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Abstract: The paper provides an extended overview of recent results obtained by the authors in the
process of studying the vacuum interaction of topological cosmic strings at short distances, taking
into account their transverse size a and the mass m of the quantized field. We consider the case of a
massive real-valued scalar field with minimal coupling. It is shown that at the interstring distances
significantly larger than the Compton length, lc = 1/m, the Casimir effect is damped exponentially.
On the other hand, at distances smaller than lc but much larger than the typical string width, the
field-mass influence becomes insignificant. In this case, the partial contribution of a massive field to
the Casimir energy is of the same order as the contribution of a massless one. At these distances, the
string’s transverse size is insignificant also. However, at the interstring distances of the same order as
a string radius, the energy of the vacuum interaction of thick strings may significantly surpass the
one for two infinitely thin strings with the same mass per unit length.
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1. Introduction

Seventy-five years ago, a phenomenon was predicted [1] and then named the Casimir
effect in honor of the author. Being experimentally confirmed, it became direct evidence of
the close relationship between the macroscopic external conditions and quantized fields.
Since those times, it has shown great development, both in experimental investigations and
at the level of theoretical research. Now, it is a subject of study not only by specialists in
quantum field theory and physics of condensed matter and nanotechnology but also by
scientists working in various fields of gravity and cosmology (see, e.g., [2]).

One of the problems related to modern astrophysics, which was considered in the
literature, is the problem of the vacuum interaction of cosmic strings.

Cosmic strings are considered as one-dimensional-extended topological defects (closed
or infinite), which might be created under cosmological phase transitions during the Uni-
verse evolution [3,4]. In what follows, we use the term “string” for this kind of cosmic
string (so-called topological cosmic strings) and do not consider the case of non-topological
F-strings and D-strings, which may be formed during the interaction of multidimen-
sional branes.

A special interest in these types of defects arose in connection with the hypothesis that
they might represent one of the basic sources of primary fluctuations in the Hot Universe.
The hypothesis was not confirmed, but the cosmic strings are still considered to be a
possible origin of some observable effects (a review of the possible appearance and indirect
effects of cosmic strings is to be found in Ref. [5]). This stimulates the searches for ways
to detect cosmic strings and, consequently, the investigation of features concerning how
classical (or quantum) matter behaves in the corresponding curved backgrounds.

The study of the evolution of the cosmic-string net during its formation in the Early
Universe phase transitions implies that the investigations of processes happened under
close contact of strings and collisions [3,4]. In these processes, the account of the vacuum
(Casimir) string interaction may turn out to be significant.
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The first estimate of the energy of Casimir of two parallel infinitely thin strings was
obtained in Ref. [6]. Subsequently, the result of this study was corrected in Refs. [7–9].

In papers [7,9], the authors proceeded within the framework of a local formalism,
where the object of study was the renormalized vacuum average of the energy–momentum
tensor (EMT) operator. In paper [8], a global formalism was applied, which allowed us
to work directly with the renormalized total vacuum energy. In studies [7–9], the direct
product of the two-dimensional Minkowski space and a two-dimensional locally flat surface
with two conical singularities was chosen as the spacetime model.

Meanwhile, the creation and evolution of cosmic strings do not imply that they are
necessarily parallel. In Ref. [10], the global formalism was extended to the different mutual
directions of strings. The Casimir energy due to the massless scalar field and infinitely thin
strings was computed for two interacting straight strings.

However, the string’s radius is determined by the energy scale of that phase transition
with broken symmetry when the string was created, and for the GUT strings, the radius has
an estimate of a ∼ 10−28cm. At these scales, the cone vertex represents not just a point-like
singularity but also the curvature, distributed over a cylindrical region of radius a, while
the metric should smoothly transit to the external conical domain. Therefore, it raises the
following question: how does the transverse string size influence the quantum field effects
near the strings?

In the meantime, another problem concerns the influence of the quantized field’s
mass on the Casimir effect. It is natural to suppose that the characteristic lengthy scale,
where the mass is significant, is a Compton length. Quantitatively, the latter is much larger
(for all known elementary particles) than the transverse size of Grand Unified Theory
(GUT) strings.

The effects of the finite core on the vacuum polarization around a single cosmic string have
been investigated earlier, and some nontrivial field-theory effects have been discovered [11–17].
In the present paper, we perform the next step and consider the Casimir effect arising in the
net of parallel cosmic strings, taking into account not only the non-zero strings’ widths but also
the non-zero field’s mass.

The striking feature of the multi-string background is that, due to translational sym-
metry along the z-axis, it is enough to analyze the geometry in the two-dimensional plane
transverse to the string net. Inside this plane, the scalar curvature does not vanish only on
a system of non-overlapping compact domains. As a result, the direct gravitational inter-
string interaction is absent. However, the global distinction of the spacetime considered
here, from the Minkowski one, leads to a change in the spectrum of vacuum fluctuations
and, consequently, to the appearance of the interstring attraction force, the Casimir effect.

