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Abstract: We consider the Casimir pressure between two graphene sheets and contributions to it
determined by evanescent and propagating waves with different polarizations. For this purpose, the
derivation of the 2-dimensional (2D) Fresnel reflection coefficients on a graphene sheet is presented
in terms of the transverse and longitudinal dielectric permittivities of graphene with due account
of the spatial dispersion. The explicit expressions for both dielectric permittivities as the functions
of the 2D wave vector, frequency, and temperature are written along the real frequency axis in the
regions of propagating and evanescent waves and at the pure imaginary Matsubara frequencies
using the polarization tensor of graphene. It is shown that in the application region of the Dirac
model nearly the total value of the Casimir pressure between two graphene sheets is determined
by the electromagnetic field with transverse magnetic (TM) polarization. By using the Lifshitz
formula written along the real frequency axis, the contributions of the TM-polarized propagating
and evanescent waves into the total pressure are determined. By confronting these results with the
analogous results found for plates made of real metals, the way for bringing the Lifshitz theory
using the realistic response functions in agreement with measurements of the Casimir force between
metallic test bodies is pointed out.

Keywords: graphene; Casimir pressure; Dirac model; spatial dispersion; polarization tensor; propa-
gating waves; evanescent waves

1. Introduction

By now, graphene has assumed great importance in the field of fundamental physics
and its numerous applications, where it plays a broad spectrum of roles [1,2]. The distinctive
characteristic features of graphene, as opposed to ordinary bodies, are the 2-dimensional
(2D) crystal structure of carbon atoms and massless quasiparticles described not by the
Schrödinger equation, but by the Dirac equation, where the speed of light is replaced
with the much smaller Fermi velocity. As a result, at energies below a few eV, the electri-
cal and optical properties of graphene are well described by the relatively simple Dirac
model [1–6]. This enables one to investigate the main features of graphene not by using
some phenomenological approach, which is the usual practice in condensed matter physics,
but on the solid basis of thermal quantum field theory and, more specifically, quantum
electrodynamics at nonzero temperature.

The subject of this paper is the Casimir force [7], which acts between any two un-
charged closely spaced material bodies owing to the zero-point and thermal fluctuations
of the electromagnetic field. In his original publication [7], Casimir calculated the force
acting between two ideal metal planes kept at zero temperature. At a later time, E. M.
Lifshitz [8–10] developed the general theory expressing the Casimir force between two
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plates at any temperature via the reflection coefficients written in terms of the frequency-
dependent dielectric permittivities of plate materials. In recent years, the Casimir force
continues to grow in popularity due to the role it plays in quantum field theory, elemen-
tary particle physics, condensed matter, atomic physics, and even cosmology (see the
monographs [11–13]).

Experiments measuring the Casimir force between metallic test bodies faced problems
when comparing the measurement data with theoretical predictions of the Lifshitz theory.
It turned out that if the low-frequency response of metals is described by the universally
used dissipative Drude model, the obtained theoretical predictions are excluded by the
measurement data. If, however, the low-frequency response is described by the dissipa-
tionless plasma model, which should not be applicable at low frequencies, the theory gives
results in agreement with the experiment (see [12,14–17] for a review). Quite recently, it
was shown [18] that the roots of the problem are not in the Drude model as a whole, but
only in its possible incorrectness in the restricted area of transverse electric evanescent
waves where it has no sufficient experimental confirmation.

The response functions of metals, including the Drude model, are of more or less phe-
nomenological character. In this regard, of special interest is the Casimir effect in graphene
systems, which has drawn the attention of many authors. At the early stages of investiga-
tion, the response of graphene to the electromagnetic field was also described by means
of phenomenological methods based on the 2D Drude model, density functional theory,
Boltzmann transport equation, random phase approximation, Kubo theory, hydrodynamic
model, etc., and the obtained results were used to calculate the Casimir force in graphene
systems [19–39]. In doing so, it was found that in the framework of the Dirac model the
spatially nonlocal response of graphene at the pure imaginary Matsubara frequencies can
be described by the polarization tensor in (2+1)-dimensional space-time and calculated
precisely from the first principles of thermal quantum field theory [40,41]. These results
were generalized to the entire plane of complex frequencies including the real frequency
axis [42,43]. In such a manner, the reflection coefficients of electromagnetic fluctuations on
a graphene sheet were expressed directly via the components of the polarization tensor.

The results of first-principles calculations of the Casimir force between two graphene
sheets using the polarization tensor were compared [44] with those obtained using various
phenomenological methods, and serious limitations of the latter were demonstrated. What
is more, the measurement data of two experiments measuring the Casimir force in graphene
systems were compared with the predictions of the Lifshitz theory using the reflection
coefficients on graphene expressed via the polarization tensor and found to be in excellent
agreement [45–48]. Specifically, the most precise measurements [47,48] confirmed the
theoretical prediction of [24] that for graphene systems a big thermal effect in the Casimir
force arises at much shorter separations than for metallic or dielectric bodies.

