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Abstract: In this third of a series on quantum radiation, we further explore the feasibility of using the
memories (non-Markovianity) kept in a quantum field to decipher certain information about the early
universe. As a model study, we let a massless quantum field be subjected to a parametric process for
a finite time interval such that the mode frequency of the field transits from one constant value to
another. This configuration thus mimics a statically-bounded universe, where there is an ‘in’ and an
‘out’ state with the scale factor approaching constants, not a continuously evolving one. The field
subjected to squeezing by this process should contain some information of the process itself. If an
atom is coupled to the field after the parametric process, its response will depend on the squeezing,
and any quantum radiation emitted by the atom will carry this information away so that an observer
at a much later time may still identify it. Our analyses show that (1) a remote observer cannot measure
the generated squeezing via the radiation energy flux from the atom because the net radiation energy
flux is canceled due to the correlation between the radiation field from the atom and the free field
at the observer’s location. However, (2) there is a chance to identify squeezing by measuring the
constant radiation energy density at late times. The only restriction is that this energy density is of
the near-field nature and only an observer close to the atom can use it to unravel the information of
squeezing. The second part of this paper focuses on (3) the dependence of squeezing on the functional
form of the parametric process. By explicitly working out several examples, we demonstrate that the
behavior of squeezing does reflect essential properties of the parametric process. Actually, striking
features may show up in more complicated processes involving various scales. These analyses allow
us to establish the connection between properties of a squeezed quantum field and details of the
parametric process which performs the squeezing. Therefore, (4) one can construct templates to
reconstitute the unknown parametric processes from the data of measurable quantities subjected
to squeezing. In a sequel paper these results will be applied to a study of quantum radiations
in cosmology.

Keywords: parametric creation of particles; squeezed state; fluctuations-induced quantum radiation;
radiation reaction; non-Markovianity

1. Introduction

This paper is the third of a series on quantum radiation, in the form of emitted radiation
with an energy flux (distinct from thermal radiance felt by an accelerated atom, as in the
Unruh effect [1]) from the internal degrees of freedom (idf) of an atom, tracing its origin to
the vacuum fluctuations of a quantum field, including its backreaction on the idf dynamics
of the atom, in the form of quantum dissipation. In Ref. [2], two of us considered how
vacuum fluctuations in the field act on the idf of an atom (we may call this the ‘emitter’),
modeled by a harmonic oscillator. We first showed how a stochastic component of the
internal dynamics of the atom arises from the vacuum fluctuations of the field, resulting in
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the emittance of quantum radiation. We then showed how the backreaction of this quantum
radiation induces quantum dissipation in the atom’s idf dynamics. We explicitly identified
the different terms representing these processes in the Langevin equations of motion. Then,
using the example of a stationary atom, we showed how, in this case, the absence of
radiation at a far-away observation point where a probe (or detector—note the so-called
Unruh-DeWitt ‘detector’ [1,3] is an emitter in the present context) is located is actually
a result of complex cancellations of the interference between emitted radiation from the
atom’s idf and the local fluctuations in the free field. By this, we pointed out that the entity
which enters into the duality relation with vacuum fluctuations is not radiation reaction
(in the quantum optics literature, e.g., [4–7], the relation between quantum fluctuations
and radiation reaction is often mentioned without emphasizing the difference between
classical radiation reaction [8,9] and quantum dissipation, which exist at two separate
theoretical levels; only quantum dissipation enters in the fluctuations–dissipation relation
with quantum fluctuations, not classical radiation reaction), which can exist as a classical
entity, but quantum dissipation [10,11]. In the second paper [12], we considered the idf of
the atom interacting with a quantum scalar field initially in a coherent state. We showed
how the deterministic mean field drives the internal classical mean component to emit
classical radiation and receive classical radiation reaction. Both components are statistically
distinct and fully decoupled. It is clearly seen that the effects of the vacuum fluctuations of
the field are matched with those of quantum radiation reaction, not with classical radiation
reaction, as the folklore states, even promulgated in some textbooks. Furthermore, we
identified the reason why quantum radiation from a stationary emitter is not observed, and
a probe located far away only sees classical radiation.

1.1. Quantum Radiation from an Atom in a Squeezed Quantum Field

In this paper, we treat quantum radiation from an atom’s idf interacting with a
quantum field in a squeezed state. The squeezed state is probably the most important
quantum state, next to the vacuum state, with both rich theoretical meanings and broad
practical applications, as well known in quantum optics (see, e.g., [13]). We are particularly
interested in its role in cosmology of the early universe.

Quantum Field Squeezed by an Expanding Universe

Squeezed states of a quantum field are naturally produced in an expanding universe
in fundamental processes which involve the parametric amplification of quantum fluctua-
tions, such as particle creation [14,15], either spontaneous production from the vacuum or
stimulated production from n-particle states, and structure formation [16] from quantum
fluctuations of the inflaton field. From relics such as primordial radiation and matter
contents observed today, with the help of theoretical models governing their evolution, one
attempts to deduce the state of the early universe at different stages of development. In
addition to particle creation and structure formation, we add here another fundamental
quantum process, namely, quantum radiation. One can ask questions such as: If such
radiation of a quantum nature is detected, how can one use it to reveal certain quantum
aspects of the early universe? Uncovering secrets of the early universe by digging out
information stored in the quantum field is in a similar spirit to the quest we initiated about
the non-Markovianity of the universe through memories kept in the quantum field [17].

1.2. Three Components: Radiation, Squeeze, Drive

Towards such a goal we carry out this investigation which involves three components:
(1) quantum radiation, (2) squeezed state, and (3) driven dynamics, either under some
external force or as provided by an expanding universe, which describes how the squeeze
parameter changes in time. Component (1) was initiated in Ref. [2] and continued in
Ref. [12], where the required technical tools for the present investigation can be found.
Component (2) is performed here: we consider a quantum field in a squeezed state with
a fixed squeeze parameter, regarded as the end state of the quantum field after being
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squeezed under some drive protocol or cosmological evolution. For the description of
squeezed states we follow the descriptions in our earlier paper [18]. Under the classification
of the three types of squeezing described there, we adhere to the first type, namely, with
fixed squeezing. The second type of dynamical parametric squeezing will be treated in our
sequel cosmological papers. We set aside the third type of squeezing due to finite coupling
between the system (here, the atom’s idf) and the environment (here, the quantum field)
completely.

To see more explicitly what component (3) entails, consider a situation where the atom
at the initial time ti is in a quantum field in a squeezed state with a fixed squeeze parameter
ζi and the same atom at the final time, t f , in a squeezed field with a different squeeze
parameter, ζ f . If an atom emits quantum radiation at either or both the initial and the final
times, comparing the signals from both should tell us something about how the drive had
affected the atom through the quantum radiation emitted from the atom, or in cosmology,
how the universe had evolved as measured by the parametric squeezing of the field. The
more challenging situation is if it turns out that there is no emitted quantum radiation from
an atom in a squeezed field. This is what our next work intends to find out.

1.3. Our Objectives, in Two Stages

We wish to ask questions in the same spirit as in Ref. [17]: Can we extract information
about the history of the quantum field which had undergone a parametric process from the
responses of an atom coupled to it in the epoch after the parametric process? In particular,
for observers (receivers) situated far away from the atom (emitter), whether they can detect
radiations emitted from the atom of a quantum nature. Quantum radiation is of special
interest as it originates from the vacuum fluctuations of a quantum field, and is expected to
keep some memories of the parametric process it went through. In a cosmological context,
it acts as a carrier of quantum information about the early universe.

We divide our program of quantum radiation in cosmology into two stages, phrased
as two questions. (A): Is there emitted quantum radiation from a stationary atom in a
quantum field with a fixed squeeze parameter? If there is no emitted quantum radiation,
then question (B): Is there emitted quantum radiation from a stationary atom in a quantum
field subjected to a changing squeeze parameter, such as in an expanding universe? If so,
what kind of evolutionary dynamics would produce what types of emitted radiation and
with what magnitudes? The first stage addresses components (1) and (2) listed above, and
the second stage, components (2) and (3), which will be continued in a follow-up paper.

1.3.1. Radiation Pattern as Template for Squeezing

This paper operates in the first stage, with a setup meant for a statically-bounded uni-
verse, not the continuously evolving type such as in the Friedmann–Lemaître–Robertson–
Walker (FLRW) or the inflationary universe. The first half answers the first question (A),
and the second half of this paper examines the response of the atom coupled to a field that
had undergone a parametric process earlier. This evokes the template idea, i.e., one can use
the response of the atom, coupled to the field in the out-region, to identify the dependence
of the squeeze parameter on the earlier parametric process before the out-region. In the
cosmology context, this offers a way for a late-time observer of such quantum phenomena
to uncover how the universe had evolved in much earlier times.