Let us start with a qualitative analysis of the problem. First, to notice is that the energy
(per unit string’s length) of vacuum interaction has a dimensionality of the inverse length
square. Thus, from the dimensional quantities in the problem considred here, it can depend
only upon the interstring distance, d, the string radius, a, and the field’s Compton length,
lc = 1/m.

Then the relative energy (per unit length) of the interaction of two similar strings,
parallel to the z-axis, in the units of G = h̄ = c = 1 (where G denotes the Newtonian
constant of gravity, h̄ the Planck’s constant, and c the speed of light) can be presented in
the form

ECas

Z
= − 4

15π

µ1µ2

d2 F
( a

d
, md

)
, Z =

∫
dz , (1)

where µ1,2 is the strings’ masses per unit length, while F is a real-valued function. The
pre-factor just in front of F is determined using dimensional analysis and is specified to be
equal to the Casimir energy of two infinitely thin strings interacting via the massless scalar
field with minimal coupling. Let us note that with that choice of the pre-factor, the function
F tends to unit as a/d→ 0+ or md→ 0+. Actually, the vanishing of these arguments can
be interpreted both as neglect of the strings’ radii and as a transition to the massless field.
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Hereafter, we restrict the study to the case of the scalar field with minimal coupling.
It is related to the observation that for the case of the infinitely thin string, the non-zero
coupling leads to the appearance of a potential with the Aharonov-Bohm δ-like singularities
in the field equation. Such an appearance takes special attention, and the computational
results may drastically vary, in dependence on how one interprets these singularities [18,19].

However, the Compton length of the most massive currently known particle (the
t-quark) is lc ∼ 10−15 cm, while the width of GUT strings is estimated as a ∼ 10−28 cm,
what is of many orders less. If one considers the distances d � a then strings are to be
approximately considered to be infinitely thin, and hence, in Equation (1), one can replace

F
( a

d
, md

)
→ F1(md) = F (0, md) .

Now let us estimate the behavior of F1(md) as md tends to zero. This limit can be
regarded as a transition to the massless field limit with finite values d, and consequently,
with the choice of a pre-factor in Equation (1), one has F1 = 1 in this limit. On the other
hand, equally, this limit can be regarded as a transition d→ 0+ (for infinitely thin strings),
keeping the mass fixed. Therefore, the scale where the mass influence is significant is a
Compton length. Thus, at interstring distances of the order of lc or smaller, the influence of
mass is significant, and the partial contribution of massive modes into the vacuum energy
is comparable with the one of a massless field. But for finite strings’ width, if one considers
the distances 2a < d � lc, then the string transverse size cannot be neglected. However,
if the above estimates hold, in this regime, one can neglect the field’s mass and carry out
another substitution in Equation (1):

F
( a

d
, md

)
→ F2

( a
d

)
= F

( a
d

, 0
)

.

In what follows, the length scale, where the transverse strings’ size is significant, is
the string radius. Thus again, as soon as z̃ = a/d → 0+ the function F2 tends to unity.
Actually, if this limit is to be regarded as limit d→ ∞, then it is quite evident that at these
distances, strings interact as infinitely thin ones. Consequently, the result should reproduce
the Casimir energy of interaction of two infinitely thin strings, with the coefficient F2 = 1.
The same limit is to be valid if a tends to zero. But for the finite-width (or, equivalently,
”thick”) strings, one has d > 2a. Hence, the significant difference F2 from unity (and the
significant difference of the Casimir energy from the strings’ width) should take place if the
interstring distance does not significantly exceed 2a.

Below, it is explicitly shown that these qualitative estimates are fully confirmed.
Actually, there is a variety of string models. Some of them imply that the gravity-

induced Casimir force is not the only interaction. We compute a partial contribution to
the total interstring interaction within any model, for which the above assumptions on the
metric hold.

The computation is carried out within the so-called tr-ln formalism for the effective
action, where one starts from the expression for the total vacuum energy, expressed in
terms of the effective action.

Throughout the paper, we use the system of units G = h̄ = c = 1; the metric signature
is (+,−,−,−).

2. Multi-String Spacetime

Consider the following four-dimensional spacetime, which represents the Cartesian
product of two-dimensional Minkowski space and two-dimensional Riemannian manifold.
The observation that any two-dimensional Riemannian surface is locally conformal to the
Euclidean plane allows the reduction, by the appropriate coordinate transformation, of the
four-dimensional metric to the form

ds2 = dt2 − dz2 − e−σ(x)
(

dx2
1 + dx2

2

)
, (2)
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where x1 and x2 are the two-dimensional Riemannian space coordinates and t denotes the
time.

Let

σ(x) = ∑
α

σα

(
|x− xα|

)
, |x− xα| =

[
(x1 − xα1)

2 + (x2 − xα2)
2
]1/2

. (3)

Then the Ricci scalar reads:

R = ∑
α

Rα = ∑
α

eσ∆σα , (4)

where ∆ stands for the Laplacian associated with two-dimensional Euclidean metric in the
transverse subspace. If the supports of partial contributions, ∆σα, are compact and do not
intersect each other, one deals with ultra-static spacetime, where the curvature is non-zero
in a series of non-overlapping domains.