Thus, in the case of graphene, the Lifshitz theory does not suffer from a problem
arising for metallic plates whose electromagnetic response was determined on partially
phenomenological grounds (we recall that the experimental data for the complex index
of refraction of metals are available only in the frequency region above some minimum
frequency and are usually extrapolated by the Drude model to below this frequency [49]).
One can conclude that graphene supplies us with some kind of road map on how to cor-
rectly describe the Casimir force between metallic plates. Because of this, it is important
to compare both theoretical descriptions in parallel, including the form of reflection coef-
ficients, the contributions of different polarizations of the electromagnetic field, and the
propagating and evanescent waves.

In the current study, we underline that the reflection coefficients on a graphene sheet
expressed via the polarization tensor are nothing more than the 2D Fresnel reflection
coefficients expressed via the spatially nonlocal longitudinal and transverse dielectric
permittivities. It is stressed that for a 2D graphene sheet, as opposed to the 3D Casimir
configurations, the spatial dispersion can be taken into account exactly on a rigorous
theoretical basis. Then, it is shown that in the application region of the Dirac model
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the Casimir force between two pristine graphene sheets is completely determined by
the transverse magnetic polarization of the electromagnetic field. In doing so, at short
separations up to hundreds of nanometers, both the propagating and evanescent waves
make essential contributions to the Casimir force, whereas at larger separations the total
force value is mostly determined by the contribution of evanescent waves. This is compared
with the case of metallic plates where the evanescent waves play an important role in the
problem of disagreement between the predictions of the Lifshitz theory using the Drude
model and the measurement data.

The paper is organized as follows. In Section 2, we present the detailed derivation
of the 2D Fresnel reflection coefficients on a graphene sheet in terms of the dielectric
permittivities of graphene with an accurate account of the spatial dispersion. In Section 3,
the explicit expressions for the transverse and longitudinal dielectric permittivities of
graphene at any temperature are presented. Section 4 contains the results of the numerical
computations of contributions to the Casimir pressure between two graphene sheets due
to different polarizations of the propagating and evanescent waves. Section 5 provides a
discussion of both similarities and distinctions in the Casimir pressures between metallic
plates and graphene sheets. Finally, Section 6 contains our conclusions.

2. Fresnel Reflection Coefficients on a Two-Dimensional Sheet

It is known that the Casimir force between two parallel plates is expressed by the
Lifshitz formula through the amplitude reflection coefficients of the electromagnetic waves.
For the ordinary three-dimensional plates, these are the familiar Fresnel reflection coeffi-
cients written in terms of the frequency-dependent dielectric permittivity of the voluminous
plate material. Graphene is a two-dimensional sheet of carbon atoms. Its dielectric per-
mittivity is spatially nonlocal and essentially depends not only on the frequency, but
on the wave vector and also on temperature. The expressions for the two-dimensional
analogues of the Fresnel coefficients presented in terms of the dielectric permittivity of
a 2D material are not quite known (see, e.g., [50–52], where the transverse magnetic
coefficient [50,51] and both reflection coefficients [52] were expressed in terms of the 2D
conductivity with no account of spatial dispersion, or [13,31] where they are presented
with no detailed derivation).

Below, we demonstrate in detail that the reflection coefficients on a 2D sheet are
obtainable in close analogy to the standard 3D Fresnel reflection coefficients, but with due
account of the spatial dispersion.

Let the graphene sheet be in the plane z = 0, where the z-axis is directed downward
in the plane of Figure 1 and the y-axis is directed upward perpendicular to it.

II

I

n

z

x

Figure 1. The configuration of a graphene sheet located at the plane (x, y) perpendicular to the plane
of the figure. The y-axis is directed upward. The unit normal vector n is directed from the region I to
II along the positive direction of the z-axis.
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There are empty half spaces I and II on both sides of the graphene sheet. The fluc-
tuating electromagnetic field induces some surface charge density, $2D(ρ, t), and current
density, j2D(ρ, t), on the sheet where ρ = (x, y) and t denotes the time. Then, the Maxwell
equations in the 3D space take the form

∇D(r, t) = 4π$3D(r, t),

∇B(r, t) = 0,

∇× E(r, t) +
1
c

∂B(r, t)
∂t

= 0,

∇× H(r, t)− 1
c

∂D(r, t)
∂t

=
4π

c
j3D(r, t), (1)

where r = (x, y, z) = (ρ, z), c denotes the speed of light, D is the electric displacement, B is
the magnetic induction, and E and H are the electric and magnetic fields, respectively. The
3D charge and current densities in Equation (1) are given by [13,50]

$3D(r, t) = $2D(ρ, t)δ(z), j3D(r, t) = j2D(ρ, t)δ(z). (2)

Note that we use the Gaussian units in Equation (1) and below. In these units, j3D has
the dimension of g1/2cm−1/2s−2, whereas the dimension of j2D is g1/2cm1/2s−2.

The standard electrodynamic boundary conditions on the plane z = 0 are given by

[DII(ρ, 0, t)− DI(ρ, 0, t)] · n = 4πρ2D(ρ, t),

[BII(ρ, 0, t)− BI(ρ, 0, t)] · n = 0,

[EII(ρ, 0, t)− EI(ρ, 0, t)]× n = 0,

[HII(ρ, 0, t)− HI(ρ, 0, t)]× n = −4π

c
j2D(ρ, t), (3)

where n = (0, 0, 1) is the unit vector directed along the z-axis (see Figure 1).
Below we assume that all fields have the form of monochromatic plane waves, e.g.,

E(r, t) = E0ei(kr−ωt), H(r, t) = H0ei(kr−ωt), B(r, t) = B0ei(kr−ωt). (4)

Here, E0, H0, and B0 are the amplitudes; k = (kx, ky, kz) ≡ (q, kz) is the 3D wave
vector, and ω is the wave frequency.

