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Abstract: We study the Galam’s majority-rule model in the presence of an independent behavior
that can be driven intrinsically or can be mediated by information regarding the collective opinion
of the whole population. We first apply the mean-field approach where we obtained an explicit
time-dependent solution for the order parameter of the model. We complement our results with
Monte Carlo simulations where our findings indicate that independent opinion leads to order–
disorder continuous nonequilibrium phase transitions. Finite-size scaling analysis show that the
model belongs to the mean-field Ising model universality class. Moreover, results from an approach
with the Kramers–Moyal coefficients provide insights about the social volatility.

Keywords: social dynamics; Galam model; collective phenomena in social systems; nonequilibrium
phase transitions; order-disorder Monte Carlo simulation

1. Introduction

Opinion dynamics is one of the most attractive topics in sociophysics. This recent
research area uses tools and concepts of statistical physics to describe some aspects of
social and political behavior [1–4]. From the theoretical point of view, opinion models are
interesting to physicists because they can present order–disorder transitions, hysteresis,
scaling, and universality, among other typical features of physical systems, which have
attracted much of attention [5–14]. Concerning sociologists, these methods are useful to
improve forecasting by means of controlled toy models that can be run multiple times
and help fine-tune field studies as well [15]. In addition to the interesting properties of
opinion dynamics models, per se, such dynamics have also been applied in various fields
such as finance and business [16], and epidemic dynamics with the presence of conflicting
opinions [17–23], among others [3].

Among the most studied models, one can highlight the voter model [24,25], the
Sznajd model [26], the Deffuant model [27], the kinetic exchange opinion models [28], and
the majority rule model [1,29–31]. All the mentioned models are built based on distinct
microscopic rules that control the dynamics of interactions among agents. The Sznajd
model considers a two-state (up/down spins) outflow dynamics, where a group of agents
sharing a common opinion influence the group’s neighbors to follow the group’s opinion.
The model presents a phase transition between the positive and the negative consensus:
initial densities of spins up smaller than 1/2 lead eventually to all spins down, and densities
greater than 1/2 to all spins up, i.e., consensus absorbing states where the system cannot
escape [26]. On the other hand, the Deffuant model considers the opinions as continuous
variables, and the interactions depend on the "distance" among pairs of opinions, which
defines the concept of bounded confidence. Depending on the value of such bounded
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confidence, the population can evolve to consensus (all equal opinions) or to polarization
(population divided into two distinct opinions). No phase transition is observed [27]. The
majority rule model considers groups of g agents that interact through a quite simple rule:
all agents in the group follow the local majority. In case of even values of g, a probability
k defines which opinion will win the debate inside the group. The results of the model,
regarding consensus and phase transitions, are similar to those observed in the Sznajd
model [29]. Some applications of the majority rule model are mentioned in the following.
Finally, the kinetic exchange opinion models are based on dynamics of wealth exchange.
Interactions are pairwise and consider continuous opinions originally, or discrete three-
state opinions (+1,−1 or 0 states) [28]. Both formulations lead the population to undergo
order–disorder phase transitions, similar to what occurs in spin models. Absorbing states,
where all agents are in the neutral state (all opinions 0 in the population), are observed.
One can find that such absorbing states are distinct from the ones observed in the previous
models, where all agents share opinion +1 or −1. Such kinds of consensus states are
observed in kinetic exchange opinion models only in particular situations [28].

We are especially interested in the majority rule model, proposed by Serge Galam [1].
In this model, random groups of agents are chosen, and after the interaction of such agents,
all of them assume the initial majority opinion. The model was studied elsewhere [32–39],
and it was applied to a series of practical problems, like antivax movement [40], USA [41]
and French [42] presidential elections, and terrorism [43], among many others.

Independence in opinion making and the failure of group influence was considered in
several opinion dynamics models [44–52]. A recent extension of Galam’s model in Ref. [32]
considered the impact of independence in social dynamics. In that case, with probability
q, an individual acts independently of the majority opinion of their group and chooses at
random one of the two possible opinions. The introduction of that condition, quantified by
the parameter, paves the way to the occurrence of an order–disorder nonequilibrium phase
transition that does not occur in the original majority-rule model [1].

