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Abstract: In this paper we extend the Zeldovich formula, which was originally derived for the free
electromagnetic field and was interpreted as the number of photons. We show that our extended
formula gives a universal dimensionless measure of the overall strength of electromagnetic fields:
free fields and fields produced by various sources, in both the classical and the quantum theory. In
particular, we find that this number—called here the Zeldovich number—for macroscopic systems is
very large, of the order of 1020. For the hydrogen atom in the ground state, the Zeldovich number is
equal to 0.025 and for the xenon atom it is around 50.
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1. Introduction

The formula measuring the number of photons was derived by Yakov B. Zeldovich
for the free electromagnetic field. In the original derivation [1] of this formula, Zeldovich
assumed that photons can be identified with monochromatic oscillations of the electromag-
netic field. However, we will show, that this formula is universal; it can be used without
any restrictions for all electromagnetic fields. In the quantum theory of the electromagnetic
field the Zeldovich formula plays multiple roles. It can be used to measure the probability
of various field configurations and to define the norm of quantum photon states.

In this study we extend the use of the Zeldovich formula from free fields to field
configurations generated by various sources. In particular, we will study the problem of
the photons attached to the hydrogen atom which has been treated in nonrelativistic case
by Francesco Persico and his collaborators [2–5]. The extension to the relativistic theory
was treated in [6]. All these attemps have not given a definite answer to the question: How
many photons are attached to an atom? We obtain an answer to this question employing
the notion of the Zeldovich number.

Since in the general case the name “photon number” is not always justified, we shall
use instead the term “Zeldovich number” and we denote it by NZ. The number NZ is a
dimensionless quantity which measures the overall strength of the electromagnetic field.
This number is a useful characterization of the field and its sources.

In Section 2, we extend the derivation of the formula forNZ to a general electromagnetic
field. In Section 3, we calculate NZ in classical electrodynamics. In Sections 4 and 5, we
extend the calculations to atomic physics, nonrelativistic and relativistic. This is done by
associating the wave functions of electrons with electromagnetic fields.

2. The Zeldovich Number

The starting point of our calculations is the formula for the total energy of the
electromagnetic field,
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E(t) =
1
2

∫
d3r[E(r, t) ·D(r, t) + B(r, t) ·H(r, t)]. (1)

We do not assume, as has been done by Zeldovich, that the field vectors satisfy the
free Maxwell equations. It is sufficient that the field vectors are sufficiently regular to have
the Fourier transforms.

It is convenient to use the field vectors, D andH measured in purely geometrical
units, i.e., in 1/m2. TheD andH vectors are related to the standard physical vectors D
and H by the formulas,

D =
D
e

, H =
H
e c

. (2)

The expression for the field energy expressed in terms of the new vectors is,

E(t) =
e2

2ε0

∫
d3r[D(r, t)·D(r, t) +H(r, t)·H(r, t)]. (3)

Next, we rewrite this formula in terms of the Fourier transforms,

E(t) =
e2

2ε0

∫
d3k

[
D̃
∗
(k, t)·D̃(k, t) + H̃

∗
(k, t)·H̃(k, t)

]
. (4)

The original formula forNZ will be obtained in two steps. In the first step we divide the
integrand in Equation (4) by h̄ck to obtain a dimensionless quantity,

NZ[D,H ] = 2πα
∫

d3k
k

[
D̃
∗
(k, t)·D̃(k, t) + H̃

∗
(k, t)·H̃(k, t)

]
, (5)

where α is the fine structure constant. This is the representation in terms of Fourier
transforms. In the next step, to obtain the original form ofNZ we convert Equation (5) back
to the r-space with the use of the relations,

D̃(k, t) =
∫

d3r
(2π)3/2

e−ik·r
D(r, t), (6)

H̃(k, t) =
∫

d3r
(2π)3/2

e−ik·r
H(r, t), (7)

and the formula, ∫
d3k
k

eik·(r−r′) =
1

2π2|r − r′|2
. (8)

The resulting expression has the form obtained by Zeldovich (apart from our different
scaling of the electromagnetic field),

NZ[D,H ] =
α
π

∫
d3r

∫
d3r′

(
D(r, t)

1
|r − r′|2

·D(r′, t) +H(r, t)
1

|r − r′|2
·H(r′, t)

)
. (9)

The derivation of this expression by Zeldovich was based on the expansion of the solutions
of Maxwell equations in free space into monochromatic propagating waves. We arrived
at the same formula without making any assumptions concerning the dynamics of the
electromagnetic field. Certainly, the interpretation ofNZ in this general case as the photon
number is highly problematic, butNZ is very well defined.