For a derivation of the Fresnel reflection coefficients on a 2D sheet, it is suffice to
restrict our consideration to the third line of the Maxwell equations (1) and the third and
fours lines in the boundary conditions (3).

Substituting Equation (4) into the third line of Equations (1) and (3), it is readily seen
that in both regions I and II

k× E0 − ω

c
B0 = 0 (5)

and
(E0

II − E0
I )× n = 0, (6)

where E0
I and E0

II are the field amplitudes in the regions I and II, respectively.
Now we look at the fourth line in the boundary conditions (3). Taking into account

that the graphene sheet is a spatially nonlocal material, the 2D current density in the fourth
line of Equation (3) takes the form

j2D(ρ, t) =
t∫

−∞

dt′
∫

d2ρ′σ2D(ρ− ρ′, t− t′)Elat(ρ
′, t′). (7)



Physics 2023, 5 1017

Here, σ2D(ρ, t) is the 2D conductivity of a graphene sheet (it has the dimension cm/s)
and Elat is the projection of the electric field on the plane of graphene calculated at z = 0:

Elat(ρ, t) = E(ρ, 0, t)− n(E(ρ, 0, n) · n) = n× [E(ρ, 0, t)× n]. (8)

Substituting Equations (4) and (7) into the fourth line of Equation (3), one obtains

(H0
II − H0

I )× n = −4π

c
σ2D(q, ω)E0

lat, (9)

where σ2D(q, ω) is the Fourier image of σ2D(ρ, t) in the 2D space and time, q is the 2D
wave vector, and E0

lat is the amplitude of the quantity (8):

Elat(ρ, t) = E0
late

i(qρ−ωt),

E0
lat = n× [E0 × n]. (10)

Note that by introducing σ2D(q, ω) we have used the translational invariance in the
plane of a graphene sheet. In the standard Casimir problems, where the plates are made
of 3D materials separated by a gap, there is no translational invariance in the 3D space
and it is impossible to rigorously introduce the conductivity σ3D(k, ω) (and the dielectric
permittivity) depending on the 3D vector k. Because of this, for taking into account
the effects of spatial dispersion, it is necessary to use some approximations, such as the
suggestion of specular reflection [53,54].

We recall also that the spatially dispersive materials are characterized by the two inde-
pendent conductivities, in our case, σ2D,L(q, ω) and σ2D,Tr(q, ω), depending on whether
E0

lat in Equation (9) is parallel or perpendicular to the wave vector q, respectively [55,56].
These conductivities are called the longitudinal and transverse ones.

We are coming now to the derivation of the amplitude reflection coefficients on
a graphene sheet for two independent polarizations of the electromagnetic field using
Equations (5), (6) and (9).

Let us start with the case of transverse electric polarization when the amplitudes of the
electric field of the incident, E0

0, transmitted, E0
2, and reflected, E0

1, waves are perpendicular
to the plane of incidence (x, z) and directed along the positive direction of the y-axis (see
Figure 2). The corresponding wave vectors are k0, k2, and k1, and the amplitudes of the
magnetic field, which lie in the plane of incidence, are H0

0, H0
2, and H0

1.
Taking into account that the 2D sheet spaced in the plane (x, y) or, equivalently, z = 0

is spatially homogeneous, one finds k0x = k1x = k2x. Considering also that k2
0 = k2

1 = k2
2 =

ω2/c2 because the space outside of a graphene sheet is empty, one obtains

sin θ0 =
k0x

k0
= sin θ1 =

k1x
k1

= sin θ2 =
k2x

k2
, (11)

i.e., in our case, all the three angles are equal.
According to Figure 2,

E0
I = E0

0 + E0
1, E0

II = E0
2, (12)

where E0
0 = (0, E0

0y, 0), E0
1 = (0, E0

1y, 0), and E0
2 = (0, E0

2y, 0).
Taking this into account, the boundary condition (6) reduces to

E0
0y + E0

1y = E0
2y. (13)
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II

I

n

z

x

θ2

θ1θ0

k0

k1

k2

E0
0 E0

1

E0
2

H0
0

H0
1

H0
2

Figure 2. The electromagnetic wave with the transverse electric polarization is incident on a graphene
sheet. The amplitudes of the incident, E0

0, reflected, E0
1, and transmitted, E0

2, electric field are perpen-
dicular to the plane of incidence and directed in the positive direction of the y-axis perpendicular to
the plane of the figure. The corresponding amplitudes of the magnetic field, H0

0, H0
1, and H0

2, lie in
the plane of incidence, whereas k0, k1, and k2 are the corresponding wave vectors.

The boundary condition (9), where E0
lat is defined in Equation (10), is more complicated.

