→ℓ

=
1
ξb

∂z(G2(0, z))z→ℓ

G2
0(p)− G2(p; 0, ℓ)

+ O

(
1
ξa

,
1
ξ2

b

)
. (92)

To obtain this result, we use that ∂zG(p; z, z′)|z′→z = 0 by symmetry. This sets to zero
the would-be leading term ξ0

a,b. As a result, the 1/ξb term is the leading one.
The quantum pressure between the membranes is then

F(ℓ)
Sd−2

=
π

d−1
2

2d−1Γ( d−1
2 )

∫
dqqd−2 ∂z(G2(q; 0, z))z→ℓ

G2
0(q)− G2(q; 0, ℓ)

. (93)
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Using the identity

∂z log(G(q; 0, z))
∣∣
z→ℓ

= −
qK∆− d

2 +
3
2
(qℓ)

K∆− d
2 +

1
2
(qℓ)

, (94)

one finds the final form

F(ℓ)
Sd−2

=
π

d−1
2

2d−5−2∆Γ( d−1
2 )

∫
dqqd−1

(qℓ)2dK∆− d
2 +

3
2
(qℓ)K∆− d

2 +
1
2
(qℓ)

23+2∆(qℓ)2dK2
∆− d

2 +
1
2
(qℓ)− 2d(qℓ)2∆+2d+1Γ2( d−1−2∆

2 )
. (95)

As a sanity check, for a free field (∆ = (d − 2)/2), one recovers exactly the known
Casimir pressure between two membranes in any dimension [68]. The quantum pressure
between the membranes is negative on the d−2

2 < ∆ < d−1
2 interval. It is independent on

ξa,b and scales as F(ℓ)/Sd−2 ∝ 1/ℓd as can be seen from Equation (95).
One can see that the Casimir regime displays a sense of universality. In the Casimir

regime, the pressure does not depend on the strength of the double-trace couplings ξa,b.
The pressure scales as ℓ−d just like for a weakly coupled CFT; this scaling is dictated
by the geometry of the problem. The sign of the force is also fixed; see Section 5.3 just
below. The only non-trivial data are the strength of the force. One can check via numerical
integration that the strength of the force does depend on ∆. Hence, in spite of the screening,
information about the double-trace nature of the boundary still remains encoded in the
overall coefficient of the pressure.

5.3. Monotonicity from Consistency

In all the previous results, it may seem that the ξa,b coefficients can be arbitrary real
numbers such that the ξaξb product can get both signs and thus that some of the forces may
be either attractive or repulsive. Let us show that this is not the case.

From Section 5.1, it is clear that the quantum force between any two bodies in the
Casimir–Polder (i.e., UV) regime has the sign of −ξaξb, i.e., it is attractive (repulsive) if
ξaξb > 0 (ξaξb < 0). On the other hand, we have found in Section 5.2 that the force between
two membranes in the Casimir (i.e., IR) regime is negative independently of ξa,b. None
of these observations in themselves constrain ξa,b, but one may note that if ξaξb < 0, then
the force would have to flip sign in the transition from Casimir–Polder to Casimir. To
understand whether such a behavior is allowed, we need to consider the exact formulas
that interpolate between the UV and IR regimes.

First, consider the point–membrane configuration given in Equation (79). We focus
on the dressed 2-point correlator shown Equation (77). For d−2

2 ≤ ∆ < d−1
2 , one has

G0(p) ∈ R− for the spacelike or Euclidean momentum. This implies that if ξa < 0, then the
dressed correlator features a pole at real negative p2. This is a tachyon, whose mass is

m2
tachyon = −4

(
− Γ(∆)

π
d−1

2 Γ( d−1−2∆
2 ) ξa

) 2
2∆−d+1

. (96)

The presence of the tachyon pole has a firm consequence: having ξa < 0 would make
the loop integral in Equation (79) divergent. Since the force must be finite, this possibility
is ruled out. Therefore, ξa must be positive.

Similar analysis can be performed in the membrane–membrane configuration. For
example, the same tachyon mass Equation (96) shows up if one lets one of the ξi be quite
small. The tachyon pole also exists if, for example, ξa = ξb , in which case the tachyon mass
receives a ℓ-dependent correction from the G2(p; 0, ℓ) term. One concludes that again ξa
and ξb must be positive.

Having ξa,b > 0 implies that the force does not change sign for any value of the separa-
tion ℓ. In other words, the absence of the tachyon is tied to the potential being monotonic.
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A similar reasoning involving a tachyon has been applied for a double-trace defor-
mation occupying all spacetime in Ref. [53]. In this study, the existence of the tachyon
for ξ < 0 is understood as an obstruction to the RG flow—while for ξ > 0, there is no
obstruction. Our argument here can be seen as an analogous version of this obstruction
statement for a case where the double-trace deformation is localized on a membrane. The
said obstruction appears particularly when computing the quantum force.