In the case of free fields,NZ is the total number of photons and it has some remarkable
properties. It is a constant of motion and despite its nonrelativistic appearance it is invariant
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not only under all Lorentz transformations, but also under the conformal transformations [7].
Since conformal transformations include the transformations to accelerated frames of
reference, the invariance ofNZ may help to better understand the Unruh effect [8]. As a
mathematical object,NZ plays the role of a norm for the photon wave function [7,9,10]. The
scalar product obtained from this norm by polarization identity serves as a perfect measure
of fidelity for photon states [11]. It also appears as the exponent in the Wigner functional of
the electromagnetic field [12–14] (there are some misplaced factors of 2 in this reference
that were corrected in [13]). In this way it determines the relative probabilities of various
field configurations. Due to its connection to the Wigner functional,NZ can be generalized
to characterize also thermal states of electromagnetic fields [13,14].

3. The Zeldovich Number for Macroscopic Fields

In this Section, we calculate NZ for field configurations created by the following
classical sources: (i) the two oppositely-charged metallic spheres, and (ii) the current
flowing in a circular loop.

In the case of the two oppositely-charged metallic spheres, the charged density is,

ρ(r) =
Q

4πa2
[δ(a− |r + d/2|) − δ(a− |r − d/2|)], (10)

where a is the sphere radius, |d| is the distance between the spheres, and Q is the total
charge. We assume that the charge is distributed uniformly on the surface. We choose the
z direction along the vector d and use the spherical coordinates. To calculateNZ we will
need the Fourier transform the ρ̃(k),

ρ̃(k) =
∫

d3r
(2π)3/2

ρ(r)e−ik·r

=
2iQ

(2π)3/2
sin(dk/2 cosθ)

sin(ak)
ak

, (11)

where we took into account that a shift by ±d/2 in the position space results in the
multiplication by e±ik·d/2 in the Fourier space. For electrostatic fields, the Fourier transform
D̃ of the displacement vector is,

eD̃(k) = −i
kρ̃(k)

k2 . (12)

The substitution of this expression into Equation (5) gives,

NZ = 2πα
(Q

e

)2∫ ∞

0

dk
k

∫ π

0
dθ sinθ

∫ 2π

0
dφ ρ̃∗(k)ρ̃(k). (13)

The integrals in this formula can be analytically calculated and the final result, as expected,
depends only on the dimensionless ratio, b = d/a,

NZ =
α

12πb

(Q
e

)2[
(b + 2)3 ln(b + 2) + (b− 2)3 ln(|b− 2|) − 2b(4 + 12 ln 2 + b2 ln b

]
. (14)

When b is very large, we obtain,

NZ ≈
2α
π

(Q
e

)2
ln b. (15)

The unbounded logarithmic growth ofNZ is the manifestation of the infrared catas-
trophe, well known in quantum electrodynamics. In the case of a large separation the
Coulomb fields of each sphere is practically not shielded andNZ for an unshielded charge
is infinite.
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In the case of the current I flowing in a closed loop, the current density has the following
form in cylindrical coordinates [15],

j(ρ, z,φ) = Iδ(a− ρ)δ(z){− sinφ, cosφ, 0}. (16)

To calculateNZ, one needs the Fourier transform of the current,

j̃(k) =
∫

d3r
(2π)3/2

e−ik·r j(ρ, z,φ)

=
aI

(2π)3/2

∫ 2π

0
dφ e−ia(kx cosφ+ky sinφ)

{− sinφ, cosφ, 0}

=
iaI
√

2π

J1(ak⊥)
k⊥

{ky,−kx, 0}, (17)

where k⊥ =
√

k2
x + k2

y and J1 is the Bessel function. For static fields, the Fourier transform
of the magnetic field vector is,

ecH̃(k) = −i
k × j̃(k)

k2 . (18)

The substitution of this expression into Equation (5) gives,

NZ = α
(aI

ec

)2∫ ∞

0
dk⊥

∫
∞

−∞

dkz

∫ 2π

0
dφ

k⊥ J1(ak⊥)
2

(k2
⊥
+ k2

z)
3/2

= 4πα
(aI

ec

)2
. (19)

Note that the increase of the ring radius and the proportional decrease of the current
leaves the Zeldovich number unchanged.