In view of Equation (6), both E0
I and E0

II can be substituted into Equation (10) in place of E0.
We choose E0

II for the sake of brevity. Then the condition (9) takes the form

(H0
II − H0

I )× n = −4π

c
σ2D,Tr(q, ω)[n× [E0

II × n]]. (14)

Here, we took into account that the electric field is perpendicular to q.
From Figure 2, it follows that

H0
I = H0

0 + H0
1, H0

II = H0
2, (15)

where H0
0 = (H0

0x, 0, H0
0z), H0

1 = (H0
1x, 0, H0

1z), and H0
2 = (H0

2x, 0, H0
2z).

Substituting Equations (12) and (15) into the boundary condition (14), one obtains
after the elementary algebra:

H0
2x − H0

0x − H0
1x =

4π

c
σ2D,Tr(q, ω)E0

2y. (16)

From the Maxwell equation (5), written for the incident wave in free space where
B0 = H0, one obtains

H0
0 =

c
ω
[k0 × E0

0]. (17)

With account of k0 = (k0x, 0, k0z) and E0
0 = (0, E0

0y, 0), this reduces to

H0
0x = − c

ω
k0zE0

0y, (18)

where, considering Equation (11) and using that in this case k0x plays the role of q,

k0z =
ω

c
cos θ0 =

√
ω2

c2 − q2. (19)

In a similar way, from Equation (5) written for the reflected and transmitted waves,
one finds



Physics 2023, 5 1019

H0
1x = − c

ω
k0zE0

1y, H0
2x = − c

ω
k0zE0

2y. (20)

Substituting Equations (18) and (20) into Equation (16), we finally obtain

E0
0y − E0

1y − E0
2y =

4πω

c2k0z
σ2D,Tr(q, ω)E0

2y. (21)

By solving this equation together with Equation (13), the transverse electric (TE)
reflection coefficient is found in the form

rTE(q, ω) =
E0

1y

E0
0y

= − 2πωσ2D,Tr(q, ω)

c2k0z + 2πωσ2D,Tr(q, ω)
. (22)

Note that in Ref. [52] this reflection coefficient was obtained in the special case of
normal incidence with ignored spatial dispersion.

By taking into account that for a 2D sheet, the spatially nonlocal dielectric permittivity
is expressed via the conductivity as [13,31]

ε2D,Tr(q, ω) = 1 +
2πiσ2D,Tr(q, ω)q

ω
, (23)

and using Equation (19), we rewrite the reflection coefficient (22) in the final form

rTE(q, ω) = − ω2[ε2D,Tr(q, ω)− 1]

ic2q
√

ω2

c2 − q2 + ω2[ε2D,Tr(q, ω)− 1]
. (24)

This is the transverse electric Fresnel reflection coefficient on a 2D graphene sheet
expressed via the spatially nonlocal transverse dielectric permittivity of graphene.

We now proceed to a derivation of the transverse magnetic reflection coefficient on
a graphene sheet. In this case, the amplitudes of the magnetic field of the incident, H0

0,
transmitted, H0

2, and reflected, H0
1, waves are perpendicular to the plane of incidence and

directed along the positive direction of the y-axis (see Figure 3). The amplitudes of the
electric field, E0

0, E0
2, and E0

1, lie in the plane of incidence.

II

I

n

z

x

θ2

θ1θ0

k0

k1

k2

H0
0 H0

1

H0
2

E0
0 E0

1

E0
2

Figure 3. The electromagnetic wave with the transverse magnetic polarization is incident on a
graphene sheet. The amplitudes of the incident, H0

0, reflected, H0
1, and transmitted, H0

2, magnetic
field are perpendicular to the plane of incidence and directed in the positive direction of the y-axis
perpendicular to the plane of the figure. The corresponding amplitudes of the electric field, E0

0, E0
1,

and E0
2, lie in the plane of incidence, whereas k0, k1, and k2 are the corresponding wave vectors.
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According to Figure 3,

H0
I = H0

0 + H0
1, H0

II = H0
2, (25)

where H0
0 = (0, H0

0y, 0), H0
1 = (0, H0

1y, 0), and H0
2 = (0, H0

2y, 0).
Taking into account that, in this case,

E0
II = E0

2 = (E0
2x, 0, E0

2z), (26)

one obtains

[E0
2 × n] = (0,−E0

2x, 0),

n× [E0
2 × n] = (E0

2x, 0, 0) = (E0
2 cos θ0, 0, 0), (27)

where cos θ0 is defined in Equation (19).
The boundary condition (9), (10) takes the form

(H0
II − H0

I )× n = −4π

c
σ2D,L(q, ω)[n× [E0

II × n]] (28)

The longitudinal conductivity σ2D,L appears in this equation because the 2D wave
vector q is now parallel to E0

lat.
Substituting Equations (25) and (27) into the boundary condition (28), one finds

H0
2y − H0

0y − H0
1y = −4πσ2D,L(q, ω)

c
E0

2 cos θ0. (29)

For the transverse magnetic polarization, the boundary condition (6) reduces to

E0
0x + E0

1x − E0
2x = 0. (30)

With account of Equation (11), which is valid for both polarizations of the electromag-
netic field, Equation (30) is equivalent to

E0
0 cos θ0 − E0

1 cos θ0 − E0
2 cos θ0 = 0 (31)

and finally to
E0

0 − E0
1 − E0

2 = 0. (32)

Let us now use the Maxwell equation (5) for the incident wave H0
0 = B0

0 = (0, H0
0y, 0).