1.3.2. Stress–Energy Tensor of Squeezed Field

To answer the central question (A), we use a simplified model in which the quantum
field undergoes a parametric process of finite duration, such as under an external drive for
a definite period of time, or in an asymptotically stationary (statically bounded) universe.
The field could be a quantized matter or graviton field, or an inflaton field whose quantum
fluctuations engender cosmological structures. Then, we calculate the expectation value
of the stress–energy tensor of the radiation field emitted by an atom coupled to a free
field in a fixed two-mode squeeze state. In order to identify the unambiguous signals and
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conform to the typical settings, we focus on the late-time results. We learned from our
earlier invetsigation [2] for a quantum field in the vacuum state that the procedure for
checking this is quite involved, as it entails both the radiation flux emitted from the atom
as detected at the spacetime point of the probe, and an incoming flux from infinity.

1.4. Key Steps and Major Findings

The answer we found after calculating all relevant contributions for an atom in a
quantum field in a squeezed state shows that there is no net radiation flux, the same as
in Ref. [2]. This is a consequence of relaxation dynamics of the atom’s internal dynamics
when it is coupled to the squeezed field [19]. However, if the probe can measure the
radiation energy density, it should obtain a residual constant radiation energy density at
late time. Its value will fall off similar to the inverse cubic power of the distance between the
probe and the atom. Thus, it is more similar to a near-field effect. Nonetheless, this energy
density has an interesting characteristic: it depends on the squeeze parameter, which is
what we are after.

Thus, our investigation turns to whether and how the squeeze parameter of the field
after the parametric process would depend on the details of the process. We first show
that the squeeze parameter can formally be expressed by the fundamental solutions of the
parametrically driven field; the latter contains useful information about the process. Then,
by working out several examples numerically we can make the following observations:

(1) For a monotonically varying process, the squeeze parameter has a monotonic depen-
dence on the duration of this process; it does not depend on when the process starts,
if we fix the duration.

(2) The magnitude of squeezing is related to the rate of change in the process. That is,
large squeezing can be induced from a nonadiabatic transition. This is consistent with
our understanding of spontaneous particle creation from parametric amplification
of vacuum fluctuations [20] and that copious particles can be produced at the Planck
time under rapid expansion of the universe [21]. Thus, we expect that nonadiabatic
processes may contribute to larger residual radiation energy density around the atom.

(3) For a nonmonotonic parametric process, various scales in the process induce richer
structure to the behavior of the squeeze parameter. In particular, if the parametric
process changes with time sinusoidally at some frequency range, it may induce
parametric resonance and yield exceptionally large squeezing in the out-region.

Similar considerations can likewise be applied to the frequency spectrum of the
squeeze parameter of the field in the out-region. One can then examine its dependence on
the parametric process which the field has undergone. This illustrates the way to obtain tem-
plates in how the squeeze parameter is related to the parametric process, and how certain
information of the unknown parametric process can be inferred from these templates.

1.5. Organization

The paper is organized as follows. In Section 2, as a prerequisite, we briefly summarize
our earlier results on the relaxation process of the atom–field interaction, and pose the
questions we would like to answer in this paper. In Section 3, we lay out the formalism
and the essential tools for detailing the nonequilibrium evolution of the atom’s internal
dynamics and the squeezed field when they are coupled together. In Section 4, we study
the general spatial–temporal behavior of the energy flux and the energy density of the
radiation field and examine their late-time behaviors. In Section 5, we turn to the functional
dependence of the squeeze parameter on the functional form of the parametric process.
Several examples are provided to illustrate the formal analysis. In Section 6, we give some
concluding remarks. Appendix A offers a succinct summary of the two-mode squeezed
state. In Appendices B and C, we offer more details on the late-time, large-distance
behaviors of the energy flux and the energy density of the radiation field. In Appendix D,
we discuss the time-translational invariance of the squeeze parameter in the out-region.
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2. Scenario: Quantum Radiation in Atom–Field Systems

Classical radiation is a familiar subject, but what is its quantum field origin? Can one
trace back its link all the way to quantum fluctuations? We obtained partial answers in our
last two papers to this question for a harmonic atom interacting with a quantum field in
a vacuum and in a coherent state. This paper deals with a squeezed field, necessary for
treating cosmological quantum processes. Since fluctuation-induced quantum radiation is
not a household topic, yet it might be useful to first provide a physical picture of the global
landscape of quantum radiation based on our understanding from previous studies, setting
the stage for the current paper.

It has been shown that [19] when the internal degree of freedom, modeled as a
harmonic oscillator, of an atom (called a harmonic atom) in any initial state is linearly
coupled to a massless linear scalar field in the stationary state, its motion will settle down
to an equilibrium state. The presence of this equilibrium state, from the perspective of the
atom, implies a balance of energy exchange between the atom and the environmental field.
Expectantly, the radiation generated by the nonequilibrium motion of the atom’s internal
degree of freedom propagates outward to spatial infinity. It is lesser known whether and
how, from the perspective of the field, the radiation energy from the atom is balanced.
In our previous study [2], we demonstrated that the correlation between the outward
radiation field and the local free field at spatial infinity constitutes an inward energy flow
to balance the outward radiation energy flow. Furthermore, this inward flux serves to
supplement the needed energy around the atom for the field to drive the atom’s internal
motion. Thus, we clearly see how energy flows from the atom to spatial infinity and then
backflows to the atom. This is a consequence of the nonequilibrium fluctuation–dissipation
relations [2,22] for the atom’s internal degree of freedom and the free field, which is a
stronger condition than the conservation of energy. This point is better appreciated once
we take the global view of the total system, composed of the atom and field. The entire
system is closed and the total energy is conserved, but this does not guarantee that the
energy exchange between two subsystems is balanced unless the reduced dynamics is fully
relaxed to an equilibrium state.

If, instead, the internal degree of freedom of the atom is initially coupled to the
quantum field in a nonstationary state, similar to the squeezed state, then will the nonsta-
tionary nature of the field prevent the internal degree of freedom from approaching an
equilibrium state? We showed that [19] when the (mode-dependent) squeeze parameter is
time-independent, the atom’s internal degree of freedom still settles down to an equilibrium
state in the long run. The stationary components of the covariance matrix elements or the
energy flows decay exponentially fast to time-independent constants as in the previous
case, but the additional nonstationary components fall off to zero. The mechanisms that
account for the late-time behavior of the stationary and the nonstationary components
seem to be quite distinct. For the stationary components, it is a consequence of dissipation
dynamically adapting to the driving fluctuations from the environment, but for the nonsta-
tionary components, cancellation due to fast phase variations in the nonstationary terms
plays the decisive role. In contrast, from the viewpoint of the squeezed field, what is the
nature of radiation emitted from the atom, and can this outward energy flux at distances
far away from the atom find a corresponding inward flux at late times such that there is no
net energy output to spatial infinity, as proven for the case of a stationary field? If so, what
makes it possible?

These questions are of particular interest in a cosmological setting for the consideration
of fundamental issues described in Section 1. There, evolution of the universe parametri-
cally drives the ambient quantum field into a squeezed state. The extent of squeezing may
depend on the characteristics of the parametric process actuated by the evolution of the
background universe. When an atom is coupled to such a field, emitted radiation from the
atom should carry the information of squeezing of the field, which in turn may reveal the
evolution history of the universe.
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As a prerequisite to addressing these issues, in this paper we are going to examine
a simpler configuration that may cover the essential features. Consider, in Minkowski
spacetime, a massless scalar field that undergoes a parametric process such that each mode
frequency changes smoothly from one constant value, for example, ωi to another ω f , as
shown in Figure 1. The parametric process occurs during the time interval ta ≤ t ≤ tb. In
the out-region (t ≥ tb) of the process, an atom is coupled to the squeezed field at time t0.
The nonequilibrium evolution of the internal degree of freedom of the atom then generates
outward radiation, which after time r will reach a detector (such as a satellite around the
Earth) at a distance r away from the atom. The detector may measure the time variation of
the energy flux. The corresponding signal will be extracted and amplified to sieve out the
information regarding the parametric process of the field occurred earlier.

Figure 1. The configuration of the parametric process of the field. The process changes one of the
mode frequencies from ωi at time t ≤ ta to ω f at t ≥ tb. The transition is assumed to happen
continuously. The interaction between an atom and the field is turned on at t0 > ta and radiation is
generated by the internal motion of the atom. For a receiver at distance r away from the atom, it will
take another time r to meet the radiation. The relaxation time of the atom’s internal motion is of the
order of the inverse of the damping constant, γ−1.

3. Massless Scalar Field Interacting with a Harmonic Atom

For the case of a massless scalar field φ coupled to a static atom, with its internal degree
of freedom, χ, represented by a harmonic oscillator, one has the following Heisenberg
equations of motion:

¨̂χ(t) + ω2
Bχ̂(t) =

e
m

φ̂(0, t) , (1)(
∂2

t −∇2)φ̂(x, t) = e δ(3)(x)χ̂(t) , (2)

where the atom is located at the origin of the spatial coordinates x in a 3 + 1 Minkowski
spacetime. The parameter e denotes the coupling strength between the internal degree of
freedom of the atom and the field, and ωB and m is the bare frequency and the mass of the
oscillator, respectively. The overhead dot of a variable represents its time derivative with
respect to t; if this variable is promoted to an operator, we add an overhead hat. δ(3)(x) is
the three-dimensional delta function, and we often use the shorthand notation, ∂a = ∂/∂a,
for the partial derivative with respect to a.