Choose the functions σα in the form

σα(x) = 2(1− βα) fα

(
rα

)
θ
(
aα − rα

)
+ 2(1− βα) ln

rα

aα
θ
(
rα − aα

)
, (5)

where aα is a conformal radius of αth string, all parameters βα 6 1, θ(·) stands for
the Heaviside step-function, and f is a twice-differentiable function of an argument
rα = |x− xα|, which satisfies the following boundary conditions:

fα

∣∣∣
rα=aα

= 0 ,
d fα

drα

∣∣∣∣
rα=aα

=
1
aα

. (6)

With such a choice of the conformal factor, e−σ, the scalar curvature vanishes every-
where if |x− xα| > aα holds for all α. Moreover, in this domain, the metric coincides with
that of a system of parallel infinitely thin cosmic strings [20]. Furthermore, the criterion of
the perturbation smallness and thus the validity of calculations within the perturbation
theory is a smallness of parameters (1− βα). It is assumed that for the GUT strings, the
estimate of these parameters is 10−6.

Therefore, the space defined above is to be regarded as a spacetime generated by the
net of parallel cosmic strings with non-zero width. The scalar curvature of this spacetime
reads:

R(x) =
{

eσ ∆σα , if exists α : |x− xα| 6 aα ;
0 , if for all α |x− xα| > aα .

(7)

The metric under consideration satisfies the Einstein equation, where on the right-hand
side, the energy-momentum tensor has the following time component:

Ttt =
R

16π
=

1
16π

eσ ∑
α

∆σα.

Hence, the energy per unit length of a system of thick strings equals∫
Ttt
√
−g d2x =

1
16π ∑

α

∫
d2x ∆σα =

1− βα

8π ∑
α

∫
d2x ∆ fα ,

where g is the determinant of the metric tensor.
In what follows, the quantity

µα :=
1− βα

8π

∫
d2x ∆ fα (8)

is to be regarded as the energy per unit length of the αth string.
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The transition to the infinitely thin strings implies the limit of any support ∆σα to be
the single dot x = xα, preserving the value of integrals over d2x. This limit (as aα → 0+)
corresponds to the fixation of the linear energy density of any string. In this limit, the
exponential power in Equation (2) goes to

σ(x) = 2 ∑
α

(1− βα) ln |x− xα| . (9)

Then, regarding the limit in the distributional sense, one obtains:

lim
aα→0+

∆σα = 4π(1− βα) δ2(x− xα) . (10)

Therefore, in addition to Equation (6), when specifying the functions fα, one has to
demand ∫

d2x ∆ fα = 2π .

Then from Equation (8), one obtains

µα =
1− βα

4
,

and, in the limit aα → 0+, the heuristic expression,

Ttt(x) = eσ(x) ∑
α

µα δ2(x− xα) , (11)

holds.
As shown in Ref. [20], any two-dimensional x1x2-plane represents the locally flat

surface with a series of conical singularities located at the points xα, while the parameter
(1− βα) represents the angular deficit, related to αth conical vertex

δϕα = 8π µα = 2π(1− βα) .

Hereafter, we assume that the conformal coordinates cover the x1x2-plane globally.
In the case of single singularity, it takes place if µ < 1/4, while in the case of more
singularities—if the restriction ∑ µα < 1/2 holds and thus the conical subspace does not
acquire the sphere topology [21–24].

In the case of a single infinitely thin string, the spacetime metric has two striking
features: (i) the absence of any length parameters and (ii) higher symmetry. The first allows
us to state that for a massless field, the vacuum expectation value of the EMT depends
upon the distance, r, from the observation point to the singularity. In four dimensions of a
spacetime the EMT scales as

〈Tµν〉vac ∼ r−4

with µ, ν the four-dimensional indices.
The second feature allows the separation of variables in the field equation to construct

Green’s function analytically and to compute the renormalized 〈Tµν〉vac. In the case of
two strings and more, the problem becomes too complicated, and the perturbation theory
techniques become of particular significance [7–9].

The transition to the finite-width strings complicates the problem and demands the
concretization of functions σα. The smoothing of the cone vertices can be realized with the
following choice of the functions fα [25,26]:

fα(rα) = −
1
2

(
1− r2

α

a2
α

)
. (12)
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Now, the Ricci scalar is given by

R(x) =
{

4(1− βα)eσ/a2
α , if exists α : |x− xα| 6 aα ;

0 , if for all α |x− xα| > aα .

This model is known as the ”ballpoint-pen” model, and below, when considering the
Casimir effect in a system of thick strings, we restrict ourselves to this particular case.

For a single cosmic string, the schematic illustrations of a two-dimensional section for
the infinitely thin string and the ”smoothed” one are shown in Figure 1.