Then it takes the form of Equation (17). By using E0
0 = (E0

0x, 0, E0
0z), one obtains from

Equation (17) with the help of Equations (11) and (19)

H0
0y =

c
ω
(k0zE0

0x − k0xE0
0z) =

c
ω
(k0z cos θ0 + k0x sin θ0)E0

0 = E0
0. (33)

In a similar way, from the Maxwell Equation (17) applied to the reflected and transmit-
ted waves, one obtains

H0
1y = E0

1, H0
2y = E0

2. (34)

Substituting Equations (33) and (34) into Equations (29) and (32), one finds

H0
2y − H0

0y − H0
1y = −4πσ2D,L(q, ω)

c
H0

2y cos θ0,

H0
0y − H0

1y − H0
2y = 0. (35)
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By solving these equations together, we derive the transverse magnetic (TM) reflection
coefficient on a 2D graphene sheet:

rTM(q, ω) =
H0

1y

H0
0y

=
2πσ2D,L(q, ω) cos θ0

c + 2πσ2D,L(q, ω) cos θ0
. (36)

The result (36) was obtained in Refs. [50–52] in the spatially local case. In the presence
of spatial dispersion, both the results (22) and (36) are presented in Refs. [13,31] with no
detailed derivation.

By using an expression for the longitudinal dielectric permittivity of a 2D sheet through
its conductivity [13,31]

ε2D,L(q, ω) = 1 +
2πiσ2D,L(q, ω)q

ω
, (37)

and Equation (19), one obtains

rTM(q, ω) =
[ε2D,L(q, ω)− 1]

√
ω2

c2 − q2

iq + [ε2D,L(q, ω)− 1]
√

ω2

c2 − q2
. (38)

This is the transverse magnetic Fresnel reflection coefficient on a 2D graphene sheet
expressed via the longitudinal dielectric permittivity of graphene.

3. Spatially Nonlocal Dielectric Permittivities of Graphene and the Polarization Tensor

It is common knowledge that at low energies (smaller than approximately 3 eV [57])
graphene is well described by the Dirac model as a set of massless quasiparticles satis-
fying the Dirac equation, where the speed of light c is replaced with the Fermi velocity
vF ≈ c/300 [1–3]. In the framework of the Dirac model, it is possible to derive explicit
expressions for the polarization tensor of graphene, which describes the response of a
graphene sheet to the electromagnetic field [40–43], and thus find both the transverse
and longitudinal permittivities of graphene starting from the first principles of quantum
electrodynamics. The dielectric permittivities obtained in this way depend on the wave
vector, on the frequency, and also on temperature.

The polarization tensor of graphene in (2+1)-dimensional space-time is notated as
Πµν(q, ω), where µ, ν = 0, 1, 2 and the dependence on temperature is implied (here, we
consider the pristine graphene sheet with no energy gap in the spectrum of quasiparticles
and perfect hexagonal crystal lattice). The transverse dielectric permittivity of graphene is
expressed as [58]

ε2D,Tr(q, ω)− 1 = − c2

2h̄qω2 Π(q, ω), (39)

where the quantity Π is the following combination of the components of the polarization
tensor:

Π(q, ω) ≡ q2Π µ
µ (q, ω) +

(
ω2

c2 − q2
)

Π00(q, ω), (40)

h̄ is the reduced Planck’s constant and the summation is made over the repeated indices.
The longitudinal dielectric permittivity of graphene is immediately expressed via the

00 component of the polarization tensor [58]

ε2D,L(q, ω)− 1 =
c2

2h̄q
Π00(q, ω), (41)

The polarization tensor of graphene along the real frequency axis was obtained in
Ref. [42]. It was considered for the propagating waves, which satisfy the condition

q 6
ω

c
, (42)
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and for the evanescent waves, which satisfy either the condition

ω

c
< q 6

ω

vF
≈ 300

ω

c
(43)

(the so-called plasmonic region [59]) or the condition

q >
ω

vF
≈ 300

ω

c
. (44)

Using the expression from Ref. [42] for Π in the region of propagating waves (42) and
in the plasmonic region (43), the transverse dielectric permittivity of graphene (39) in these
regions can be written in the same form:

ε2D,Tr(q, ω)− 1 = iπαq
c

2ω2

√
ω2 − v2

Fq2

− 8αc2

v2
Fq


u(−)∫
0

du
eβu + 1

[
1− 1

2ω2

√
ω2 − v2

Fq2 ∑
λ=±1

B(2cu + λω)

]

+

∞∫
u(−)

du
eβu + 1

[
1− 1

2ω2

√
ω2 − v2

Fq2 ∑
λ=±1

λB(2cu + λω)

]. (45)

Here and below, it is assumed that ω > 0 and the following notations are introduced:

u(−) =
1
2c

(ω− vFq), β =
h̄c

kBT
, B(x) =

x2√
x2 − v2

Fq2
, (46)

α denotes the fine structure constant, kB is the Boltzmann constant and T is the temperature
of a graphene sheet.