For macroscopic systems NZ is very large. In the electrostatic case even for tiny
charges of one microcoulomb on both spheres and for b = 10, one obtains NZ equal to
1.6 × 1020. In turn, for the current of one ampere flowing in a loop with the radius of 1 m,
one obtainsNZ equal to 4 × 1019. These very large values are due to the mismatch between
the value of elementary charge, which appears in the definition ofNZ, and those values in
macroscopic fields.

4. The Zeldovich Number for the Hydrogen Atom

In our calculations ofNZ associated with the hydrogen atom we will use the ground
state electron wave function satisfying the Dirac equation. The wave functions satisfying
the nonrelativistic Schrödinger equation would be simpler, but the relativistic theory allows
for a uniform treatment of the electric and magnetic fields.

The ground state is doubly degenerate (disregarding tiny corrections due to the
hyperfine interactions). The two states differ in the sign of the projection of the total angular
momentum on a chosen direction. We choose, as is customary, the z direction. The state
with the positive sign has the following normalized Dirac wave function [16],

ψ(x, y, z, t) =

√
γ+ 1

8πΓ(2γ+ 1)

(2α
o

)3/2
e−iEt/h̄

×

(2αr
o

)γ−1
e−αr/o

{
1, 0,

iα
γ+ 1

z
r

,
iα

γ+ 1
x + iy

r

}
, (20)

where γ =
√

1− α2 and o = h̄/mc is the reduced electron Compton wave length.
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The probability density ρe = ψ∗ψ and the probability current density je = ψ∗αψ for
the electron are,

ρe(r) =
e−2r/b(2r/b)2γ+1

4πr3Γ(2γ+ 1)
, (21)

je(r) = {−y, x, 0}
αρe(r)

r
, (22)

where b = o/α is the Bohr radius. These sources produce the electromagnetic fieldD and
H generated by the electron. Since we are using the rescaled electric and magnetic field,
the sources (21) and (22) must be also rescaled. The substitution of the electronicD into
(5) produces the infrared divergence. This divergence has a clear physical interpretation
analogous to the one encountered for two charged spheres. The infinite result is just due to
the unshielded electron charge. Atoms are neutral and the introduction of the compensating
charge of the nucleus will remove the infrared divergence.

The exact formula for the charge distribution in the nucleus is not important. The tiny
size of the nucleus as compared to the size of the electronic cloud makes the difference
between various models of the nucleus negligible. In our calculations of the electromagnetic
field associated with the hydrogen atom we have assumed that the proton charge and the
proton magnetic moment are distributed uniformly within a sphere with a sharp boundary
(cf. [17]) with the radius a taken from experiment. Thus, the proton charge density and the
current density will be described by the Heaviside step function,

ρp(r) =
3

4πa3 Θ(a− r), (23)

jp(r) =
{y,−x, 0}

r
3µ
πa4

Θ(a− r), (24)

where µ measures the strength of the proton magnetic moment µp,

µ = µp/(ec) = 5.8× 10−16m. (25)

The densities (23) and (24) satisfy the conditions that the electric and magnetic fields
outside the proton are correct,

Dout(r) =
r

4πr3 , (26)

Hout(r) =
µ

4πr3

(
3r(r · nz)

r2 − nz

)
, (27)

where nz is the unit vector along the z axis. We assumed that the proton is at rest. Hence
the only contribution to its current comes form the proton magnetic moment µ.

There are three scale parameters in our problem separated by a few orders of
magnitude: the proton radius a = 8.5 × 10−16 m, the Compton wave length of the
electron o = 3.86 × 10−13 m, and the atomic scale parameter, given by the Bohr radius
b = 5.29 × 10−11 m.

The Zeldovich number strongly depends on the proton radius, which is fixed by the
experiment. Given the smallness of the proton radius, as compared to o and b, the eventual
changes of the charge distribution inside the proton have almost no influence.

The field vectorsD(r) andH(r) are the solutions of the Maxwell equations,

∇ ·D(r) = ρ(r), ∇ ×H(r) = j(r), (28)

where

ρ(r) = ρp(r) − ρe(r), j(r) = jp(r) − je(r). (29)
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Note that the elementary charge e does not appear explicitly in Equations (28) since
we are using the field vectors in the geometrical units defined in Equation (2). The terms
with time derivatives do not appear in these equations because the sources do not depend
on time.