Figure 1. Schematic illustration of two-dimensional sections of two models of cosmic-string space:
(a) a cone which corresponds to the infinitely thin cosmic string; (b) the so-called ”ballpoint-pen”
model, which corresponds to the cosmic string with radius a and is of use in this paper.

3. The Setup

The action of the real-valued scalar field φ with mass m can be chosen in the form

Sφ = −1
2

∫
d4x φ(x) L(x, ∂) φ(x) ,

where the field operator L(x, ∂) =
√−g (� + m2) and � = ∇µ∇µ—the curvilinear

Laplace– Beltrami operator.
Represent operator L(x, ∂) in the form

L(x, ∂) = (∂2 + m2) + δL(x, ∂) , ∂2 = ∂2
t − ∂2

1 − ∂2
2 − ∂2

z , (13)

where ∂µ ≡ ∂/∂xµ.
Hereafter, the scalar products of 4-vectors are regarded in the sense of the Minkowski

spacetime metric. The operator δL(x, ∂), corresponding to the metric (2), equals

δL(x, ∂) = Λ(x)
(

∂2
t − ∂2

z + m2
)

, Λ(x) = e−σ(x) − 1 . (14)

Therefore, Λ(x) does not depend on t and z and thus can be equivalently denoted as
Λ(x).
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In the case considered in this paper, all the external factors (the metric, matter, bound-
aries, external fields, etc.) are static, hence the effective action, Weff, is just proportional to
the total vacuum energy, Evac, namely:

Weff = −TEvac ,

where T denotes the total time [27].
On the other hand, the effective action can be reexpressed as [28]

Weff =
i
2

tr ln L =
i
2

ln det L

and consequently, within the tr-ln formalism, we infer:

Evac = −
i

2T
ln det L . (15)

If δL can be considered to be a small perturbation, then one has

ln det L = ln det
(

∂2 + m2 + δL
)

= ln det
(

∂2 + m2
)
+ ln det

[
1 + (∂2 + m2)−1 δL

]
= tr ln

(
∂2 + m2

)
+ tr ln

[
1 + (∂2 + m2)−1 δL

]
(16)

= tr ln(∂2 + m2) + tr
[
(∂2 + m2)−1δL

]
− 1

2
tr
[
(∂2 + m2)−1δL (∂2 + m2)−1δL

]
+ ...

However, the latter formal expansion is well-defined iff all its operator constituents
represent the trace-class operators [29]. In the problem considered here, this is not the
case. Hence, in the computation of traces, one requires some regularization. Here, we use
the dimensional regularization. However, the usage of it can generate another difficulty.
As shown by Hawking [30], in the case of curved spacetime, there is no natural recipe
for which dimensions should be specified for the dimensional analytical continuation.
The final result may depend upon this choice and, moreover, may differ from the results
obtained by other regularization schemes. The way, proposed in Ref. [30], consists of the
construction of the direct product of the curved four-dimensional spacetime and fictitious
(d− 4)-dimensional flat space. Such a continuation leads to the result, which coincides with
that obtained with the help of generalized zeta-function. In our case, the spacetime under
consideration represents the direct product of a two-dimensional curved Riemann surface
times a two-dimensional flat Minkowski. Thus, we make the dimensional continuation of
the Minkowski subspace and keep the dimensionality of transverse curved subspace; thus,
the prescript, proposed in Ref. [30], works as well.

Within the dimensional regularization technique, the computation of the first two
terms in Equation (16) yields:

tr ln(∂2 + m2) + tr
(
(∂2 + m2)−1 δL

)
= −iTZ mD Γ[−D/2]

(4π)D/2

∫ (
Λ(x) + 1

)
d2x

= −iTZ mD Γ[−D/2]
(4π)D/2

∫ √
−g(x) d2x , (17)

where Γ is the gamma function and D = 4− 2ε. The corresponding contribution to the
effective action coincides with the first term of deWitt–Schwinger expansion and should be
neglected in the subsequent renormalization procedure [28].
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Therefore, for the separation of the Casimir contribution to the total vacuum energy to
the first non-zero perturbational order, one must take the third term of the expansion (16):

Evac =
i

4T
tr
[
(∂2 + m2)−1 δL (∂2 + m2)−1 δL

]
. (18)

In the Fourier basis, the latter expression becomes

Evac =
i

4T

∫ d4k
(2 π)4

d4p
(2π)4

δL(k, i(p + k)) δL(−k, ip)
[p2 −m2] [(p + k)2 −m2]

, (19)

where
δL(k, ip) =

∫
d4x eikx

[
δL(x, ∂)

∣∣
∂→−ip

]
. (20)

In our problem, from Equation (14) we infer:

δL(k, ip) = −Λ(k)
(

p2
0 − p2

z −m2
)

, (21)

(where Λ(k) denotes the four-dimensional Fourier-transform of Λ(x)). The direct n-
dimensional Fourier-transform (with the indication of dimensionality in text) is defined as

f (k) =
∫

eikx f (x)dnx .