Solving the equation of motion of the field (2) yields

φ̂(x, t) = φ̂h(x, t) + e
∫ t

0
ds G(φ)

R,0 (x, t; 0, s)χ̂(s) , (3)
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where the homogeneous part φ̂h(x, t) gives the free field while the integral expression
represents the radiation field emitted by the atom. The retarded Green’s function G(φ)

R,0 (x, x′)
of the free field is defined by

G(φ)
R,0 (x, x′) = i θ(t− t′)

[
φ̂h(x), φ̂h(x′)

]
=

1
2π

θ(τ)δ(τ2 − R2) , (4)

where x = (x, t), τ = t− t′, R = |x− x′|, and θ(τ) is the Heaviside unit-step function. In
the special case R→ 0, which is met for a single Brownian oscillator, we instead have

G(φ)
R,0 (t, t′) = − 1

2π
θ(τ)δ′(τ) . (5)

Here, we suppressed the trivial spatial coordinates 0, and the prime of a function
denotes the derivative with respect to its argument. The superscript of the Green’s function
indicates the operator by which the Green’s function is constructed, while the 0 in the
subscript reminds us that the Green’s function of interest is associated with a free operator;
otherwise it is an interacting operator. For example, G(φ)

R,0 (τ) refers to the retarded Green’s

function of the free field, while G(χ)
R (τ) is the retarded Green’s function of the interacting χ.

Plugging Equation (3) into the equation of motion (2) for the atom’s internal degree of
freedom, one obtains:

¨̂χ(t) + ω2
Bχ̂(t)− e2

m

∫ t

0
ds G(φ)

R,0 (t, s)χ̂(s) =
e
m

φ̂h(0, t) . (6)

This is the generalized quantum Langevin equation for χ̂(t)—it includes backreactions
of the environmental field in terms of the noise force on the righthand side and the integral
expression on the left hand side. As was identified in Equation (3), the latter is the reaction
force due to emitted radiation, which retards the motion of the atom’s internal degree of
freedom.

Supposing the free field has a Markovian spectrum, we can reduce Equation (6) into a
local form:

¨̂χ(t) + 2γ ˙̂χ(t) + ω2
R χ̂(t) =

e
m

φ̂h(0, t) , (7)

and the oscillation frequency is renormalized to a physical value ωR. Since we want to
examine the nature of radiation and its late-time behavior in relation to the atom’s internal
dynamics in a self-consistent way, we need the field expression (3) written in terms of the
solution to the equation of the reduced dynamics (7):

χ̂(t) = χ̂h(t) + e
∫ t

0
ds G(χ)

R (t− s)φ̂h(0, s) , (8)

where the retarded Green’s function associated with χ̂ has the form

G(χ)
R (τ) =

1
mΩ

e−γτ sin Ωτ , (9)

with Ω =
√

ω2
R − γ2, γ is the damping constant, and χ̂h(t) is the homogeneous part.

Equation (7) always implies that

d
dt

[m
2
〈 ˙̂χ(t)〉+ mωR

2
〈χ̂2(t)〉

]
= Pξ(t) + Pγ(t) , (10)

where Pξ(t) is the power delivered by the free field fluctuations:

Pξ(t) =
e
2
〈
{

φ̂h(0, t), χ̇(t)
}
〉 , (11)
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and Pγ(t) represents the rate of energy lost due to dissipation:

Pγ(t) = −2mγ 〈χ̇2(t)〉 . (12)

We showed [19] that even if the scalar field is initially in a nonstationary squeezed
thermal state, the internal dynamics of the atom will still settle down to an asymptotic
equilibrium state, where, in particular,

Pξ(t) + Pγ(t) = 0 . (13)

This is a stronger condition than Equation (10), which reflects energy conservation of
the reduced dynamics.

From Equations (3) and (8), the full interacting field is then given by

φ̂(x) = φ̂h(x) + e
∫ t

0
dt′ G(φ)

R,0(x, t; 0, t′)
[

χ̂h(t′) + e
∫ t′

0
ds G(χ)

R (t′ − s)φ̂h(0, s)
]

. (14)

It turns out convenient to split the full interacting field into three physically distinct
components, φ̂(x) = φ̂h(x) + φ̂TR(x) + φ̂BR(x), with

φ̂TR(x) = e
∫ t

0
dt′ G(φ)

R,0(x, t; 0, t′) χ̂h(t′) , (15)

φ̂BR(x) = e2
∫ t

0
dt′ G(φ)

R,0(x, t; 0, t′)
∫ t′

0
ds G(χ)

R (t′ − s)φ̂h(0, s) , (16)

where φ̂TR(x) is the transient term associated with the atom’s transient internal dynamics
and φ̂BR(x) is the backreaction field correlated with φ̂h(x) everywhere.

Hadamard Function

At this point, we have not specified the state of the field. For the reason that is
explained in Section 5, we assume that the initial state of the field the atom interacts with is
a time-independent two-mode squeezed thermal state, for which the field’s density matrix
has the form

ρ̂TMST = ∏
k

Ŝ2(ζk)ρ̂βŜ†
2(ζk) (17)

where ρ̂β is the thermal density matrix of the free field at temperature TB = β−1, and Ŝ2(ζk)

is the two-mode squeeze operator, with the squeeze parameter, ζk = ηkeiθk , defined by

Ŝ2(ζk) = exp
[
ζ∗k â+k â−k − ζk â†

+ka†
−k

]
. (18)

Here, the † sign denotes the hermitian conjugate, ηk ≥ 0, 2π > θk ≥ 0, and k is
the wave vector. For convenience, we collected the essential properties of the two-mode
squeezed state in Appendix A. Here, we assume that the squeeze parameter is mode-
independent to simplify the arguments.

If the free field has the plane-wave expansion,

φ̂h(x) =
∫ d3k

(2π)
3
2

1√
2ω

[
âkeik·x + â†

ke−ik·x
]

, (19)

with k · x = −ωt + k · x, k = (ω, k), and ω = |k|, then the free field’s Hadamard function
for this two-mode squeezed thermal state has the form,

G(φ)
H,0(x, x′) =

∫ d3k
(2π)3

1
4ω

coth
βω

2
eik·(x−x′)

[
cosh 2η e−iω(t−t′) − sinh 2η eiθe−iω(t+t′)

]
+ C.C. . (20)
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Here, “C.C.” represents the complex conjugate term. After carrying out the angular
integration, one arrives at the following decomposition:

G(φ)
H,0(x, x′) = G(φ),ST

H,0 (x, x′) + G(φ),NS
H,0 (x, x′) , (21)

with

G(φ),ST
H,0 (x, x′) =

∫ ∞

−∞

dω

2π
cosh 2η coth

βω

2
sin(ω|x− x′|)

4π|x− x′| e−iω(t−t′) , (22)

G(φ),NS
H,0 (x, x′) = −

∫ ∞

0

dω

2π
sinh 2η coth

βω

2
sin(ω|x− x′|)

4π|x− x′| e−iω(t+t′)+iθ + C.C. (23)

Observe that the Hadamard function has an extra component that is not invariant
under time translation, so we call it the nonstationary component of the Hadamard function.
This is distinct from the case we consider in Ref. [2]. The emergence of this component is a
consequence of the field being squeezed. We discuss its dynamical origin in Section 5. This
nonstationary nature of the free field’s Hadamard function will impact on the dynamical
evolution of the atom’s internal dynamics because the Hadamard function governs the
statistics of the noise force sourcing (6), which naturally raises the concern as to whether the
internal dynamics can ever equilibrate. As was mentioned earlier, it turns out the atom’s
internal motion can still relax to an equilibrium, meaning a time-translation-invariant state.
Details of derivations and discussions on this point can be found in Ref. [19].

Equations (20) or (21) are the essential ingredient used to express the Hadamard
function G(φ)

H (x, x′) of the interacting field, which is needed to evaluate the stress–energy
tensor. Following the decomposition (15), the interacting field’s Hadamard function is
given by

G(φ)
H (x, x′) =

1
2
〈
{

φ̂h(x), φ̂h(x′)
}
〉+ 1

2

[
〈
{

φ̂h(x), φ̂BR(x′)
}
〉+ 〈

{
φ̂BR(x), φ̂h(x′)

}
〉
]

+
1
2
〈
{

φ̂BR(x), φ̂BR(x′)
}
〉+ 1

2
〈
{

φ̂TR(x), φ̂TR(x′)
}
〉 , (24)

where

1
2
〈
{

φ̂h(x), φ̂h(x′)
}
〉 = G(φ)

H,0(x, x′) , (25)

1
2
〈
{

φ̂h(x), φ̂BR(x′)
}
〉 = e2

∫ t′

0
ds′1 G(φ)

R,0 (x′, t′; 0, s′1)
∫ s′1

0
ds′2G(χ)

R (s′1 − s′2)G
(φ)
H,0(x, t; 0, s′2) , (26)

1
2
〈
{

φ̂BR(x), φ̂BR(x′)
}
〉 = e4

∫ t

0
ds1

∫ t′

0
ds′1 G(φ)

R,0 (x, t; 0, s1)G
(φ)
R,0 (x′, t′; 0, s′1)

×
∫ s1

0
ds2

∫ s′1

0
ds′2 G(χ)