The solutions of the Maxwell equations are most easily obtained with the use of two
scalar functions φ(r) and a(r),

D(r) = −∇φ(r), (30)

H(r) = ∇ × {−y, x, 0}a(r). (31)

After substituting these formulas into the Maxwell Equation (28), one obtains two
ordinary differential equations for φ(r) and a(r),

−φ′′(r) − 2/rφ′(r) = ρ(r), (32)

−a′′(r) − 4/ra′(r) = χ(r), (33)

where ρ(r) and χ(r) are,

ρ(r) =
3

4πa3 Θ(a− r) + ρe(r), (34)

χ(r) =
3µ
πa4r

Θ(a− r) −
αρe(r)

r
. (35)

The solutions of the Equations (32) and (33) can be expressed as double integrals of
the source terms,

φ(r) =
∫
∞

r

dv
v2

∫ v

0
du u2ρ(u), (36)

a(r) =
∫
∞

r

dv
v4

∫ v

0
du u4χ(u). (37)

These integrals can be evaluated in closed form and the results are:

φ(r) =
1

4πr

[(
3a2r− r3

2a3 Θ(a− r) + Θ(r− a)
)
−

(
1−

Γ(1 + 2γ, 2r/b) − (2r/b)Γ(2γ, 2r/b)
Γ(1 + 2γ)

)]
, (38)

d
dr
φ(r) = −

1
4πr2

[(
r3

a3 Θ(a− r) + Θ(r− a)
)
−

(
1−

Γ(2γ+ 1, 2r/b)
Γ(2γ+ 1)

)]
, (39)

a(r) =
1

4πr3

[
µ

(
4ar3
− 3r4

a4
Θ(a− r) + Θ(r− a)

)
− o

Γ(2γ+ 2, 2r/b) − (2r/b)3Γ(2γ− 1, 2r/b) − Γ(2γ− 1)
6Γ(2γ+ 1)

]
, (40)

d
dr
a(r) = −

1
4πr4

[
3µ

(
r4

a4
Θ(a− r) + Θ(r− a)

)
− o

Γ(2γ+ 2) − Γ(2γ+ 2, 2r/b)
2Γ(2γ+ 1)

]
, (41)

where Γ(z, a) is the incomplete gamma function [18]. The field vectors are constructed from
these scalar functions according to the formulas which follow from Equations (30) and (31),

D(r) = −
r
r

d
dr
φ(r), H(r) = −

rz
r

d
dr
a(r) + nz

(
r

d
dr
a(r) + 2a(r)

)
, (42)

so that,
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D(r) =
r

4πr3

[(
r3

a3 Θ(a− r) + Θ(r− a)
)
−

(
1−

Γ(2γ+ 1, 2r/b)
Γ(2γ+ 1)

)]
, (43)

H(r) =
zr

4πr5

[
3µ

(
r3

a3 Θ(a− r) + Θ(r− a)
)
− o

Γ(2γ+ 2) − Γ(2γ+ 2, 2r/b)
2Γ(2γ+ 1)

]
−

nz

4πr3

[
µ

(
9r4
− 8ar3

a4
Θ(a− r) + Θ(r− a)

)
− o

Γ(2γ+ 2) − Γ(2γ+ 2, 2r/b) − 2(2r/b)3Γ(2γ− 1, 2r/b)
6Γ(2γ+ 1)

]
. (44)

Owing to the huge difference in the sizes of the proton and the electron clouds, one
cannot show the complete behavior of the field vectors on a single plot. In Figure 1 we show
the behavior ofD on the atomic scale and in the inset we show the behavior ofD near
r = 0 on the scale of the proton radius a. The electric displacement field has the radial form
and the magnetic field plotted in Figure 2 exhibits a typical field configuration of a magnet.

Figure 1. The value of the modulus of the electric displacement field |D| plotted on the atomic scale
for the hydrogen atom in the ground state. In order to interpret this plot as the total amount of charge
enclosed within the sphere of radius r (Gauss law) is multiplied |D| by 4πr2. The details of the behavior
of |D| close to the center are shown in the inset on the scale of the proton radius. Starting from the
origin, the enclosed charge increases as (r/a)3 and reaches the value of 1 at the proton radius a.