In the region (44), using the corresponding expression for Π [42], one obtains another
expression for the transverse dielectric permittivity of graphene

ε2D,Tr(q, ω)− 1 = −παq
c

2ω2

√
v2

Fq2 −ω2

− 4αc
v2

Fq

√
v2

Fq2 −ω2
∞∫

0

dw
eDw + 1

1− 1
2 ∑

λ=±1

(
√

v2
Fq2 −ω2w + λω)2

ω2
√

1− w2 − 2λωw√
v2

Fq2−ω2

, (47)

where D = h̄
√

v2
Fq2 −ω2/(2kBT).

In a similar way, using the expression from Ref. [42] for Π00 in the region of propagat-
ing (42) and plasmonic (43) wave vectors and frequencies, one finds the explicit form of the
longitudinal dielectric permittivity of graphene (41) in these regions:

ε2D,L(q, ω)− 1 = iπαcq
1

2
√

ω2 − v2
Fq2

+
8αc2

v2
Fq


u(−)∫
0

du
eβu + 1

1− 1

2
√

ω2 − v2
Fq2

∑
λ=±1

F(2cu + λω)


+

∞∫
u(−)

du
eβu + 1

1− 1

2
√

ω2 − v2
Fq2

∑
λ=±1

λF(2cu + λω)

, (48)
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where
F(x) =

√
x2 − v2

Fq2. (49)

Using the expression of Π00 [42] in the region (44), for the longitudinal permittivity of
graphene (41) in this region, one obtains

ε2D,L(q, ω)− 1 = παcq
1

2
√

v2
Fq2 −ω2

+
4αc
v2

Fq

√
v2

Fq2 −ω2
∞∫

0

dw
eDw + 1

1− 1
2 ∑

λ=±1

√√√√1− w2 − 2λωw√
v2

Fq2 −ω2

. (50)

Thus, both the transverse and longitudinal dielectric permittivities of graphene are
obtained in all ranges of the wave vectors and frequencies (42)–(44). We emphasize that
the first lines of Equations (45), (47), (48) and (50) represent the corresponding dielectric
permittivity at zero temperature. The terms in the next lines of these equations define the
thermal correction to it found in the framework of the Dirac model. These terms make a
profound effect on the reflectivity [42] and conductivity [60] properties of graphene, and
also on the Casimir interaction between graphene sheets [44,46–48]. By construction from
the polarization tensor, the obtained permittivities satisfy the Kramers–Kronig relations.
The specific form of these relations was investigated in the spatially local limit q→ 0 [61]
and at zero temperature [62].

For the calculation of the Casimir force in graphene systems, it is helpful to use the re-
flection coefficients (24) and (38), as well as the dielectric permittivities of graphene, written
at the pure imaginary Matsubara frequencies ω = iξl = 2πikBTl/h̄, where l = 0, 1, 2, . . . .

Substituting ω = iξl into Equations (24) and (38), one obtains, respectively,

rTE(q, iξl) = −
ξ2

l [ε
2D,Tr(q, iξl)− 1]

c2q

√
q2 +

ξ2
l

c2 + ξ2
l [ε

2D,Tr(q, iξl)− 1]

,

rTM(q, iξl) =
[ε2D,Tr(q, iξl)− 1]

√
q2 +

ξ2
l

c2

q + [ε2D,Tr(q, iξl)− 1]

√
q2 +

ξ2
l

c2

. (51)

These are the Fresnel reflection coefficients in two dimensions calculated at the pure
imaginary Matsubara frequencies. The same expressions are obtained if one substitutes
Equations (39) and (41) into the reflection coefficients derived in Refs. [40,41] directly in
terms of the polarization tensor.

The spatially nonlocal dielectric permittivities of graphene along the imaginary fre-
quency axis are immediately obtainable from Equations (47) and (50) valid in the inter-
val (44) by putting ω = iξl . The results are
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ε2D,Tr(q, iξl)− 1 = παq
c

2ξ2
l

√
v2

Fq2 + ξ2
l

− 4αc
v2

Fq

√
v2

Fq2 + ξ2
l

∞∫
0

dw
eDl w + 1

1 +
1
2 ∑

λ=±1

(
√

v2
Fq2 + ξ2

l w + iλξl)
2

ξ2
l

√
1− w2 − 2iλξl w√

v2
Fq2+ξ2

l

,

ε2D,L(q, iξl)− 1 = παcq
1

2
√

v2
Fq2 + ξ2

l

+
4αc
v2

Fq

√
v2

Fq2 + ξ2
l

∞∫
0

dw
eDl w + 1

1− 1
2 ∑

λ=±1

√√√√1− w2 − 2iλξlw√
v2

Fq2 + ξ2
l

, (52)

where now Dl = h̄
√

v2
Fq2 + ξ2

l /(2kBT).
These expressions are indeed real as it should be. The same dielectric permittivities are

obtained at once from Equations (39) and (41) written at ω = iξl when substituting expres-
sions for Π(q, iξl) and Π00(q, iξl) derived directly along the imaginary frequency axis [63]
rather than analytically continued from the real frequency axis as it was made above.