R (s1 − s2)G
(χ)
R (s′1 − s′2)G

(φ)
H,0(0, s2; 0, s′2) , (27)

1
2
〈
{

φ̂TR(x), φ̂TR(x′)
}
〉 = e2

2

∫ t

0
ds
∫ t′

0
ds′ G(φ)

R,0 (x, t; 0, s)G(φ)
R,0 (x′, t′; 0, s′) 〈

{
χ̂h(s), χ̂h(s′)

}
〉 . (28)

The second group inside the square brackets in Equation (24) is of special interest
because it describes the correlation between the radiation field and the free field at any
location outside the atom. We do not see such counterpart in classical electrodynamics
because in classical field theory, there is no vacuum state to establish any correlation with
the radiation field. Here, the correlation must be present because (1) the internal dynamics
of the atom, which emits the radiation, is driven by the free field at the atom’s location and
(2) the free field has nonvanishing correlation among any spacetime interval. Note that we
are in the Heisenberg picture, so the expectation values are evaluated with respect to the
initial state of both subsystems. The contribution in Equation (28) can be ignored at late
times due to its transient nature. In addition, we also note that these four components are at
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most linearly proportional to G(φ)
H,0(x, x′). Thus, at least before t− r � γ−1, where r = |x|,

the interaction field is expected to behave similar to a squeezed field to some extent.
For later convenience, we introduce a shorthand notation for an expression which

comes up frequently:

Lω(x, t) =
∫ t

0
ds1 G(φ)

R,0 (x, t− s1)
∫ s1

0
ds2 G(χ)

R (s1 − s2)e−iωs2 . (29)

After we carry out the integrations, we find its explicit form is given by

Lω(x, t) = θ(t− r) G̃(χ)
R (ω)

{
G̃(φ)

R,0 (x; ω) e−iωt − e−γ(t−r)

4πΩr

[
(ω + iγ) cos Ω(r− t) + i Ω sin Ω(r− t)

]}
, (30)

where we used the identity for the Fourier transform of G(φ)
R,0 (x, τ; 0, 0):

G̃(φ)
R,0(x; ω) =

eiωr

4πr
. (31)

The convention of the Fourier transformation we adopt is

f (t) =
∫ ∞

−∞

dω

2π
f̃ (ω) e−iωt . (32)

At times t� r, we find that the dominant term in Equation (30) is given by

Lω(x, t) = θ(t− r) G̃(χ)
R (ω) G̃(φ)

R,0 (x; ω) e−iωt , (33)

because in this case, the factor e−γ(t−r) causes the second term in the curly brackets in
Equation (30) to be exponentially small. These are convenient snippets that greatly sim-
plifies the analysis of the late-time behavior of the expectation values of the energy–
momentum stress tensor of the interacting field. Henceforth, we proceed with the analysis
separately for the contributions due to the stationary and the nonstationary components of
G(φ)

H,0(x, x′).
At late times, the explicit expressions for the stationary and nonstationary components

of the Hadamard functions of the free field and the interacting field φ become relatively
simple. The interacting field’s Hadamard function can likewise be decomposed into a
stationary and a nonstationary component, G(φ)

H (x, x′) = G(φ),ST
H (x, x′) + G(φ),NS

H (x, x′), and

G(φ),ST
H (x, x′) = G(φ),ST

H,0 (x, x′) + e2
∫ ∞

−∞

dω

2π

[
G̃(φ),ST

H,0 (x, 0; ω) G̃(χ)∗
R (ω) G̃(φ)∗

R,0 (x′; ω) (34)

+ G̃(φ),ST
H,0 (x′, 0; ω) G̃(χ)

R (ω) G̃(φ)
R,0 (x; ω)

]
e−iω(t−t′) + C.C.

+ e2
∫ ∞

−∞

dω

2π
cosh 2η coth

βω

2
G̃(φ)

R,0 (x, ω) G̃(φ)∗
R,0 (x′, ω) Im G̃(χ)

R (ω) e−iω(t−t′) + C.C. ,

and

G(φ),NS
H (x, x′) = G(φ),NS

H,0 (x, x′)− e2
∫ ∞

0

dω

2π
sinh 2η coth

βω

2
G̃(χ)

R (ω) (35)

×
[

sin(ω|x|)
4π|x| G̃(φ)

R,0 (x′; ω) +
sin(ω|x′|)

4π|x′| G̃(φ)
R,0 (x; ω)

]
e−iω(t+t′)+iθ + C.C.

− e4
∫ ∞

0

dω

2π

ω

4π
sinh 2η coth

βω

2
G̃(χ)2

R (ω) G̃(φ)
R,0 (x; ω) G̃(φ)

R,0 (x′; ω) e−i(ω(t+t′)+iθ + C.C. ,

where
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G̃(φ),ST
H,0 (x, 0; ω) ≡ G̃(φ),ST

H,0 (x; ω) = cosh 2η coth
βω

2
sin(ω|x|)

4π|x| = cosh 2η coth
βω

2
Im G̃(φ)

R,0 (x; ω) . (36)

The energy–momentum stress tensor of the interacting field is then constructed via
the Hadamard function, G(φ)

H (x, x′). Analyses of the late-time energy flow of the field at
distances far away from the atom resulting from the atom–field interaction are contained in
Appendices B and C. A general discussion of the spatial–temporal behavior of the stress–
energy tensor due to the radiation field emitted from the atom follows in the next section.

4. Stress–Energy Tensor Due to the Radiation Field

The expectation value of the energy–momentum stress tensor due to the radiation
field is defined by

〈∆T̂µν(x)〉 = lim
x′→x

(
∂2

∂xµ∂x′ν
− 1

2
gµνgαβ ∂2

∂xα∂x′β

)[
G(φ)

H (x, x′)− G(φ)
H,0(x, x′)

]
(37)

with the signature of the metric gµν being (−,+,+,+). Here, we subtracted off the contri-
bution purely from the free field, which is irrelevant to the atom–field interaction. Due to
symmetry, it has no dependence on the azimuthal angle, ϑ, and the polar angle, ϕ, of the
spherical coordinate system, so the stress–energy tensor already reduces to

〈∆T̂µν〉 =


0
0

〈∆T̂rt〉
〈∆T̂tt〉

0
0

〈∆T̂rr〉
〈∆T̂tr〉

0
0
0
0

0
0
0
0

 . (38)

Then, we focus on the components 〈∆T̂tr〉 and 〈∆T̂tt〉 that are relevant to our follow-
ing discussions.

Here, the analysis is not limited to the large-distance and the late-time limits, so that
we can have a more complete, global view of the energy flow and energy density of the field
caused by the atom–field interaction. We will place the analysis in those specific regimes in
Appendices B and C.

Since in our configuration the coupling between the harmonic atom and the massless
scalar field takes a different form from that between the point charge and the electromag-
netic fields, it would be more illustrative if we first quickly cover the elementary derivations
of the continuity equation and the total atom–field Hamiltonian in the classical regime to
highlight their differences.

From the equation of motion of the scalar field (2), if we multiply both sides by ∂tφ,
we obtain a local form of the continuity equation

∂tuφ +∇ · Sφ = p ∂tφ , (39)

where p(x, t) = e δ(3)(x)χ(t) serves as the point dipole associated with the atom, and we
identify the field energy density, uφ, and the field momentum density, Sφ, respectively, by

uφ(x, t) =
1
2

[
∂tφ(x, t)

]2
+

1
2

[
∇φ(x, t)

]2
, Sφ(x, t) = −∂tφ(x, t)∇φ(x, t) . (40)

The unusual issue with the right hand side of the continuity Equation (39) is best ap-
preciated when we compare with the corresponding equation for the electromagnetic fields:

∂tu +∇ · S = −J · E , with u =
1
2

E2 +
1
2

B2 , S = E× B , (41)
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where J is the current density and the corresponding current is equal to eẋ for a point charge
at the location x. The electric field, E, is defined by E = −∇A0 − ∂t A and the magnetic
field B by B = ∇× A. Here, A0 is the scalar potential and A is the vector potential. Thus,
the right hand side of Equation (39) should bear a similar interpretation to −J · E, which is
usually understood as the dissipation of the field energy due to the work performed by the
field on the charge. That is, it is the opposite of the power delivered by the Lorentz force.
However, there are a few subtle catches: (1) In classical field theory, we seldom consider the
free field component of the field equation, and we never have vacuum field fluctuations,
so the electromagnetic fields in Equation (41) are often assumed to be the field generated
by the charge. In contrast, the quantum scalar field φ under our consideration is a full
interacting field, comprising the free field and the radiation field emitted by the atom. Thus,
the right hand side of Equation (39) will contain an extra contribution associated with the
free field fluctuations. (2) The right hand side of Equation (39) does not correspond to
the net power delivered by the field to the internal degree of freedom of the atom, which
is e φ(0, t) ∂tχ(t), apart from a renormalization contribution, according to the right hand
side of Equation (1). Then the interpretation of the right hand of Equation (39) is not so
straightforward, even though it has a form of the dipole interaction, similar to the right
hand side of Equation (41).