-1000 -500 0 500 1000

-1000

-500

0

500

1000

x

z

Figure 2. The magnetic field surrounding the hydrogen atom in the ground state. The plot of the field
configuration in the y = 0 plane gives the complete information, owing to the rotational symmetry
around the z axis. The coordinates x and z are measured in o.

In order to calculate the Zeldovich number we could use in principle the fields in the
position representation and the original Zeldovich Formula (9). However, the use of the
Fourier transforms greatly simplifies the calculations. These transforms are obtained from
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the same purely algebraic Equations (12) and (18) as in the classical theory. The solutions of
these equations are,

D̃(k) = −ik
ρ̃(k)
k2 , (45)

H̃(k) = i
(
(k·nz)k − k2nz

) 1
k3

dχ̃(k)
dk

. (46)

The Fourier transform of spherically symmetric functions become one-dimensional integrals,

f̃ (k) =
∫

d3r
(2π)3/2

e−ik·r f (r) =

√
2
π

∫
∞

0
dr r

sin(kr)
k

f (r). (47)

This integral can be evaluated in a closed form for both functions ρ(r) and χ(r),

ρ̃(k) =
3 sin(ak)−3ak cos(ak)

(2π)3/2a3k3
−

sin[2γ arctan(bk/2)]

(2π)3/2γbk(1 + k2b2/4)γ
, (48)

χ̃(k) = 6µ
2ak sin(ak) + (2− a2k2) cos(ak) − 2

(2π)3/2a6k4
− α

2 sin[(2γ− 1) arctan(bk/2)]

(2π)3/2γ(2γ− 1)b2k(1 + b2k2/4)γ−1/2
, (49)

dχ̃(k)
dk

= 6µ
ak(a2k2

− 8) sin(ak) + 4(a2k2
− 2) cos(ak) + 8

(2π)3/2a6k5

− α
(2γ− 1)bk cos[2γ arctan(bk/2)] − 2(2 + γb2k2) sin[2γ arctan(bk/2)]

(2π)3/22γ(2γ− 1)b2k2/4(1 + b2k2/4)γ+1/2
. (50)

The substitution of the expression (45) for D̃ into Equation (5) gives the formula for
the contributionNZ[D], which is associated with the electric field, to the total value,

NZ[D] = 2πα
∫

d3k
k3 ρ̃(k)

2. (51)

The integration over k cannot be done analytically, and one has to resort to numerical
integration. The formula forNZ with ρ̃(k) given by Equation (48) contains the dimensional
parameters a and b. However, NZ is dimensionless so that it can only depend on a
dimensionless ratio. Let us make use of this property and change the dimensional
integration variable k to the dimensionless variable κ = bk and introduce the dimensionless
ratio as s = a/b = 1.6× 10−5. The resulting integral is,

NZ[D] =
α
π

∫
∞

0

dκ
κ

(52)

×

[
3 sin(sκ)−3sκ cos(sκ)

s3κ3 −
sin(2γ arctan(κ/2))

γκ(1 + κ2/4)γ

]2

and the “electric Zeldovich number” associated with the hydrogen atom in the ground
state is NZ[D] = 0.025. By the way, a similar number 0.02 was obtained with the use of
very crude arguments in ref. [13].

The “magnetic Zeldovich number” for the hydrogen atom is given by the integral,

NZ[H ] = 2πα
∫

d3k
k7 (k2

− (k·nz)
2)2

(
dχ̃(k)

dk

)2

. (53)
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After the integration over the angles, one obtains,

NZ[H ] =
16π2α

3

∫
∞

0

dk
k

(
dχ̃(k)

dk

)2

. (54)

Using Equation (49) and replacing kb = κ in Equation (50), one obtains,

NZ[H ] =
2α
3π

∫
∞

0

dκ
κ

[
6d

sκ(s2κ2
− 8) sin(sκ) + 4(s2κ2

− 2) cos(sκ) + 8
s5κ5 − α

κ cos σ− sin σ
2γ(2γ− 1)κ2(1 + κ2/4)γ

]2

, (55)

where d = µ/a = 0.68 and σ = 2γ arctan(κ/2). Numerical integration produces a tiny
number NZ[H ] = 6 × 10−5 which is negligible in comparison to the number NZ[D] for
the electric field. The reason for this huge difference is a rather slow motion of electrons
in comparison to the speed of light. This results in the appearance of the fine structure
constant in Equation (22).