In the present study, we move farther afield than the independence mechanism con-
sidered in Ref. [32], and we take into account the overall global opinion of the population
when an agent decides to act independently of the group’s opinion. With this, one can
find a more detailed picture of the process of independence, since agents can now take
global opinion into account when they ignore in-group majority. This change manages to
incorporate the concept of “impersonal influence” [53] established within political science,
the goal of which is to quantify the influence of the anonymous mass of individuals outside
one’s small world composed of family, (close) friends, and acquaintances. That impersonal
influence encompasses polls, reader’s comments on news on digital media, and the indi-
vidual’s general perception by consulting social networks that can have an effect on their
decision-making process.

The strength of the information-mediated independence can be controlled by a new pa-
rameter, g, that gauges the impact of the global population opinion, which is the macrostate,
on the individuals. This impact can be of a contrarian nature, for negative values of g,
where agents tend to take the opposite opinion to the population or it can be positive and
reinforce the predominant opinion, thus helping the building of consensus.

In this paper, we move along the lines of canonical considerations over complex
systems for which microscopic and macroscopic features influence one another. We develop
an analytical framework in order to understand the results from numerical simulations. All
results suggest the occurrence of order–disorder transitions, and the estimates of the critical
exponents indicate that the model is in the mean-field Ising model universality class.

2. Model and Methods

Herein, we analyze a majority-rule model with independence; however, differently
to Ref. [32] we assume a density-dependent probability, ft, where t denotes the time, for
changing the current opinion independently of the interacting group.
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2.1. Model

Let us consider a population of N individuals, i = 1, ..., N, with opinions A or B, with
respect to a given issue, that map into a stochastic variable, oi, such that oi(A, t) = +1 and
oi(B, t) = −1. Macroscopically, we compute the density of agents with opinion A,

ηA(t) ≡
1
N

N

∑
i=1

δoi(t),+1, (1)

with δa,b the Kronecker delta, and the density of agents with opinion B,

ηB(t) ≡
1
N

N

∑
i=1

δoi(t),−1 = 1− ηA(t). (2)

The mean opinion, from which we establish the macroscopic state of the system, reads:

m(t) ≡ 1
N

N

∑
i=1

oi(t) = ηA(t)− ηB(t). (3)

The dynamics of each individual is governed at each time step, t, by the following set
of rules:

• an individual with opinion A can change to opinion B through two mechanisms:

– with probability q, the individuals act independently of their group. In that case,
the individuals change their opinion with probability f AB(t) = f (1− g m(t));

– otherwise, if the individuals do not act on their own, then there is a proba-
bility 1− q that they change their opinion according to a local majority-rule,
A + 2B→ 3B.

• on the other hand, an individual with opinion B can flip to opinion A through
two mechanisms:

– with probability q, the individuals decide to whether act independently of their
group or not. In that case, the agent will change their opinion with probability
f BA(t) = f (1 + g m(t));

– otherwise, if the the individuals do not act on their own, then there is a probability
1− q that those individuals change their opinion according to a local majority-rule,
B + 2A→ 3A.

The rules listed above are translated into the transition matrix,

W(t) ≡
[

w1 w2
w3 w4

]
=

[
q f AB(t) 1− q

1− q q f BA(t)

]
. (4)

Note that the definitions f (t)AB = f (1− g m(t)) and f (t)BA = f (1 + g m(t)) imply
that

ηA(t) > ηB(t)⇒ m(t) > 0⇒ f (t)BA > f (t)AB,

as expected.
Let us have a closer look at the parameters involved in the model: the parameter q is

related to the backbone of our approach establishing the relative weight of the local peer-
pressure, p = 1− q, leading to a decision-making process wherein the individual either
submits to the local majority (a conformist behavior) or the decision-making dynamics
is carried out on its own. The probability f XY(t)—related to the latter case—is naturally
shaped by the assessment of the state of affairs provided by the global state, m(t), so that a
standard propensity to change opinion through reflection, f , is either boosted or mitigated.
Epistemologically, the shaping of the probability is equivalent to the process of risk taking
versus risk aversion, described within prospect theory [54]. Herein, we assume a linearized
form f XY(m(t)) = f + υ m(t) +O(m(t)2), so that, depending on the sign of υ, one has
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either a follower or a contrarian impact. If g = 0, then f XY(t) = f and one recovers the
results of Ref. [32].