Thus, the vacuum energy is determined by the following expression:

Evac =
i

4T

∫ d4k
(2 π)4

d4p
(2π)4

(p2
0 − p2

z −m2)2

[p2 −m2] [(p + k)2 −m2]
Λ(k)Λ(−k) . (22)

Under the derivation of Equation (22), it was taken into account that

Λ(k) = 4π2δ(k0) δ(kz)Λ(k) , (23)

where Λ(k) stands for the two-dimensional Fourier-transform of Λ(x), k = (k1, k2) , and
δ(·) is the Dirac delta function. Consequently, in the expressions below, one has to fix
k0 = kz = 0 .

The integral over d4p in Equation (22) diverges, but it has a standard form appropriate
for the usage of the dimensional regularization method.

The Wick rotation,

p0 = i p0
E , d4p = i d4pE , p2 = −p2

E ,

where the subscript ‘E’ indicates the Euclidean space, and subsequent substitution of d4p
by µ̃4−DdDpE reduce the expression (22) to the form

E reg
vac = −

µ̃4−D

4T

∫ d4k
(2π)4 Λ(k)Λ(−k)

∫ dDpE

(2π)D
(p2

0 + p2
z + m2)2

E

(p2 + m2)E[(p + k)2
E + m2]

, (24)

where µ̃ is an arbitrary mass scale factor introduced to preserve the physical dimension of
regularized expression (24).

The internal integral over dDpE has a typical quantum filed theory (QFT) form. Thus,
it can be computed with the help of the Feynman parametrization (see, e.g., [31]). In the
subsequent integration over d4k, we encounter the observation that the integrand contains
Λ(k) squared (23), i.e., squares δ(k0) and δ(kz), respectively. We resolve this problem in a
standard way:

[
δ(k0)

]2
= δ(k0) δ(0) =

δ(k0)

2π

∫
eik0t dt

∣∣∣
k0=0

=
T

2π
δ(k0) .
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The same for the delta-function of kz yields:

[
δ(kz)

]2
=

Z
2π

δ(kz) .

As a result, for the regularized vacuum energy one has the following expression:

E reg
vac =−

Z
4(4π)2

∫ d2k
(2π)2 Λ(k)Λ(−k)×

×
1∫

0

dη
[
2Γ(−2 + ε)Ψ2 + 2m2Γ(−1 + ε)Ψ + m4Γ(ε)

]( Ψ
4πµ̃2

)−ε

, (25)

where
Ψ = η(1− η)k2 + m2 .

Then one expands
(
Ψ/µ̃2)−ε with respect to small ε:(

Ψ
µ̃2

)−ε

= 1− ε ln
Ψ
µ̃2 +O(ε2) . (26)

The first term in Equation (26) leads to the appearance of terms proportional to the
“pole-valued” Γ-functions, in the expression for E reg

vac (25). These terms are to be excluded in
our renormalization scheme [28].

The procedure of dimensional regularization on curved background in four dimen-
sions reduces to separation and discarding the terms proportional to Γ(ε), Γ(−1 + ε),
Γ(−2 + ε). It is shown (see, e.g., [28]) that the renormalized effective action obtained under
this prescription coincides with the analogous expressions obtained under other often used
regularization techniques.

Thus, one obtains:

E ren
vac =

Z
4(4π)2

∫ d2k
(2π)2 Λ(k)Λ(−k)

1∫
0

dη (Ψ−m2)2 ln
Ψ
µ̃2

=
Z

4(4π)2

∫ d2k
(2π)2 Λ(k)Λ(−k)k4

1∫
0

dη η2(1− η)2 ln
Ψ
µ̃2 . (27)

This expression is taken as the starting point for further research, which is developed
in Sections 4 and 5 below.

4. Vacuum Interaction of Strings: d � 2a

As mentioned in Section 1, in the regime d � 2a, the strings can be considered to
be infinitely thin. If so, the functions σα are to be specified in the form (9), hence their
Fourier-transforms equal

σα(k) = −
16πµα

k2 eikxα . (28)

Assuming that the exponential power σ in Equation (14) is small enough and the
substitution

Λ(x) −→ −∑
α

σα(x) ,
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is valid, one arrives at the following expression:

E ren
vac =

Z
4(4π)2 ∑

α,β

∫ d2k
(2π)2 σα(k) σ∗β (k) k4

1∫
0

dη η2(1− η)2 ln
Ψ
µ̃2 . (29)

Within the problem formulation, common for the Casimir effect, the criterion of
elicitation of the Casimir contribution from the total vacuum energy is a dependence upon
the distance between ”walls”. It was shown (see, e.g., [2]) that for the finite-sized bodies,
separated by the finite distance, the corresponding Casimir contribution into the total
(generally, diverging) vacuum energy turns out to be finite. In the problem considered
here, this prescript allows the neglect of those terms in the integrand, which contain
products σασα.

One can see that only the summand terms with α 6= β are responsible for the Casimir
interaction since the latter depends upon the relative interstring distances. Thus, with
the computational perturbation-order accuracy used here, the Casimir interaction is to be
regarded as pairwise.