We also calculate the energy carried by the electromagnetic field associated with the
hydrogen atom. As expected the contribution of the magnetic field is negligible. The
energy carried by the electric field comes almost entirely from the Coulomb field of the
proton because this field is very strong at small distances. The associated energy is quite
substantial; it equals 2melc2, twice the rest energy of the electron. Of course, the Coulomb
energy of the proton cannot be counted as a separate contribution because it is already
included in the observed proton rest energy. The total field energy associated with the
electronic wave function is very tiny. This energy is also dominated by the electric part and
it is equal to 1.67× 10−5melc2.

5. The Zeldovich Number for Heavier Atoms

As an example, let us choose the atoms of noble gases because their closed shells
produce spherically symmetric charge distribution which greatly simplifies the calculations.
We restrict ourselves here to the calculation of the “electric Zeldovich number” since, as
was seen in the case of the hydrogen atom, the “magnetic Zeldovich number” is much
smaller. This number grows rapidly with the increase of the atomic number Z. The
calculation of the exact value of the average photon number requires the knowledge of the
total wave function of mutually interacting electrons, but to obtain an order of magnitude
estimate one can neglect these interactions. We also use the electron wave functions in the
nonrelativistic approximation,

ψnlm(%,θ,φ) =

√
(n− l− 1)!
2n(n + l)!

(2Z
nb

)3/2
%le−%/2L2l+1

n−l−1(%)Ym
l (θ,φ), (56)

where % = 2Zr
nb . Note that we use a different font to distinguish the rescaled radial variable

% from the probability density ρ. In most textbooks on quantum mechanics the lower index
of the associated Laguerre polynomial L2l+1

n−l−1(%) has a different meaning; instead of n− l− 1
it is equal to n + l. We follow here the notation of Mathematica [19]. The probability density
corresponding to the wave function (56) is,

ρnlm(%,θ,φ) =
(n− l− 1)!
2n(n + l)!

(2Z
nb

)3
%2le−%

[
L2l+1

n−l−1(%)
]2

Ym
l (θ,φ)Ym

l (θ,−φ), (57)

The only dependence on the quantum number m is through the spherical harmonics.
Therefore, for given n and l one can sum up 2(2l + 1) contributions from different values
of m and obtain the total contribution ρnl, from the fully filled (n, l)-shell. The additional
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factor 2 is due to the two possible electron spin orientations. The density ρnl(%) of the
electrons for the (n, l) shell is,

ρnl(%) =
2(2l + 1)

4π
(n− l− 1)!
2n(n + l)!

(2Z
nb

)3
%2le−%

[
L2l+1

n−l−1(%)
]2

. (58)

The total charge density must also include the contribution ρnucl(%) from the nucleus.
We assume, as was done for the proton in Equation (23), that the charge is distributed
evenly within the sphere whose radius depends on the atomic mass number A. Then,

ρnucl(%) =
3Z

4πa(A)3 Θ(a(A) − r). (59)

We use the commonly accepted (see, e.g., [20]) formula for a(A),

a(A) = 1.2 A1/3
×10−15m. (60)

In order to determine the Fourier transform of the electric field D̃(k) one needs the
Fourier transform of the electron charge density for all shells and the nucleus charge density.
The calculations are simple but tedious. In order to obtain the results for all stable noble
gas atoms we calculate, according to Equation (47), the Fourier transforms of the functions
ρnl(r) for all closed shells. All the integrals are evaluated analytically and they are equal to
the ratios of the polynomials in k2. Finally, for each atom we add up the contributions from
the relevant shells and evaluate the final value (51) of the Zeldovich number.

The results are shown in Figure 3. As expected, the dependence on Z is almost
quadratic (dashed line). The deviation is due to the increase of the nucleus radius with the
increasing atomic mass number A. This effect diminishes the strength of the electric field at
the center of the atom.
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Figure 3. The Zeldovich number for the atoms of noble gases. The dashed line shows the expected
approximate quadratic dependence.

6. Conclusions

The results presented in this work have probably no immediate applications. They
offer, however, a fresh point of view by introducing a new universal dimensionless measure
of the overall strength of the electromagnetic field, the same in the classical and in the
quantum domain. For a free quantized electromagnetic field, this measure gives the number
of photons. The Zeldovich number can also be viewed as a measure of the strength of the
sources of the electromagnetic field. There is one property ofNZ which is worth stressing:
it is an intensive and not an extensive property of the system. It does not depend on the
size of the system but only on the dimensionless ratios of various parameters to the overall
system size.
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