Let us briefly mention that in the d−1
2 < ∆ < d

2 case, the sign of the Γ( d−1−2∆
2 ) factor

that appears in Equation (96) becomes positive. Applying the above chain of arguments
would then imply that ξ should be negative in this range of ∆. However, as pointed out in
Section 3.2, the computations likely cannot be trusted in this domain—extra effort would
be needed to appropriately treat the divergent piece in G0 (see Equation (22)).

Finally, let the support of the defect, J(x), be interpreted not just as an abstract distri-
bution but as a physical density of matter. At the level of the Lagrangian, this is stright-
forwardly written covariantly by coupling O2 to the trace of the stress–energy tensor
Tµ

µ , with

L = − ξ

2m
O2Tµ

µ (x), (97)

with m as the mass of the matter particle. In the presence of non-relativistic static matter,
we simply have Tµ

µ (x) = ρ(x) = mn(x) with n(x), the number density. Then, the generic
ξa,b parameters that we have been using for each defect are related to a single fundamental
coupling ξi = niξ. In that view, any of the above arguments that constrain some of the
ξa to be positive implies that ξ > 0. It then follows that the ξi of any defects are positive;
therefore, the potential between any two defects is monotonic. In other words, under the
condition that J is interpretable as a physical density, the quantum force between any two
defects is attractive at any value of their separation. (The notion of J being interpretable as
a physical density is also needed to ensure the finiteness of the quantum work [34].)

5.4. Critical Casimir Forces

Here, we briefly connect our results to critical Casimir forces. We just present the
scalings predicted from our double trace model in the geometries considered in Sections 5.1
and 5. For thermal fluctuations at criticality, the relevant quantity is βcδF with βc = 1/Tc,
where Tc is the critical temperature and δF is the geometry-dependent term of the free
energy. βcδF has a vanishing mass dimension.

In the Euclidean field theory, the coupling of the double trace operator to the source
is 1

2

∫
ddxEξO2(xE)J(xE). The ξ coupling has a scaling dimension [ξ] = d − [J]− 2∆. The

behavior of the forces follows by dimensional analysis.
The free energy in the short distance limit gives non-retarded van der Waals forces. In

the point–point, plate–point and plate–plate geometries, one obtains

βcδF|pt−pt ∝
ξaξb
ℓ4∆ , βcδF|plate−pt ∝

ξaξb

ℓ4∆−d , βcδF|plate−plate ∝
ξaξb

ℓ4∆−2d . (98)

In the long distance limit, this gives Casimir-type forces. The membrane–point and
membrane–membrane results are:

βcδF|memb−pt ∝
ξ

ℓ2∆ , S−1
d−1βcδF|memb−memb ∝

1
ℓd−1 . (99)

ξ is the coupling to the pointlike defect. The couplings to the membranes do not
appear in the Casimir limit. In the membrane–membrane case, we give the free energy
per units of area of the membrane, Sd−1. The point–point and membrane–point results
match the predictions made from limits of the sphere–sphere geometry in the critical Ising
model [69–71].
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6. Summary

We explore the quantum forces occurring between the defects and/or boundaries of
conformal field theories. While defect CFTs are often investigated formally, our approach
here is much firmer. Since such CFTs do exist in the laboratory, our focus is to predict
phenomena that may, at least in principle, be experimentally observed. Our computations
only require basic notions of CFT and a solid formalism to derive quantum forces in
arbitrary situations.

Defects and boundaries in the real world are not ideal, in the sense that no real-world
material can truncate the spatial support of a field theory fluctuating at all wavelengths.
Inspired by models used in weakly coupled QFT, we propose to model the imperfect defects
of CFTs as localized relevant double-trace operators. This idea is nicely supported by the
∆− branch of the AdS/CFT correspondence, in which case the defects are identified as
mass terms localized on the (regularized) boundary of the Poincaré patch.

In order to compute quantum forces, one needs to know the 2-point CFT correlators in
the presence of such “double-trace” defects. Assuming relatively large N, this is described
by a Born series that dresses the CFT correlator with insertions of the defect.

We first clarify that the CFT correlators get repelled from the defects in the infrared
regime. Asymptotically in the IR, the CFT satisfies a Dirichlet condition on the boundary of
the defect. In this limit, the interior of the defect becomes irrelevant.

The archetype of an extended defect is the codimension-one hyperplane, i.e., the
membrane. In the presence of a membrane, we restrict the conformal dimension to
d−2

2 ≤ ∆ < d−1
2 to avoid dealing with a divergence in the membrane-to-membrane correla-

tor. A careful analysis of the ∆ > d−1
2 case remains to be performed.

We compute the 2-point correlator in the presence of two parallel membranes and
investigate some if its features. We find that the CFT between the membranes develops
a sequence of poles away from the real axis, which should be understood as a set of
resonances, or collective excitations, of the CFT constituents. In the near-free limit, these
resonances are narrow with the decay rate depending only on the separation between the
two membranes and on the dimension of the double-trace operator. It would be interesting
to study further the properties of these resonances, including their interactions.