2.2. Simulation Details

Our Monte Carlo simulations are structured within an agent-based framework, as
individuals constitute the underlying object of study in social theories [55]. In the algorithm
here, we consider a computational array of size N to store the opinion of each agent. In each
time t, a Monte Carlo step (MCS) that represents a complete iteration through all agents is
applied. During each interaction, the simulation chooses a group of 3 agents at random,
considering their current opinion and applying specific rules. These rules are summarized
in Table 1 and define how an agent’s opinion may change based on various conditions
and probabilities. After each MCS, we implement a simultaneous-parallel updating. This
means that the updated opinions are applied to all agents at the same time, ensuring that
the changes in opinions are synchronized across the entire population.

Table 1. Agent-based rules of the model.

Three-Agent Interaction Transition Probability

Each agent with opinion A can flip to opinion B through two mechanisms:
1. A→ B p(1)A→B = q f AB(t)
2. A + 2B→ 3B p(2)A→B = (1− q) ηB(t)2

Each agent with opinion B can flip to opinion A through two mechanisms:
1. B→ A p(3)B→A = q f BA(t)
2. B + 2A→ 3A p(4)B→A = (1− q) ηA(t)2

3. Results and Discussion
3.1. Analytical Results

Using the mean-field approach, one can obtain a set of ordinary differential equations
that describes the time evolution of the competing opinions in a population. To derive the
rate of change of opinions A and B at time t, one needs to consider that each opinion is influ-
enced by the intrinsic independent behavior (controlled by the parameter f ), information-
driven independence (modulated by the parameter g), and local interactions. Thus, based
on the rules summarized in Table 1, one obtains the following mean-field equations:

dηA(t)
dt

= q f BA(t) ηB(t) + (1− q) ηA(t)2 ηB(t)− q f AB(t) ηA(t)− (1− q) ηA(t) ηB(t)2, (5)

dηB(t)
dt

= q f AB(t) ηA(t) + (1− q) ηB(t)2 ηA(t)− q f BA(t) ηB(t)− (1− q) ηB(t) ηA(t)2, (6)

f AB(t) = f (1− g m(t)), (7)

f BA(t) = f (1 + g m(t)). (8)

From Equations (1)–(3), namely, that

ηA(t) =
1
2
(1 + m(t)), ηB(t) =

1
2
(1−m(t)), ηA(t) ηB(t) =

1
4
(1−m(t))2, (9)

the set of differential equations yields the ordinary differential equation for the global state,
m(t):

dm(t)
dt

= −2 q f (1− g)m(t) + (1− q)m(t)
1−m(t)2

2
. (10)

In other words, starting from a given initial condition, m(0) = m0, the macroscopic
state evolves and eventually reaches a stationary state, dm/dt = 0; that state is lower-
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bounded by the maximal state of disagreement than m = 0, whereas when the population
presents unanimity, |m| = 1. Thus, we expect that for certain conditions dictated by the
parameters of the problem, the system can evade the final stationary state of disagreement
and end up in a situation for which |m| 6= 0, i.e., a majority of individuals favoring opinion
A(B). Physically, m(t) is thus defined as an order parameter. That turns out clearer when
we consider that the population adjust is macrostate m aiming at minimizing its so-called
Hamiltonian function,H.

That is best understood when one recasts the previous equation into

dm(t)
dt

= −∂H
∂m

= r m(t) + u m(t)3, (11)

where
r =

1
2
{q[4 f (1− g) + 1]− 1}, u =

1
2
(q− 1). (12)

Therefore, the analytical form ofH,

H(m) = −1
2

r m2 − 1
4

u m4, (13)

dictates not only the dynamics of the parameter m, but its stable outcome. First, since q ≤ 1
and u < 0, the stability of the process is assured, as the fourth-order term is positive. In
the limit q → 1, the agents act independently from the local group, and totally rely on
their assessment of the position of the whole population, and one has: limq→1 u = 0− and
limq→1 r > 0, which leads to nontrivial minima ofH at mc 6= 0. By u < 0, the emergence of

those m 6= 0 minima are related to the change of convexity ofH at m = 0 from d2H
dm2 |m=0 > 0

to a concave profile d2H
dm2 |m=0 < 0. The fulfillment of the concave condition implies

|m| = mc =

√
− r

u
=

√
1− 4 f q(1− g)