Taking into account Equation (28), the integration with respect to η reduces the Casimir
energy expression into

ECas =
8Zµ1µ2

15

∫ d2k
(2π)2 eikd

[
ln

m
µ̃
+ A(x)

(
1− 2

x2 +
6
x4

)
−
(47

60
− 3

2x2 +
6
x4

)]
, (30)

where

x =
|k|
m

, A(x) =
√

1 + (2/x)2 arcsinh
x
2

.

Being integrated, the constant terms in the square brackets yield δ2(d), and therefore,
they do not contribute to ECas, by virtue of d > 0.

Furthermore, at small values of x the function A(x) behaves like

A(x) = 1 +
1

12
x2 − 1

120
x4 +

1
840

x6 +O(x8) , (31)

and, as is straightforward to verify, the integrand has no non-integrable singularity as
|k| → 0+.

On the other hand, as (x � 1) the following expansion holds

A(x) = ln x +
2 ln x + 1

x2 − 2 ln x− 1/2
x4 +O

( ln x
x6

)
, (32)

so the integral (regarded in the Riemann sense) diverges at large |k|.
This divergence occurs due to the logarithmic behavior of the function A(x) at infinity,

so we proceed as follows. Add and subtract ln x inside the square brackets in Equation (30).
The minus-logarithm is to remain inside the integrand, while the Fourier-transform of
the plus-logarithm is to be separated as an independent term. Therefore, we represent
Equation (30) in the form

ECas =
8Zµ1µ2

15

∫ d2k
(2π)2 eikd

[
A(x)

(
1− 2

x2 +
6
x4

)
− ln x +

( 3
2x2 −

6
x4

)]
− 4Zµ1µ2

15d2 . (33)

We took the help of the point that the Fourier-transform of the logarithm is well-defined
in the sense of distributions [32]. The latter yields a non-integral term in Equation (33).
Now, the remaining integral in Equation (33) is well-defined as a Riemannian one.
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Subsequent integration with respect to the polar angle ϕ in the (k1, k2)-plane with help
of the table integral [33]

2π∫
0

dϕ eiqr cos ϕ = 2π J0(qr) , (34)

where J0 is a zeroth-order Bessel function of the 1st kind, yields

ECas =
4Zµ1µ2

15π

∞∫
0

dk k J0(kd)
[

A
( k

m

)(
1− 2

m2

k2 + 6
m4

k4

)
− ln

k
m

+
3
2

m2

k2 − 6
m4

k4

]
− 4Zµ1µ2

15d2 . (35)

Notice that the non-integral term in Equation (35) coincides with the known result for
the massless scalar field. Therefore, the dependence of the Casimir effect upon mass, which
is of interest here, is completely determined by the integral term in Equation (35). Thus,
for the function F = Evac(m)/Evac(0) , introduced formally in Equation (1), one obtains a
definite expression

F = −d2
∞∫

0

dk k J0(kd)
[

A
(

1− 2
m2

k2 + 6
m4

k4

)
− ln

k
m

+
3
2

m2

k2 − 6
m4

k4

]
+ 1 . (36)

After the variable change s = k/2m, the integral splits as follows:

F (z) = 1− z2
[

h0(z)−
1
2

h1(z) +
3
8

h2(z)
]

, z = 2md ,

where hn(z) are defined as

h0(z) =
∞∫

0

ds J0(sz)
[√

1 + s2 arcsinh s− s ln 2s
]

,

h1(z) =
∞∫

0

ds
J0(sz)

s2

[√
1 + s2 arcsinh s− s

]
,

h2(z) =
∞∫

0

ds
J0(sz)

s4

[√
1 + s2 arcsinh s− s− s3

3

]
. (37)

These integrals can be computed:

h0(z) =
1
z2 +

1
4

[
K2

0

( z
2

)
− K2

1

( z
2

)]
,

h1(z) =
z
2

U(z) ,

h2(z) = −
z2

9

[
K2

0

( z
2

)
− K2

1

( z
2

)]
− z3

18
U(z)− z

6
K0

( z
2

)
K1

( z
2

)
, (38)

where Kn(·) are Macdonald functions (modified Bessel functions of the 3rd kind), while
U(·) stands for the following special integral Macdonald function:

U(z) =
∞∫

z

dx
x2 K2

0

( x
2

)
. (39)
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As a result, for F (z) one obtains eventually:

F (z) = z2

4

[( z2

6
− 1
)[

K2
0

( z
2

)
− K2

1

( z
2

)]
+
( z2

12
+ 1
)

zU(z) +
z
4

K0

( z
2

)
K1

( z
2

)]
. (40)

The plot of F (z) is presented in Figure 2.
In what follows, for z� 1, the asymptotic expansion reads:

F (z) = π

16
e−z
(

15− 75
2z

+
25,031
128z2 +O

(
z−3
))

.

Therefore, at large (with respect to the Compton length) distances, the Casimir effect
is damped exponentially.

Figure 2. F (z) function given by Equation (40).