We then explore the quantum forces between pointlike and/or planar double-trace
defects in the asymptotic Casimir–Polder and Casimir regimes. The Casimir–Polder regime
typically appears at a short separation, i.e., in the UV, when the first term of the Born series
is leading. The CFT Casimir–Polder force between a pointlike defect and another pointlike
defect, a membrane, or an infinite plate, is respectively proportional to 1/ℓ4∆−2, 1/ℓ4∆−d+2,
1/ℓ4∆−d+1. The force between two infinite plates is in 1/ℓ4∆−d.

The Casimir regime appears at large enough separation, i.e., in the IR, when the Born
series must be resummed. The Casimir force between a point and a membrane is 1/ℓ2∆+1,
while the pressure between two membranes is 1/ℓd. The membrane–membrane quantum
pressure has, in a sense, a universal behavior analogous to the one induced from free fields.
However, information about the double-trace nature of the boundary still remains in the
overall coefficient of the force, which is ∆-dependent.

In membrane configurations, we show that the sign of the double-trace operator is
constrained in order for the potential to be well defined at any distance. This is tied to
requiring the absence of a tachyon in the spectrum of the 2-point correlator. In turn, this
constraint guarantees that the potential is monotonic. Assuming that the support of the
defects can be interpreted as a physical matter distribution—an assumption that is also
needed to ensure the finiteness of the quantum work—one concludes that the potential
between any two defects is monotonic. Hence, the quantum forces between any two
double-trace defects are attractive at any distance.

It would be interesting to determine real-world systems—either quantum or critical—for
which the defects and boundaries may, at least approximately, be described by double-trace
deformations. It would also be interesting to devise laboratory experiments that can test
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some of the phenomena predicted in this paper. The exploration of these possibilities is left
for future work.
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Appendix A. 2-Point Correlator in Mixed Space

The Schwinger parametrization is

1
x2∆

12
=

1
Γ(∆)

∫ ∞

0

dt
t

t∆e−tx2
12 . (A1)

We use parametrization (A1) to compute the Fourier transform

⟪O(p, z1)O(−p, z2)⟫ =
∫

dd−1y12 eiy12·p 1
x2∆

12

= 1
Γ(∆)

∫ ∞
0

dt
t t∆−tz2

12
∫

dd−1y12 eiy12·pe−ty2
12

= −i π
d−1

2
Γ(∆)

∫ ∞
0

dt
t t∆− d−1

2 e−tz2
12+

p2
4t .

(A2)

In Equation (A2), the time integral is evaluated upon Wick rotation to the Euclidean
space, y0

12 = −iy0,E
12 , which makes the overall −i factor appear. In Equation (A2), one

recognizes the integral representation of the Bessel K (6), which one can put in the form

∫ ∞

0

dt
t

t∆− d−1
2 e−tz2− q2

4t = 2
( q

2z

)∆− d−1
2 K∆− d−1

2
(qz) . (A3)

We remind that Kα(z) = K−α(z). Identifying Equation (A3) in Equation (A2), one
obtains the momentum–position representation of the 2-point correlator (5).

Appendix B. Computation of the Decay Widths

Consider the denominator of Equation (36),

D(p) = G2
0(p)− G2(p; 0, L) . (A4)

For ∆ = d − 2/2, one has

D(p) =
4πd

Γ2
(

d−2
2

) 1 − e−2L
√

−p2

p2 . (A5)

In that case, D(p) has a set of zeros on the real line D(mfree
n ) = 0 at the values

p = mfree
n ≡ nπ/L, n ∈ N/0. These are the familiar modes of the free field confined in a

[0, L] Dirichlet interval.
For ∆ close to the free field dimension, one can expand the denominator in ϵ = ∆− d−2

2 .
This produces a relatively small correction to Equation (A5). One obtains

D(p) ≈ 4πd

Γ2( d−2
2 )

(√
−p2

L

)ϵ
(

L
√
−p2

)2ϵ
− e−2L

√
−p2

p2 . (A6)
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By continuity, the poles are given by mn = mfree
n + ϵδn,r + iϵδn,i + O(ϵ2).

We assume that the imaginary part of the δ-correction is negative, δn,i < 0. Plugging
this form into Equation (A6) and expanding in ϵ determines the δ corrections. One finds

δn,r = −ϵ log
(nπ

L

)
, (A7)

δn,i = −ϵ
π

2L
. (A8)

One has, thus, δn,i < 0, consistent with our hypothesis. These poles describe narrow
resonances. In particle physics, the imaginary part is commonly written as

δn,i ≡ −Γn

2
, (A9)

where Γn ≪ mn is the decay rate, i.e., the width of the resonance. This leads to the
formula (42).
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