4. Contribution of Different Polarizations and the Role of Evanescent Waves in the
Casimir Pressure between Two Graphene Sheets

The Casimir pressure between two parallel graphene sheets at temperature T separated
by distance a is given by the Lifshitz formula, which can be presented in terms of either
pure imaginary Matsubara or real frequencies [8,12]. In both cases, the total pressure is the
sum of contributions from the electromagnetic waves of TM and TE polarizations.

We begin from the representation in terms of the Matsubara frequencies

P(a, T) = PTM(a, T) + PTE(a, T), (53)

where

PTM,TE(a, T) = − kBT
π

∞

∑
l=0

′
∞∫

0

dq q

√
q2 +

ξ2
l

c2

r−2
TM,TE(q, iξl) e2a

√
q2+

ξ2
l

c2 − 1

−1

. (54)

Here, the prime on the summation sign adds the factor 1/2 to the term with l = 0,
and the reflection coefficients on a graphene sheet for both polarizations are defined in
Equation (51) with the dielectric permittivities of graphene presented in Equation (52).

We performed computations of both PTM and PTE in the application region of the
Dirac model, i.e., under a condition that the characteristic energy of the Casimir force
h̄ωc = h̄c/(2a) should be less than 3 eV [57]. This condition is well satisfied at a > 200 nm,
where h̄ωc 6 0.5 eV.

The computational results for the magnitudes of PTM and PTE at T = 300 K are
presented in Figure 4 in the logarithmic scale by the upper and lower lines, respectively, as
the function of separation between the graphene sheets. Both PTM and PTE are negative,
i.e., they contribute to the Casimir attraction.
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Figure 4. The magnitudes of contributions of the transverse magnetic (TM) and transverse electric
(TE) polarizations to the Casimir pressure between two graphene sheets at T = 300 K are shown in
the logarithmic scale as the function of separation by the upper and lower lines, respectively.

As seen in Figure 4, the major contribution to the Casimir pressure at a > 200 nm is
given by the transverse magnetic polarization, whereas the transverse electric one makes
only a negligible small contribution. Thus, at a = 200 nm, we have PTM/PTE = 1530,
i.e., PTM/P = 0.99935. The role of the TM polarization only increases with increasing
separation. As two more examples, at a = 2 and 4 µm one finds that PTM/PTE = 1.92× 104

and 1.49× 105, respectively. This results in the following respective fractions of PTM in the
total Casimir pressure: PTM/P = 0.99995 and 0.999993.

In Section 3, devoted to the nonlocal dielectric permittivities of graphene, they were
considered in the region of propagating (42) and evanescent (43) and (44) waves. In so doing,
within the region of propagating (42) and in the plasmonic subregion (43) of evanescent
waves, these permittivities have a common analytic form. Nevertheless, keeping in mind
an especially important role of the propagating waves (42), which are on the mass shell in
free space, it is appropriate to consider their contribution to the Casimir pressure separately.
Then, the contribution of the evanescent waves is computed as a sum of two terms using
two different forms of the dielectric functions depending on whether the condition (43)
or (44) is satisfied. Such a separation into the propagating and evanescent waves is also
dictated by the form of the Lifshitz formula written in terms of real frequencies (see below).

The representation mathematically equivalent to Equations (53) and (54) of the Lifshitz
formula in terms of real frequencies can be written in the form

P(a, T) = Pprop
TM (a, T) + Pprop

TE (a, T) + Pevan
TM (a, T) + Pevan

TE (a, T). (55)

Here, the contributions of the propagating waves with different polarizations are given
by [8,12]

Pprop
TM,TE(a, T) = − h̄

2π2

∞∫
0

dω coth
h̄ω

2kBT

ω/c∫
0

q dq

× Im


√

q2 − ω2

c2

r−2
TM,TE(q, ω) e

2a
√

q2− ω2
c2 − 1

−1
, (56)

where the reflection coefficients are defined in Equations (24) and (38) and the dielectric
permittivities in the region (42) are given by Equations (45) and (48).
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The contributions of evanescent waves to Equation (55) with different polarizations
take the form [8,12]

Pevan
TM,TE(a, T) = − h̄

2π2

∞∫
0

dω coth
h̄ω

2kBT

∞∫
ω/c

q dq

√
q2 − ω2

c2

× Im

r−2
TM,TE(q, ω) e

2a
√

q2− ω2
c2 − 1

−1

, (57)

where the reflection coefficients are again defined in Equations (24) and (38). As to the
dielectric permittivities entering these reflection coefficients, in the region (43), they are
given by Equations (45) and (48), but in the region (44), by Equations (47) and (50).

Equations (56) and (57) are not as convenient for computations as Equation (54). This is
most pronounced in Pprop

TM,TE defined in Equation (56), which contains the quickly oscillating
functions due to the pure imaginary power in the exponential factor. As to Equation (57),
the power of the exponent remains real.

Taking into account that in the application region of the Dirac model nearly the total
Casimir pressure is determined by the TM polarized waves, we compute the quantity Pevan

TM by
Equations (57) and (38) using the dielectric permittivities defined in Equations (48) and (50).
As to the quantity Pprop

TM , it is more convenient to not compute it directly by Equation (56),
but determine it as a difference

Pprop
TM (a, T) = PTM(a, T)− Pevan

TM (a, T), (58)

where PTM is already computed by the Lifshitz formula (54) written in terms of the Matsub-
ara frequencies.