In the opposite case, for z� 1, the expansion is given by

F (z) = 1 +
5
8

z2
(

ln
z
4
+ γ +

1
3

)
+O

(
z4| ln z|

)
,

and thus, one can see that for d� lc, the contribution of massive modes into the Casimir
energy turns out to be comparable to the contribution of massless modes, as follows from
the qualitative speculations.

The plot of dependence of the Casimir energy,

ECas = −
4Zµ1µ2

15d2 F (2md) , (41)

as a function of interstring distance in doubly logarithmic scale is presented in Figure 3.
The dashed line corresponds to the massless limit.

The corresponding attraction force per unit strings’ length is to be found as a deriva-
tive of the Casimir energy ECas with respect to the strings-separation distance d. There-
fore, both the Casimir energy and the Casimir force (both per unit length) are given by
finite expressions.
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Figure 3. Energy of the Casimir attraction of two strings as a function of interstring distance (in units

l(m=1)
c = 1) in doubly logarithmic scale: for the massive fields with m = 0.5 (red, dashdotted), m = 1

(green, solid), m = 2 (black, dotted), and for the massless field (blue, dashed). See text for details.

5. Vacuum Interaction of Strings: 2a < d � lc

As was noted in Section 1, the case d� lc corresponds to the observation that the field
can be considered to be massless.

Then, returning to Equation (27) and fixing m = 0, one obtains:

E ren
vac =

Z
4(4π)2

∫ d2k
(2π)2 Λ(k)Λ(−k) k4

1∫
0

dη η2(1− η)2 ln
η(1− η)k2

µ̃2 , (42)

and after the η-integration:

E ren
vac =

Z
60(4π)2

∫ d2k
(2π)2 Λ(k)Λ(−k) k4

[
ln |k|+O(1)

]
. (43)

Now after the substitution Λ(k)→ −σ(k) the expression (43) is rewritten as a sum of
two integrals. One of them reads:

∫ d2k
(2π)2 |k|

4 σ(k) σ(−k) =
∫

d2x[∆σ(x)]2 '
∫

d2x R2(x) . (44)

The integral, which contains a logarithm in Equation (43), also can be transformed
into the coordinate representation:

∫ d2k
(2π)2 |k|

4 ln |k| σ(k) σ(−k) = − 1
2π

∫
d2x d2x′

∆σ(x)∆′σ(x′)
|x− x′|2

' − 1
2π

∫
d2x d2x′

R(x) R(x′)
|x− x′|2 . (45)
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In the expressions (44) and (45), it was taken into account that to the lowest order of
(1− β), which is of interest here,

∆σ(x) = ∑
α

∆σα(x) ' R(x) = ∑
α

Rα(x) . (46)

For two strings separated by distance d > a1 + a2 (d = x1 − x2), the supports of the
partial contributions Rα and Rβ do not overlap. Hence, that contribution to Equation (44),
which depends upon the distance d, vanishes, and the Casimir contribution to the total
vacuum energy (46) is completely determined by the contribution due to the integral (45).
This contribution can be presented in the form

ECas = −
Z

15 (4π)3

∫
|x|<a1,
|x′ |<a2

d2x d2x′
R1(x) R2(x′)
|x− x′ + d|2 . (47)

Introduce two polar coordinate systems ($, ϕ) and ($′, ϕ′) (with suggestive notations)
with origins in the centers of strings. Then, both angular integrations are carried out with
the help of the table integral [33]

2π∫
0

dϕ

A + B cos ϕ
=

2π√
A2 − B2

.

It results in the following expression for the Casimir energy per unit length:

ECas

Z
= − 16

15π

µ1µ2

a2
1a2

2

a1∫
0

$d$

a2∫
0

$′d$′√
[(d + $′)2 − $2][(d− $′)2 − $2]

.

Integrating with respect to $, one has:

ECas

Z
= − 8

15π

µ1µ2

a2
1a2

2

a2∫
0

$′d$′
(

ln
d
$′
− arccosh

d2 + $′2 − a2
1

2d$′

)
. (48)

The final integration yields:

ECas

Z
=

8
15π

µ1µ2

a2
1a2

2

[
d2 − 2a2

1
8

− 1
8

√(
d2 + a2

1 − a2
2
)2 − 4d2a2

1+

+
a2

1
2

(
arccosh

d2 + a2
1 − a2

2
2da1

− ln
d
a1

)
+
{

a1 ←→ a2
}]

. (49)

In the case of GUT strings, both the mass per unit length and the string’s width are
determined by the energy scale of the corresponding phase transition, ηGUT ∼ 1016 GeV.
Hence it is reasonable to fix

a1 = a2 = a = aGUT ∼ η−1
GUT, µ1 = µ2 = µ = µGUT ∼ η2

GUT

and consider two similar strings. Then, introducing

ξ =
a
d
<

1
2

,
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the energy of the Casimir attraction per unit length of two finite-width strings equals [34]

ECas

Z
=

4
15π

µ2

d2
1
ξ4

ξ2∫
0

dx ln
1 + x− ξ2 +

√
(1 + x− ξ2)2 − 4x
2

. (50)

Finally, integrating with respect to x, the Casimir energy of two equivalent strings is
given by

ECas

Z
= − 4

15π

µ2

d2
1
ξ2

[
1− 2 ln

1 +
√

1− 4ξ2

2
− 1−

√
1− 4ξ2

2ξ2

]
. (51)

The dependence of the Casimir energy (normalized by (−4µ2/15π)) of attraction of
two similar strings upon the interstring distance is plotted in Figure 4.