1− q
, |m| ≤ 1, (14)

the graphical representation of which can be seen in Figure 1. Using relations (12) one finds:

m ∼ (qc − q)β, (15)

where β = 1/2 and

qc =
1

1 + 4 f (1− g)
(16)

defines the critical peer-pressure relative weight, pc ≡ 1− qc. Let us note that the instances
with g < 0 imply a smaller value of qc and, then a larger pc in what we assume as a
freethinker-prone behavior; on the other hand, when g > 0 we regard it as a conformist-
prone case.

Equation (15) with β = 1/2 suggests a phase transition in the same universality class
of the mean-field Ising model. We discuss this point in more detail in Section 3.3, where we
exhibit the results of Monte Carlo simulations of the model.

Equation (16) corresponds to the limit t→ ∞ of the solution to Equation (17):

m(t) =

[
exp(−2rt)

(
1

m2
0
+

u
r

)
− u

r

]−1/2

= mc

[
exp(−2rt)

(
m2

c

m2
0
− 1

)
+ 1

]−1/2

, (17)

where m0 is the initial condition of the system.
One can further explore the dynamical behavior of the system, especially when the

parameters are set at their critical values and one lets the system evolve. In that case,
two situations deserve a particular attention: (i) when the initial state corresponds to an
unanimity, m0 = 1, the factor given by exp(−2rt)

(
m2

c /m2
0 − 1

)
in Equation (17) can be
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seen as perturbation, (ii) whereas for the same factor, this factor dominates Equation (17)
when the initial condition is that of full disagreement (m0 → 0). These two possibilities
result in two quite different behaviors of m(t) in the short-term.
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Figure 1. Graphical representations of Equation (14) for the stationary state solution, |m|, in the plane
f versus q for typical values of g. As negative values of g imply a contrarian effect and positive a
follower, the ordered region increases with an increase of g. Note that for g = 1.0, |m| = 1 for all
values of f and q, as predicted by Equation (14).

3.2. Probabilistic Approach

The previous deterministic approach can be further seasoned when fluctuations are
taken into account. Recalling that, for a population of N individuals the macroscopic
state m, changes by µ = ±2/N every time the individuals switch their opinion with each
opinion fraction varying by 1/N, one finds:

ηA(t + 1)− ηA(t) =
1
N

p†(t)− 1
N

p(t), (18)

as soon as the focus is on the time evolution of the fraction of individuals with opinion A
at time t + 1, with

p†(m, t) = w1 ηA + w2 ηA η2
B, (19)

corresponding to the probability that the number of people with opinion A increases by
one individual, and

p(m, t) = w3 ηB η2
A + w4 ηB, (20)

giving the probability that the number of people with opinion A diminishes by one indi-
vidual. The quantities (19) and (20) are identified as the operators of, respectively, creation
and destruction in the probability space [56].

Taking into consideration that p† and p correspond to an increment and a reduction
of the macroscopic state by µ = 2/N, respectively, one can establish the following master
equation for the evolution of m for a time step, ε = 1/N:

η(m, t + ε) = p†(m− µ, t) η(m− µ, t) + p(m + µ, t) η(m + µ, t) + p̄(m, t)η(m, t), (21)

with p̄ ≡ 1 − p† − p quantifying the maintenance of the macroscopic state. Formally,
Equation (21) fits within the (normalized) one-step class of stochastic processes and, thus,

η(m, t) = exp[LKM(m, t)]η(m0, 0) with η(m, 0) = δ(m−m0), (22)
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where, bearing in mind that a normalized quantity is computed and not just NA − NB, the
Kramers–Moyal operator reads:

LKM(m, t) =
∞

∑
n=1

(−µ)−n

n!
∂n

∂mn

[
pm,t + (−1)n p†

m,t

]
. (23)

In considering µ → 0 so that the variance of mt is kept fixed and equal to σ2
m(t), we

neglect the terms of order n > 2, and the formal solution obtains the form of a Fokker–
Planck equation:

∂η(m, t)
∂t

= −µ−1 ∂

∂m
[D1(m, t) η(m, t)] +

µ−2

2
∂2

∂m2 [D2(m, t) η(m, t)]. (24)

Therefrom we identify the Kramers–Moyal coefficients,

D1(m, t) ∝ p(m, t)− p†(m, t), (25)

that defines the shape of the effective potential wherein the macroscopic dynamics of the
order parameter evolves in time; on the other hand,

D2(m, t) ∝ p(m, t) + p†(m, t) (26)

characterizes the magnitude of the fluctuations, which in the present social system we
associate with the concept of social volatility [57].