The computational results for PTM, Pevan
TM , and Pprop

TM at T = 300 K normalized to the
Casimir pressure between two ideal metal plates in the classical limit [12]

PIM(a, T) = − kBT
4πa3 ζ(3), (59)

where ζ(z) is the Riemann zeta function, are presented in Figure 5 as the function of
separation by the solid, long-dashed, and short-dashed lines, respectively.

According to Figure 5, at separations of 200–400 nm both the evanescent and propagat-
ing transverse magnetic waves contribute significantly to the Casimir pressure. At larger
separations, the dominant contribution is given by the evanescent waves. In doing so,
the contribution of evanescent waves is attractive at all separation distances. Calculations
show, however, that this attraction is combined from the attractive part caused by the
plasmonic region (43) and the repulsive part caused by the region (44). The contribution of
the TM propagating waves to the Casimir pressure between two graphene sheets changes
its character from attraction to repulsion and vice versa with increasing separation.
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Figure 5. The contributions of the transverse magnetic polarizations to the Casimir pressure between
two graphene sheets at T = 300 K and to its parts determined by the evanescent and propagating
waves normalized to the Casimir pressure between two ideal metal plates in the classical limit are
shown as the function of separation by the solid, long-dashed, and short-dashed lines, respectively.

5. Discussion: Whether Graphene Helps to Solve the Problem Arising for Real Metals

The main distinctive feature of the Casimir pressure in the configuration of two
graphene sheets considered above is that in the framework of the Dirac model, the spatially
nonlocal dielectric permittivities of graphene are found precisely starting from the first
principles of thermal quantum field theory. As to the dielectric permittivities of metals
used in computations by means of the Lifshitz formula, they contain phenomenological
parameters, such as the relaxation parameter of the Drude model, and have not been tested
experimentally within all frequency regions essential for the Casimir effect (i.e., in the
region of transverse electric evanescent waves).

The formalism of the Lifshitz theory for two graphene sheets presented in Sections 2 and 3
is in perfect analogy with that commonly used for two metallic plates. The Lifshitz formula
for the Casimir pressure remains unchanged, and only the 3D Fresnel reflection coefficients
are replaced with their 2D analogues as it should be done when considering the Casimir
interaction of plane structures. Taking into account the fundamental character of the Lifshitz
theory, we obtain the conclusion that only some drawback in the used response functions of
metals to the electromagnetic field could cause a disagreement of the theoretical predictions
with measurements of the Casimir interaction between Au surfaces.

As shown in Section 4, for two graphene sheets, the total Casimir pressure is deter-
mined by the contribution of only the transverse magnetic waves. This is because in the
application region of the Dirac model at a > 200 nm the Casimir force between graphene
sheets is already in the classical limit where the contributions of the TE polarized prop-
agating and evanescent waves cancel each other. The same occurs for the Casimir force
between metallic plates described by the Drude model at separations exceeding the thermal
length [64], i.e., larger than 7.6 µm at room temperature. At so large separations, however,
there are no reliable measurement data available. As to the experimental separations be-
tween metallic plates, both the TM and TE polarizations contribute to the Casimir pressure
irrespective of whether the experimentally consistent plasma model or the Drude model
excluded by the measurement data is used [18].

By and large, the case of graphene suggests to us that when calculating the Casimir
force using the Lifshitz theory, it is important to adequately describe the response of
boundary materials to both the propagating and evanescent waves with the transverse
magnetic and transverse electric polarizations and take proper account of the effects of
spatial dispersion.
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6. Conclusions

In the foregoing, we considered the Casimir pressure between two graphene sheets
using the Lifshitz theory in the form that is most frequently used for a description of the
Casimir effect between conventional 3D materials. For this purpose, we presented the
detailed derivation of the 2D Fresnel reflection coefficients on a graphene sheet with due
account of the spatial dispersion. As a result, the reflection coefficients for two independent
polarizations of the electromagnetic field were expressed via the transverse and longitudinal
dielectric permittivities of graphene, which depend on the 2D wave vector, frequency, and
temperature. These reflection coefficients are equivalent to those expressed directly via the
polarization tensor of graphene.

Next, we presented the explicit expressions for the transverse and longitudinal di-
electric permittivities of graphene along the real frequency axis in the regions of both the
propagating and evanescent waves and also at the pure imaginary Matsubara frequencies.
This was made using the polarization tensor of graphene, which was found earlier in the
framework of the Dirac model.

Using the Lifshitz formula written in terms of the Matsubara frequencies, we demon-
strated that the total Casimir pressure between two graphene sheets at separations exceed-
ing 200 nm is fully determined by the TM polarized electromagnetic field. By applying
the Lifshitz formula along the real frequency axis, the contributions of the TM polarized
propagating and evanescent waves to the total pressure were found.

Finally, the above results obtained for graphene sheets were confronted with the
corresponding results valid for two metallic plates. This confrontation points the way for
bringing the Lifshitz theory in agreement with the measurement data by using the more
accurate dielectric functions of metallic test bodies. In the future, it is planned to consider
different contributions to the Casimir force between two real graphene sheets possessing
the nonzero chemical potential, which prevents from reaching the classical limit at the
experimental separations.
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