We may trace such a feature to the Hamiltonian. The Hamiltonian Hχφ associated
with the Lagrangian of the atom–field interacting system,

Lχφ =
m
2

χ̇2 − mω2
B

2
χ̇2 +

∫
V

dV e δ(x)χ(t)φ(x, t) +
∫

V
d3x

{1
2
[
∂tφ(x, t)

]2 − 1
2
[
∇φ(x, t)

]2} , (42)

under our consideration is given by

Hχφ =
m
2

χ̇2 +
mω2

B

2
χ̇2 − e χ(t)φ(0, t) +

∫
V

d3x
{1

2
[
∂tφ(x, t)

]2
+

1
2
[
∇φ(x, t)

]2} , (43)

where we implicitly assume that χ̇(t) and φ̇(x, t) are functions of the respective canonical
momenta, p(t) and π(x, t). The quantity V denotes the whole spatial volume on a fixed
time slice. Since the whole atom–field system forms a closed system, the total energy is
conserved, so one has dH/dt = 0,

d
dt

Hχφ(t) = 0 = χ̇(t)
{

mχ̈(t) + mω2
Bχ(t)− e φ(0, t)

}
(44)

+
∫

V
d3x

[
−e δ(x)χ(t) ∂tφ(x, t) +

d
dt

{
1
2
[
∂tφ(x, t)

]2
+

1
2
[
∇φ(x, t)

]2}] .

Note how the derivative of the interaction term is distributed, and further observe that
the contribution inside of the first pair of curly brackets gives zero, following the equation
of motion (1). It actually has an attractive interpretation. Following the derivations of
Equations (6) and (7), it accounts for the reduced dynamics of the atom’s internal degree
of freedom, and, from the atom’s perspective, describes the energy exchange between the
atom and the surrounding quantum field.

The integral on the right hand side of Equation (44), on the other hand, describes the
energy exchange from the field’s perspective, and thus gives zero too. In the integrand,
we see the presence of the same dipole interaction term e δ(x)χ(t) ∂tφ(x, t) that appears
on the right hand side of Equation (39). At first sight, it may seem odd that the dipole
interaction term is solely responsible for the change of the field energy; however, we can
further show that

d
dt

Hχφ(t) = 0 =
∫

V
d3x ∇ · [∇φ(x, t) ∂tφ(x, t)

]
= −

∮
∂V

dA · S(x, t) , (45)

where dA is the area element on the boundary ∂V. It says that there is no flux entering
from or leaving to spatial infinity because the boundary ∂V of the space volume V lies
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at spatial infinity. It is a rephrase of energy conservation in a closed system, so there is
no inconsistency. On the other hand, Equation (45) is too restrictive because V is the total
volume. The differential form of the continuity Equation (39) is more suitable to observe
the energy distribution in the field.

In contrast to Equation (43), the Hamiltonian for the interacting system of a point
charge and the electromagnetic field is

HxA =
mB

2
ẋ2 +

mBω2

2
x2 +

1
2

∫
V

d3x
(
E2 + B2) . (46)

It does not have the interaction term manifestly if the Hamiltonian is not expressed
in terms of the canonical momentum of the charge; however, it is consistent with the
observation that −J · E is opposite to the power delivered by the Lorentz force.

Now, let us discuss the general result of 〈∆T̂µν〉 that will be valid for t > r at any
location distance r away from the atom, so we come back to the manipulation of quantum
operators. We first compute 〈∆T̂tr〉.

4.1. General Behavior of Field Energy Flux 〈∆T̂tr〉
If we write φ̂R(x, t) as

φ̂R(x, t) = e
∫ t

0
ds G(φ)

R,0 (x, t; 0, s) χ̂(s) =
e

4πr
θ(t− r) χ̂(t− r) , (47)

which explicitly shows that the radiation field is a retarded Coulomb-like field emitted by a
source at an earlier time t− r. Note that the quite simple expression of the radiation field
such as Equation (47) is not obtainable if the field has a nonMarkovian spectrum.

With the help of Equation (47), one obtains:

1
2
〈
{

∂tφ̂R(x, t), ∂rφ̂R(x, t)
}
〉 = −

(
e

4πr

)2

〈χ̂′2(t− r)〉 −
(

e
4πr

)2 1
2r
〈
{

χ̂′(t− r), χ̂(t− r)
}
〉 , (48)

for t > r, where a prime denotes taking the derivative with respect to the function’s
argument. If we compute the energy flow associated (48), across any spherical surface of
radius r centered at the atom, we obtain∫

∂V
dA 1

2
〈
{

∂tφ̂R(x, t), ∂rφ̂R(x, t)
}
〉 = −2mγ 〈χ̂′2(t− r)〉 − mγ

r
〈
{

χ̂′(t− r), χ̂(t− r)
}
〉

= Pγ(t− r)− mγ

r
∂t〈χ̂2(t− r)〉 , (49)

where we used the substitution e2 = 8πγm. The first term has a special significance.
From Refs. [2,18,22], one knows that Pγ(t) is the energy that the atom’s internal degree of
freedom loses to the surrounding field due to damping. Thus, the first term tells us that the
energy lost by the atom at time t− r takes time r to propagate to a location at a distance r
away from the atom. It is the only contribution in Equation (49) that may survive at spatial
infinity.

The contribution from the cross-terms need a little more algebraic manipulations, but
it gives:

1
2
〈
{

∂tφ̂h(x, t), ∂rφ̂R(x, t)
}
〉+ 1

2
〈
{

∂tφ̂R(x, t), ∂rφ̂h(x, t)
}
〉

=
1

4πr2 Pξ(t− r)− e2

4πr2
∂

∂t

∫ t−r

0
ds G(χ)

R (t− r− s) G(φ)
H,0(x, t; 0, s) , (50)

in which the integral in the last expression is nothing but

e2
∫ t−r

0
ds G(χ)

R (t− r− s) G(φ)
H,0(x, t; 0, s) =

e
2
〈
{

χ̂(t− r), φ̂h(x, t)
}
〉 . (51)
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Here, Pξ(t) is the power that the free quantum field fluctuations deliver to the atom’s
internal dynamics at time t at the atom’s location. Then we find the incoming energy flow
given by

∫
∂V

dA
[

1
2
〈
{

∂tφ̂h(x, t), ∂rφ̂R(x, t)
}
〉+ 1

2
〈
{

∂tφ̂R(x, t), ∂rφ̂h(x, t)
}
〉
]

= Pξ(t− r)− ∂

∂t

[e
2
〈
{

χ̂(t− r), φ̂h(x, t)
}
〉
]

. (52)

Combining Equations (49) and (52), one thus has:

〈∆T̂tr〉 =
1

4πr2

{
Pξ(t− r) + Pγ(t− r)− ∂

∂t

[mγ

r
〈χ̂2(t− r)〉+ e

2
〈
{

χ̂(t− r), φ̂h(x, t)
}
〉
]}

, (53)

From the relaxation of the reduced dynamics of the atom’s internal degree of freedom,
outlined in the beginning of Section 3, we learn that the internal dynamics will reach
equilibrium, where Pξ(t) + Pγ(t) = 0 for t � γ−1. Hence, from Equation (53), we easily
conclude that, for a fixed r, when t− r is much greater than the relaxation time scale, the
sum of the dominant terms Pξ(t− r) + Pγ(t− r) vanishes. At large distances away from the
atom, the remaining terms are quite small, decaying at least similar to 1/r3. It is consistent
with our results in Appendix B, where we explicitly show that they actually give zero at
late times. Alternatively, we may deduce the same conclusion here, since (1) 〈χ̂2(t)〉 will
approach a constant at late times as the atom’s internal dynamics asymptotically reach an
equilibrium, and (2) with the help of the explicit expression,

e
2
〈
{

χ̂(t− r), φ̂h(x, t)
}
〉 = − e2

4πr

∫ ∞

0

dω

2π
coth

βω

2
cosh 2η

∫ t−r

0
ds G(χ)

R (t− r− s)
sin ωr
4πr2 cos ω(t− s) ,

it is not hard to see that the time derivative of the last term inside the square brackets in
Equation (53) vanishes at late times.

Thus, the detector away from the atom will not measure any radiation energy flux
from the stationary atom at late times even though the atom is coupled to a nonstationary
squeezed state.

4.2. General Behavior of Field Energy Density 〈∆T̂tt〉
It is also of interest to examine the change of the field energy density at distances far

away from the atom resulting from their mutual interactions. Conceptually, the atom’s
internal dynamics will send out spatial infinity spherical waves centered at the location
of the atom. Due to the quantum nature of the internal dynamics, this radiation wave, in
general, has a random phase and its magnitude is inversely proportional to the distance to
the atom. Following our previous discussion, a detector at a large but fixed distance away
from the atom will receive a net outward energy flux in the beginning, and then it will find
that the magnitude of the flux rapidly falls off to zero with time. After all these activities
settle down, will the earlier energy flux leave any footprint in the space surrounding the
atom, say, by shifting the local field energy density, albeit almost imperceptibly? This is
what we try to find out in this section.