Plugging the previous relations (19)/(20) for the probability creation/annihilation
operators into Equations (25) and (26), one finally obtains:

D1(m, t) ∝ r m(t) + u m(t)3, (27)

as given by the effective-Hamiltonian, Equation (11) Landau approach. The second-order
coefficient,

D2(m, t) ∝ 1 + q (4 f − 1)− [1 + q(4 f g− 1)]m(t)2, (28)

indicates a macroscopic feature of this model that is worth noting: the magnitude of the
fluctuations—i.e., the social volatility—exhibited by the system depends on its state in such
a form that as m increases and approaches m = 1 (unanimity), the volatility decreases. On
the contrary, when the group shows strong disagreement, m ≈ 0, the fluctuations approach
the sate of maximal volatility. Such a behavior contrasts with what is measured in quanti-
tative finance where the realized volatility is directly proportional to price variations [58].
If one considers that, within a physical context, D2 is related to the (local) temperature of a
physical system, one can assert that our model is able to capture the cooling down and the
heating up of a social system as the system approaches or departs from consensus.

Alternatively, the fluctuations given by D2(m, t) can be understood from another
perspective: given that p† and p, respectively, correspond to an increment and a reduction
of the macroscopic state by µ = 2/N, one can then interpret D1 as the imbalance between
the likelihood of increment and reduction of p(m), whereas D2 to be related to the average
over increment and reduction, which is nonvanishing. Thisis related to the microscopic
change of opinion that each individual can make and which corresponds to a source of the
macroscopic fluctuations that end up being expressed by the social volatility. Complemen-
tarily, those fluctuations yield an entropy production that can be associated with the total
information output due to the microscopic interaction between agents. Therefore, around a
consensus, one measures a less volatile state as that state is less entropic and vice versa.

3.3. Monte Carlo Simulation and Finite-Size Scaling

Figure 2a shows a comparison between the analytical solution, as elucidated in
Section 3.1, and the Monte Carlo simulation for the Galam model with information-mediated
independence. We plot the stationary values of the macrostate obtained from simulations
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for a population size N = 104 and from Equation (14) for typical values of g and fixed
f = 0.5. One can see a good agreement between the results obtained by both methods
of calculations. One as well observes the order–disorder phase transitions, which mark
a collective change in the population behavior. These transitions indicate a macroscopic
change from the so-called ordered state, characterized by the presence of a well-defined
majority (|m| > 0), to the disordered-state, characterized by the absence of a clear majority
(|m| ∼ 0). When q = 0, the result of the original Galam model, i.e., a consensus in the
population (all agents sharing opinion A or B) is recovered.
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Figure 2. The model Monte Carlo results for f = 0.5 averaged over 100 simulations. (a) Stationary
order parameter, m (collective opinion), as a function of q. The symbols represent the simulations for
N = 104 and typical values of g, and the lines show the analytical results obtained from Equation (14).
The results at fixed g = 0.2 and distinct population sizes N for, and the corresponding finite-
size scaling analysis for (b) the Binder cumulant, U (30), (c) the order parameter, m, and (d) the
susceptibility, χ (29) are also shown. The following critical probability, qc ≈ 0.385 and the critical
exponents, β ≈ 0.50, γ ≈ 1.00, and ν ≈ 2.00, are obtained; see text for details.