In the case d� a, the direct expansion in ξ � 1 yields

ECas

Z
= − 4

15π

µ2

d2

[
1 +

a2

d2 +
5
3

a4

d4 +O(d−6)

]
, (52)

what to the leading (in a/d) order coincides with the result for infinitely thin strings [7–9].
In Figure 5, we plot the curve of a ratio of the Casimir energy for the ballpoint-pen

model with respect to the same quantity for infinitely thin strings.

Figure 4. Casimir energy (normalized by the factor 16µ1µ2/15π) versus the distance between centers
for fixed equal string radii (red solid) in a = 1 units, compared with the infinitely thin string (black
dashed). See text for details.

Let us consider the case a1 � a2 < d separately. It can be considered to be a case when
one of the strings (namely, a2) was formed under the electroweak (EW) phase transition.
It happened with considerably lower energies (ηEW ∼ 103 GeV) and corresponds to the
transverse size of the created strings of aEW ∼ 10−15 cm, what significantly exceeds the
corresponding width of a typical GUT-string (aGUT ∼ 10−28 cm).
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Figure 5. Relative Casimir attraction energy versus the interstring distance, with respect to the
attraction of infinitely thin strings.

Then from the expression (48) we infer:

ECas

Z
= − 8

15π

µ1µ2

a2
2

a2∫
0

$′d$′

d2 − $′2
+O(a2

1/d2) . (53)

In what follows, in the limit a1 → 0+, denoting a2 = a, one obtains

ECas

Z
=

4
15π

µ1µ2

a2 ln
(

1− a2

d2

)
, (54)

so, for d� a, we return to the result valid for two infinitely thin strings.
However, in the case of close contact, where the interstring gap, δ = d− a, is consid-

erably smaller than the interstring distance d, Equation (54) gives logarithmic singularity
(ECas ∼ ln(2δ/d)) as (δ → 0+). This implies that if δ becomes of the same order as the
width of the thinner string, one cannot neglect string’s radius.

Let us demonstrate that under a contact of the strings of any finite width, the Casimir
energy per unit length is finite within the model under interest. Then, two radii are related
by a2 = d − a1. Define a = min{a1, a2} now and introduce ξ̄ := a/d. Then for any
0 < ξ̄ 6 1/2,

ECas

Z
= − 4

15π

µ1µ2

d2
1
ξ̄2

[
ξ̄2(1− ln ξ̄)− ξ̄

(1− ξ̄)2 − ln(1− ξ̄)

]
. (55)

For ξ̄ = 1/2 one reproduces the result (51) with ξ = 1/2:

F = 4(2 ln 2− 1) , (56)

while, in the opposite limiting case (ξ̄ � 1), the expansion in relatively small a reads:

ECas

Z
= − 4

15π

µ1µ2

d2

(
ln

d
a
− 1

2

)
+O(a| ln a|) . (57)

From the quantitative viewpoint, this case (applied to the pair GUT-plus-EW strings)
is of a significantly lower interest than the case of two similar GUT strings discussed in this
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Section. It happens since the energy per unit length, µEW ∼ η2
EW, of the EW string is many

orders smaller than the same energy, µGUT, for the GUT string. But from the qualitative
viewpoint, for the EW strings, these effects take place already at the distances of the order
of d ∼ 1/ηEW ∼ 10−15 cm, in contrast to the orders 10−28 cm for the Casimir interaction of
two GUT strings. Also, the model considered above once again illustrates the nontrivial
dependence of this effect on the strings’ size.

6. Discussion

We have presented an extended overview of recent results obtained by the authors
in the process of studying the vacuum interaction of topological cosmic strings at short
distances [34,35]. Within the tr-ln formalism, we have considered the vacuum interaction
of finite-width topological cosmic strings, which interact via a massive scalar field with
minimal coupling. It is shown that at distances much less than the Compton length but
significantly larger than the strings’ width, the partial contribution of massive fields to the
Casimir energy is comparable with the contribution of massless fields. Therefore, at such
small (in the sense mentioned above) distances, one can neglect the mass. Nevertheless, if
the interstring distance becomes comparable with the strings’ width, one cannot neglect
the string radius. Furthermore, if the interstring gap is of the order of the string’s width,
the energy of the Casimir interaction may significantly surpass the same quantity for the
infinitely thin strings with the same mass per unit length.

The results obtained here may be useful in subsequent issues on the interaction of
strings at short distances, on their collisions, and on accompanying intertanglements
and reconnections.
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