In the same manner, we rewrite 〈∆Ttt〉, following Equation (47). Other than the overall
factor 1/2, we first show:

1
2
〈
{

∂tφ̂R(x, t), ∂tφ̂R(x, t)
}
〉+ 1

2
〈
{

∂rφ̂R(x, t), ∂rφ̂R(x, t)
}
〉 = −2× 1

4πr2

{
Pγ(t− r) +

∂

∂r

[mγ

r
〈χ̂2(t− r)〉

]}
,

where ∂tχ(t− r) = −∂rχ(t− r). Here, due to the minus sign up front, this contribution
tends to grow to a positive value at late times. We further note that the same expression
Pγ(t − r) also appears in the component (49) of 〈∆T̂tr(t)〉 that is purely caused by the
radiation field. Thus, we see the outward energy flux due to Equation (49) that imparts
field energy into the space around the atom.
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For the cross-terms, we obtain:

2× 1
2
〈
{

∂tφ̂h(x, t), ∂tφ̂R(x, t)
}
〉+ 2× 1

2
〈
{

∂rφ̂h(x, t), ∂rφ̂R(x, t)
}
〉

= −2× 1
4πr2

{
Pξ(t− r) +

∂

∂r

[e
2
〈
{

χ̂(t− r), φ̂h(x, t)
}
〉
]}

. (54)

Following the same argument, the inward energy flux from Equation (50), on the other
hand, is prone to take away the field energy in the surrounding space.

Altogether, we thus find that the net field energy density outside the atom is given by

〈∆T̂tt〉 = −
1

4πr2

{
Pξ(t− r) + Pγ(t− r) +

∂

∂r

[mγ

r
〈χ̂2(t− r)〉+ e

2
〈
{

χ̂(t− r), φ̂h(x, t)
}
〉
]}

, (55)

for t > r > 0. This looks similar to Equation (53), and can be the consequence of the continu-
ity equation. The dominant term in Equation (55) will vanish at late times, as a consequence
of the relaxation of the internal dynamics of the atom, and the behavior of Equation (53)
due to the appearance of t − r. Following our earlier arguments, the remaining term,
〈
{

χ̂(t − r), φ̂h(x, t)
}
〉, on the other hand, becomes a time-independent constant at late

times, which falls off at least similar to 1/r3, as is explicitly shown in Appendix B.2.
Indeed, Equations (53) and (55) enable us to verify the continuity equation,

1
r2

∂

∂r

(
r2〈∆T̂tr〉

)
=

1
4πr2

{
∂rPξ(t− r) + ∂rPγ(t− r)− ∂2

∂t∂r

[mγ

r
〈χ̂2(t− r)〉+ e

2
〈
{

χ̂(t− r), φ̂h(x, t)
}
〉
]}

=
1

4πr2

{
−∂tPξ(t− r)− ∂tPγ(t− r)− ∂2

∂t∂r

[mγ

r
〈χ̂2(t− r)〉+ e

2
〈
{

χ̂(t− r), φ̂h(x, t)
}
〉
]}

=
∂

∂t
〈∆T̂tt〉 , (56)

for r > 0. To include r = 0, the location of the atom, we need the form (39), which also takes
into account the energy flow into and out of the atom, from the scalar field perspective.

From the considerations presented so far we may now see better how the radiation
flux, generated by the internal dynamics of the atom, propagates outward and at the same
time intakes the field energy in space outside the atom. Meanwhile, due to the remarkable
correlation between the quantum radiation field and the free quantum field, there exists an
inward flux. On its way toward the atom, it pulls out field energy stored in the proximity
of the atom. From this hindsight, it can be understood that the net power e φ(0, t)χ̇(t)
delivered by the quantum field to the atom is not equal to the rate of work performed on the
field e φ̇(0, t)χ(t), as can be inferred from Equation (44). Otherwise, 〈∆T̂tr〉 in Equation (53)
will just be proportional to Pξ(t− r) + Pγ(t− r). Their difference accounts for the field
energy density stored in the space for the configuration we have studied.

In summary, the results in this section tell us that at late times the observer will not
measure any net energy flow associated with the radiation emitted from the atom driven
by the squeezed quantum field, but the observer can still detect a constant radiation energy
density, which is related to the squeeze parameter. However, a restrictive condition is
that the residual radiation energy density is of the near-field nature, and it falls off with
the distance to the atom similar to 1/r3. Thus, its detection can be challenging at large
distances, unless the squeeze parameter is large.

Even with these difficulties, one can still locally identify the squeezing via the response
of the atom interacting with the squeezed field.

In the next Section, we discuss how the squeeze parameter depends on the parametric
process the quantum field has experienced, such that one may acquire certain information
about the process once one has measured the squeeze parameter.



Physics 2023, 5 569

5. Functional Dependence of the Squeeze Parameter on the Parametric Process

Now we turn to how one may possibly extract from the behavior of the squeeze
parameter the information of the parametric process that occurs earlier. To be specific,
consider the simple case that a massless quantum Klein–Gordon field in flat spacetime
undergoes a parametric process such that the frequency of mode k transits smoothly from
one constant value ωi for 0 ≤ t ≤ ta to another constant ω f for t ≥ tb > ta.

We would first like to show that the quantum field in the out-region behaves as if it is
in its squeezed thermal state with a time-independent squeeze parameter, ζk, if the initial
state of the field at t = 0 is a thermal state. Then, we express the squeeze parameter in
terms of the Bogoliubov coefficients, a common tool to treat the dynamics of the quantum
field in a parametric (time-varying) process. We also link the squeeze parameter to the
fundamental solutions of the equation of motion of the field, in which information of the
parametric process is embedded.

We work with the Heisenberg picture, so the field state remains in its initial state at
t = 0. Formally, we can expand the field operator φ̂(x) in terms of different sets of mode
functions. In the out-region, two convenient choices are

uIN
k (x) =

1√
2ωi

eik·x
[
d(1)k (t)− i ωi d(2)k (t)

]
, uOUT

k (x) =
1√
2ω f

eik·xe−iω f t , (57)

where d(i)k (t) satisfies the equation d̈(i)k + ω2(t) d(i)k (t) = 0, and uOUT
k (x) is the standard

plane-wave mode function in the out-region, while uIN
k (x) represents the mode function

which evolves from the plane-wave mode function in the in-region. Thus, the field operator
may have the expansions,

φ̂(x) =


∑
k

âkuIN
k (x) + â†

kuIN∗
k (x) ,

∑
k

b̂kuOUT
k (x) + b̂†

kuOUT∗
k (x) ,

∑
k

=
∫ d3k

(2π)
3
2

, (58)

in the out-region.
We further suppose that (b̂k, b̂†

k) are related to (âk, â†
k) by

b̂+k = α+k â+k + β∗−k â†
−k , (59)

whence the completeness condition |αk|2 − |βk|2 = 1 implies that the Bogoliubov coeffi-
cients, αk and βk, can be parametrized by

αk = cosh ηk , β∗−k = −eiθk sinh ηk , (60)

such that
b̂+k = cosh ηk â+k − eiθk sinh ηk â†

−k = Ŝ†
2(ζk) â+k Ŝ2(ζk) . (61)

The parametrization (60) can be alternatively implemented by the two-mode squeeze
operator Ŝ†

2(ζk). We summarize its properties in Appendix A.
Then, a quantity of the field similar to the Hadamard function in the out-region can be

cast into
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1
2
〈IN|

{
φ̂(x), φ̂(x′)

}
|IN〉

= ∑
k

1
2ω f

[
1
2
〈IN|

{
b̂k, b̂k

}
|IN〉 eik·(x+x′)e−iω f (t+t′) +

1
2
〈IN|

{
b̂k, b̂−k

}
|IN〉 eik·(x−x′)e−iω f (t+t′)

+
1
2
〈IN|

{
b̂k, b̂†

k
}
|IN〉 eik·(x−x′)e−iω f (t−t′) +

1
2
〈IN|

{
b̂k, b̂†

−k
}
|IN〉 eik·(x+x′)e−iω f (t−t′) + C.C.

]
= ∑

k

1
2ω f

eik·(x−x′)
[

1
2
〈ζTMSQ

k,IN |
{

âk, â−k
}
|ζTMSQ

k,IN 〉 e−iω f (t+t′) +
1
2
〈ζTMSQ

k,IN |
{

âk, â†
k
}
|ζTMSQ

k,IN 〉 e−iω f (t−t′) + C.C.
]

, (62)

where |ζTMSQ
k,IN 〉 = Ŝ2(ζk) |IN〉 is the two-mode squeezed state of the initial in-state |IN〉. Thus,

Equation (62) gives a Hadamard function in the two-mode squeezed in-state. Although
here we use the pure state form, the result can be easily adapted for a mixed state.