In order to verify the universality class of the model, we performed numerical simu-
lations for distinct population sizes and applied a so-called scaling analysis. In addition
to the order parameter, m we also computed the fluctuations χ of the order parameter (or
“susceptibility”), defined as

χ ≡ N (〈m2〉 − 〈m〉2) (29)

and the Binder cumulant U, defined as [59]

U ≡ 1− 〈m4〉
3 〈m2〉2 . (30)

The brackets here denote the averaging over distinct realizations of the dynamics.
As an example, we exhibit in Figure 2 the finite-size scaling (FSS) analysis of the order

parameter, the susceptibility, and the Binder cumulant for four lattice sizes, for f = 0.5 and
g = 0.2. We obtain the critical value, qc, by the crossing of the Binder cumulant curves, as
seen in Figure 2b, to be qc ≈ 0.385, in quite a good agreement with the analytical result
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of Equation (16), qc ≈ 0.3846. The critical exponents, β, γ, and ν, are found by the best
collapse of data. The FSS analysis was based on the standard relations,

m(q, N) ∼ N−β/ν , (31)

χ(q, N) ∼ Nγ/ν , (32)

U(q, N) ∼ constant , (33)

qc(N)− qc ∼ N−1/ν (34)

Considering Equations (31)–(34), the values of the critical exponents, β ≈ 0.5, γ ≈ 1.0, and
ν ≈ 2.0, are obtained. The data collapses are exhibited in Figure 2b–d. We have also verified
that for other values of f and g, the same exponents are obtained. The results suggest that
the model belongs to the mean-field Ising model universality class, and it is also in the
same universality class of the Sznajd model and kinetic exchange opinion models in the
presence of independence [44,47,50,60].

The above results, namely, Equation (34), bridge with the dynamical analysis as
Equation (17) sets up a relaxation timescale, τ, of the macroscopic parameter that is in-
versely proportional to r. Comparing the exponential factor in Equation (17) with the
typical term related to the relaxation, et/τ , one obtains the relaxation time, τ = −1/(2r).
Then, plugging Equation (16) into the definition of r, one finds: r = (q− qc)/(2qc), and,
finally,

τ ∼ (qc − q)−1. (35)

Explicitly, at criticality, one considers a relaxation timescale of the order parameter, m(t),
that diverges with the same scale-invariant functional form as the correlation length. Since
the propagator given by the Fokker–Planck Equation (24) rules all relaxation quantities of
m(t), the same slowing down near the transition is found for the self-correlation function
of m(t), 〈m(t′)m(t)〉 ∼ exp[−|t′ − t|/τ].

4. Conclusions

In this paper, we studied an extension of the Galam’s majority-rule model. For this
purpose, we introduced the mechanism of independence, considering that individuals can
act independently of their interaction groups with a given probability q that is comple-
mentary to the peer-pressure weight, p = 1− q. In addition, the individuals inspect the
global population opinion and such opinion affects their independent probability. When
an individual does not act independently of the group, the individual follows the local
majority opinion, as in the original Galam model.

We observed that the independence mechanism leads the population to undergo a
critical change of behavior at q = qc in which a minimal consensus m 6= 0—where m is
the order parameter of the model—optimizes the overall state of the population better
than the case of complete disagreement. Within that phase transition context, we derived
an expression for order parameter, m(t). From its stationary solution, we obtained the
critical behavior, m ∼ (qc − q)β with β = 1/2. We found that as one approached the
critical transition, the relaxation of the overall state is ever slower with its typical timescale,
τ ∼ (qc − q)−1. The other canonical critical exponents, γ and ν, were obtained through
Monte Carlo simulations. From the set of critical exponents, we verified that the model is in
the ubiquitous universality class of the mean-field Ising model. This result is expected since,
as opinions are mapped into random variables, oi = ±1, the phase transition corresponds
to a group Z2 symmetry breaking of which the Ising model is the quintessential case.

Let us mention that, while our model is not defined by a physical Hamiltonian, the
identification with the Ising universality class arises from a series of results coming from
three methods: mean-field approach, Monte Carlo simulations, and finite-size scaling
analysis.

From the microscopic dynamics, we derived the probabilistic evolution of m. The
results obtained allowed us to confirm the critical behavior of m from the first Kramers–
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Moyal coefficient, and from the second, the nature of the fluctuations that can be coined
as social volatility. In respect of the latter, we learned that the magnitude of the volatility
depends on the state of the population in a inverse proportion relation way, such that,
in this case, herding in opinion tends to induce less agitation in the population. Further
insights into this subject matter to be discussed in our future studies.
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