On the other hand, the same Hadamard function can be expressed in terms of the
in-mode functions, by the expansion

1
2
〈IN|

{
φ̂(x), φ̂(x′)

}
|IN〉

= ∑
k

1
2ωi

eik·(x−x′)
(

N(β)
k +

1
2

)[
d(1)k (t)− i ωi d(2)k (t)

][
d(1)k (t′) + i ωi d(2)k (t′)

]
+ C.C. . (63)

If the in-state is a thermal state, then 〈IN|
{

âk, â†
k
}
|IN〉 is understood in terms of the

trace average, and gives 2N(β)
k + 1, with N(β)

k being the average number density of the
thermal state at temperature, β−1,

N(β)
k =

1
eβωi − 1

. (64)

Observe the structural similarities between Equations (62) and (63).
To make them more revealing, we evaluate the expectation values on the right hand

side of Equation (62),

〈IN|
{

b̂+k, b̂+k
}
|IN〉 = 0 , 〈IN|

{
b̂+k, b̂−k

}
|IN〉 =

(
α+kβ∗+k + α+kβ∗−k

)(
2N(β)

k + 1
)

,

〈IN|
{

b̂+k, b̂†
−k
}
|IN〉 = 0 , 〈IN|

{
b̂+k, b̂†

+k
}
|IN〉 =

(
|α+k|

2 + |β−k|
2)(2N(β)

k + 1
)

.

Thus, Equation (62) becomes

1
2
〈IN|

{
φ̂(x), φ̂(x′)

}
|IN〉

= ∑
k

1
2ω f

eik·(x−x′)
(

N(β)
k +

1
2

)[
2αkβ∗k e−iω f (t+t′) +

(
|αk|

2 + |βk|
)

e−iω f (t−t′) + C.C.
]

. (65)

Comparing this equation with Equation (63), we find that

|αk|
2 + |βk|

2 =
1
2

[
ω f

ωi
d(1)2k (t f ) + ω f ωi d(2)2k (t f ) +

1
ω f ωi

ḋ(1)2k (t f ) +
ωi
ω f

ḋ(2)2k (t f )
]

, (66)

2αkβ∗k =
1

2ωiω f

[
+i ω f d(1)k (t f ) + ωiω f d(2)k (t f )− ḋ(1)k (t f ) + i ωi ḋ(2)k (t f )

]
×
[
−i ω f d(1)k (t f ) + ωiω f d(2)k (t f ) + ḋ(1)k (t f ) + i ωi ḋ(2)k (t f )

]
. (67)

These results easily enable us to find the Bogoliubov coefficients αk and βk once we
have the fundamental solutions d(i)k (t) with i = 1, 2.
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Following the same arguments leading to Equations (62) and (63), if we compute
〈φ̂2(x)〉, 〈π̂2(x)〉 and 〈

{
φ̂(x), π̂(x)

}
〉 in the out-region, one obtains that, for each mode,

cosh 2ηk =
1
2

[
1

ω f ωi
ḋ(1)2k (t) +

ωi
ω f

ḋ(2)2k (t) +
ω f

ωi
d(1)2k (t) + ω f ωi d(2)2k (t)

]
, (68)

cos(θk − 2ω f t) sinh 2ηk =
1
2

[
1

ω f ωi
ḋ(1)2k (t) +

ωi
ω f

ḋ(2)2k (t)−
ω f

ωi
d(1)2k (t)−ω f ωi d(2)2k (t)

]
, (69)

sin(θk − 2ω f t) sinh 2ηk = −
[

1
ωi

d(1)k (t)ḋ(1)k (t) + ωi d(2)k (t)ḋ(2)k (t)
]

, (70)

explicit relations occur between the squeeze parameters and the fundamental solutions.
Here, π̂(x) is the canonical momentum conjugated to φ̂(x). Equations (68)–(70) tell us how
squeezing may dynamically arise from the parametric process of the field.

As a consistency check, we substitute the coefficients αk and βk on the right hand side
by Equation (59), and obtain:

|αk|
2 + |βk|

2 = cosh 2ηk , 2αkβ∗k = −eiθk sinh 2ηk . (71)

Actually, Equations (66) and (67) only determine αk, βk up to a phase factor or a
rotation, which we have been ignoring. For example, from (67), we may let

αk =
1

2√ωiω f

[
+i ω f d(1)k (t f ) + ωiω f d(2)k (t f )− ḋ(1)k (t f ) + i ωi ḋ(2)k (t f )

]
, (72)

βk =
1

2√ωiω f

[
−i ω f d(1)k (t f ) + ωiω f d(2)k (t f ) + ḋ(1)k (t f ) + i ωi ḋ(2)k (t f )

]
, (73)

and then we can directly show that Equation (66) is recovered and that

|αk|
2 − |βk|

2 = d(1)k (t f ) ḋ(2)k (t f )− ḋ(1)k (t f )d
(2)
k (t f ) = 1 . (74)

However, in this case αk is not real, as Equation (60) implies.
We may recover the missing phase by returning back the rotation operator that we

have ignored all along. To be more specific, for example, let the rotation operator R̂ be
given by

R̂(Φi) = exp
[

iΦi

(
â†

i âi +
1
2

)]
. (75)

We find R̂†(Φi) â1R̂(Φ1) = â1 eiΦ1 . Then, depending on the order of the rotation
operator and the squeeze operator, we may have either

Ŝ†
2(ζ)R̂†(Φi) â1R̂(Φi)Ŝ2(ζ) = eiΦ1 cosh η â1 − eiΦ1 eiθ sinh η â2 ,

or

R̂†(Φi)Ŝ†
2(ζ) â1Ŝ2(ζ)R̂(Φi) = eiΦ1 cosh η â1 − eiΦ2 eiθ sinh η â2 .

One can see that there is always a phase ambiguity. In both cases, from Equations (60)
and (61), one finds that αk will be complex in general, but actually, one may factor out the
overall phase factor for each mode to render αk real.

Before we proceed further with our analysis, let us examine a few illustrative examples.
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5.1. Case 1

Consider the parametric process, in which the squared frequency ω2(t) varies with
time according to

ω2(t) =


ω2

i , 0 ≤ t ≤ ta ,

ω2
i +

(
ω2

f −ω2
i
) t− ta

tb − ta
, ta ≤ t ≤ tb ,

ω2
f , t ≥ tb ,

(76)

That is, ω2(t) is a piecewise-continuous function of time. The time evolution of d(1)k (t),

d(2)k (t) are shown in Figure 2b,c, where one observes that the oscillation amplitudes of
the two fundamental solutions change by different amounts, implying the occurrence of
quantum squeezing. Notice in Figure 2d that, as t ≥ tb the squeeze parameter ηk becomes a
constant, squeezing is quite small because cosh 2ηk ∼ 1. This small squeezing results from
the slow transition rate in the parametric process. The plots Figure 2e,f show oscillations
of frequency 2ω f , consistent with expectation. However, from these plots it is hard to tell
whether θk is time-independent. We take another approach to show it in this section.
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Figure 2. An example of a parametric process described by Equation (76): (a) the time dependence of

the frequency ω; time evolutions of the two fundamental solutions, (b) d(1)k and (c) d(2)k , and (d–f) the
time dependence of the squeeze parameters. ωi = 3, ω f = 8, ta = 10, and tb = 20 are chosen.

5.2. Case 2

In the second example, we choose a nonmonotonic parametric process,

ω2(t) =


ω2

i , 0 ≤ t ≤ ta ,

ω2
i +

(
ω2

f −ω2
i
)

sin2
(

t− ta

tb − ta

nπ

2

)
, ta ≤ t ≤ tb ,

ω2
f , t ≥ tb .

(77)

Here, n, an odd integer, gives the number of oscillations of the transition process; thus,
the frequency variation is not monotonic. The corresponding plots are shown in Figure 3.
Since both processes, though continuous, are not smooth, it allows us to see when the
transitions start and end. Compared with case 1, the nonmonotonic transition introduces
tumultuous behavior in the fundamental solutions d(i)k during the transition, in Figure 3b,c,
but right after t = tb, the out mode immediately oscillates at frequency ω f . Again, one can
see the time-independence of ηk in the out-region.
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Figure 3. An example of a parametric process described by Equation (77): (a–f) same as in Figure 2.
ωi = 3, ω f = 8, ta = 10, tb = 20, and n = 11 are chosen.

For the simple case we consider here, let us carry out some analysis about the time
dependence of the squeeze parameter in the out-region. We may write d(i)k (t) for t ≥ tb as

d(1)k (t) = d(1)k (tb) cos ω f (t− tb) + d(2)k (tb)
1

ω f
sin ω f (t− tb) , (78)

d(2)k (t) = d(1)k (tb)
1

ω f
sin ω f (t− tb) + d(2)k (tb) cos ω f (t− tb) . (79)

The amplitudes of d(i)k (t) in the out-region are determined by

d(1)k (t) :

[
d(1)2k (tb) +

d(2)2k (tb)

ω2
f

] 1
2

, and d(2)k (t) :

[
d(1)2k (tb)

ω2
f

+ d(2)2k (tb)

] 1
2

, (80)

which, in turn, are determined by the values of the fundamental solution at the end of the
parametric process. We readily find that d(1)k (t)ḋ(1)k (t)− ḋ(1)k (t)d(1)k (t) = 1 for all t even
for the parametric process via the Wronskian of the differential equation that the mode
function satisfies.

According to Equation (67), we can show that

|αk(t)|
2 + |βk(t)|

2 = |αk(tb)|2 + |βk(tb)|2 (81)

for all t ≥ tb. Since |αk|
2 + |βk|

2 is proportional to cosh 2ηk, Equation (81) then shows
that ηk is a time-independent constant for all t ≥ tb. On the other hand, with the help of
Equations (78) and (79), one finds:

1
ω f ωi

ḋ(1)2k (t) +
ωi
ω f

ḋ(2)2k (t)−
ω f

ωi
d(1)2k (t)−ω f ωi d(2)2k (t) = Ak sin(2ω f tb − 2ω f t) + Bk cos(2ω f tb − 2ω f t)

=
√

A2
k + B2

k cos(ϑk + 2ω f tb − 2ω f t) , (82)

with

Ak = 2
[

1
ωi

d(1)k (tb) ḋ(1)k (tb) + ωi d(2)k (t) ḋ(2)k (t)
]

, (83)

Bk =

[
1

ω f ωi
ḋ(1)2k (tb) +

ωi
ω f

ḋ(2)2k (tb)−
ω f

ωi
d(1)2k (tb)−ω f ωi d(2)2k (tb)

]
. (84)
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and

cos ϑk =
Bk√

A2
k + B2

k

, sin ϑk = − Ak√
A2

k + B2
k

. (85)

From Equations (69) and (70), we see that
√

A2
k + B2

k is proportional to sinh 2ηk, and
thus is a time-independent constant. One can immediately identify ϑk in Equations (82)–(84)
to be the same θk in Equations (68)–(70). Finally, we may note that Equation (82) still
looks slightly different from the left hand sides of Equations (68)–(70) in the arguments
of the trigonometric functions. It results from the choice of the out mode function in
Equation (61). The reason for such a choice is that for an observer in the out-region, he
has no reference to identify the origin of time coordinate. In addition, the choice of a fixed
time origin at most amounts to an absolute phase, which in most cases is of no significance.
However, in the current case we are comparing two formalisms; thus, for consistency’s
sake, we may define the origin of the time coordinate in the out-region at tb rather than
0. By only shifting t in Equation (61) to t → t− tb, Equation (82) looks the same as those
in Equations (68)–(70). At this point, we have shown that in the out-region an observer
may report on having experienced a quantum field in a squeezed thermal state, with a
time-independent squeeze parameter.

The squeeze parameter, ηk, we showed earlier is quite small because cosh 2ηk ∼ 1.
This results from the fact that the parametric processes in the previous cases vary mildly.
Now we show a case similar to that in Figure 3 but with a much sharper transition with
ωi = 1, ω f = 100, ta = 3π/2, tb = 3π/2 + 0.05 and n = 1. The plot for cosh 2ηk is shown
in Figure 4. We see in this case that cosh 2ηk = 25.62206 in the out-region, much larger than
the previous two cases. Therefore, it is consistent with the understanding that to generate
large squeezing, the parametric process had better not be adiabatic. This is corroborated by
our prior knowledge of cosmological particle production.
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Figure 4. An example of a parametric process described by Equation (77): (a), (b), and (c) same as in
Figure 3b, c, and d, respectively, but with ωi = 1, ω f = 100, ta = 3π/2, tb = 3π/2 + 0.05, and n = 1.

Finally, as a contrast to the previous piecewise-continuous parametric processes, we
consider a sufficiently smooth ω2(t), such as the thrice-differentiable function ω2(t)

ω2(t) = − (t− ta)4

(tb − ta)7

[
20t3 − 10(7tb − ta) t2 + 4(21t2

b − 7tbta + t2
a) t− (35t3

b − 21t2
bta + 7tbt2

a − t3
a)
]

, (86)

between t = ta and t = tb. The corresponding results are shown in Figure 5. We do not
discern any difference in the generic behavior, so for the quantities of interest in our present
study, the piecewise-continuous ω2(t) suffices.
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Figure 5. An example of a parametric process described by Equation (86): (a–f) same as in Figure 2.
with ωi = 2, ω f = 10, ta = 3, and tb = 4 are chosen.

The fact that the squeeze parameter becomes time-independent in the out-region
implies that this result is time-translation-invariant. To be more precise, if we shift the
parametric process along the time axis, then as long as the conditions that (1) the observation
time t is still in the out-region of the shifted process and (2) the initial time ti remains in
the in-region of the shifted process are satisfied, the observer at time t will still see the
same squeeze parameter. In other words, the observer in the out-region cannot extract
from the squeeze parameter any information about when the parametric process starts
or ends. At first, it sounds odd that there exists such a time-translation invariance for
a nonequilibrium, nonstationary process. We show this in Appendix D; however, after
seeing these examples, this result may not appear that dubious. The full evolution from
the initial time ti to the observation time t is not invariant under time translation, but after
the parametric process has ended at tb, the mode functions in the out-region reverts to a
sinusoidal time dependence. The time translation in a sinusoidal function of time amounts
to a phase shift. Thus, if the quantity of interest is independent of this phase shift, it appears
to possess time-translation invariance.

Although in the current configuration the detector in the out-region will sense the
same squeeze parameter when the parametric process is shifted along the time axis, the
measured results in the detector still depend on the duration tb − ta and the functional
form of the process. Actually, this can be expected from Equations (68)–(70), where the
squeeze parameters are expressed in terms of the fundamental solutions, which in turn
depend on the functional form of the parametric process in their equation of motion.

For illustration, Figure 6a shows the dependence of the squeeze parameter, ηk, on the
duration of the parametric process, given by Equation (76). We fix the starting time, ta, of
the parametric process and the moment t the measurement in the out-region is performed.
We find that the squeeze parameter ηk, defined in Equation (68), is oscillatory but decreases
with increasing ending time, tb. Except for the small oscillations, the curve in Figure 6a
gives the general trend that the squeezing (as manifested, e.g., in particle pair production),
is subdued with a slower transition rate or longer transition duration tb − ta. This example
shows that this kind of parametric process gives a lower production of particles as it moves
toward the adiabatic regime. The mild oscillations may be related to the kinks at ta and
tb due to the nonsmoothness of ω(t). This may be seen from the observation that the
oscillations, as shown in the blow-ups in Figure 6a, appear shallower with larger tb − ta
because the kinks are less abrupt. This argument also find its support from Figure 7b,d.
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Figure 6. (a) The tb-dependence of the squeeze parameter, ηk for the parametric process described
by Equation (76) with ωi = 3, ω f = 8, ti = 0, and ta = 10. A fictitious detector is placed at t = 20,
and tb varies from 10.5 to 19.5. For comparison, the time dependence of ηk when (b) tb = 10.5 and (c)
tb = 15 are shown. These two cases are highlighted in (a) by red circles.
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Figure 7. The dependence of the squeeze parameter η on the functional form of ω2(t). The functional
form of the parametric process is described by (a) Equation (76) and (b) Equation (86). The same
Equation (77) is used with (c) n = 11 and (d) n = 1. The relevant parameters are ωi = 3, ω f = 8,
ti = 0, and ta = 10. The measurement is carried out at t = 20, and tb varies from 10.5 to 15.

In Figure 7, the dependence of the squeeze parameter ηk on the functional form
of the parametric process is shown. We choose three different parametric processes of
ω2(t) for examples. In Figure 7a, the process has the piecewise-continuous form given by
Equation (76), so it gives the same result as Figure 6a. Figure 7b is described by the smooth
transition, Equation (86). We have the same process, Equation (77), for Figure 7c,d, but
with different choices of n. We choose n = 11 for Figure 7c and n = 1 for Figure 7d. Thus,
in Figure 7c, the transition does not monotonically vary with time.

Since both Figure 7b,d are associated with smooth parametric processes, when we
prolong the duration of the parametric processes by fixing ta and increasing tb, we see
that the value of ηk monotonically decreases without any ripples. Thus, together with the
behavior of the curve in Figure 6a, they imply that the ripples in Figure 7a may originate
from the nonsmoothness of the parametric process at the transition times ta and tb.

Among the plots in Figure 7, Figure 7c shows a more interesting behavior. The
transition described by Equation (77) with n = 11 is sinusoidal, as shown in Figure 3a.
The squeeze parameter ηk in Figure 7c then reveals more structures, and may signify the
presence of resonance, shown by a large peak. It seems to imply that the particle production
can be greatly enhanced if the transition duration is tuned to the right value for fixed ωi
and ω f , as in parametric resonance. This may constitute a mechanism to generate stronger
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squeezing, in addition to the common one in a runaway setting [23,24]. Another unusual
feature is that ηk in Figure 7c is not significantly reduced when we have a larger tb.

Actually, this resonance feature can be traced back to parametric instability. We write
the equation of motion for a parametric oscillator with the frequency given by Equation (77)
into the canonical form

x′′(τ) +
[
a− 2q cos(2τ)

]
x(τ) = 0 , (87)

where a prime represents taking the derivative with respect to τ, Ω t = 2τ, and

a =
4A2

Ω2 , q =
2B2

Ω2 , Ω =
nπ

tb − ta
, A2 =

ω2
f + ω2

i

2
, B2 =

ω2
f −ω2

i

2
. (88)

Now, comparing the stability diagram Figure 8a of Equation (87) with Figure 7c,
one immediately notices that the portion of the curve in Figure 8b that corresponds to
exceptionally high squeezing is essentially located within the unstable region (white area)
of the stability diagram in Figure 8a. Thus, the large squeezing in the mode driven by a
nonmonotonic ω(t) is caused by instability in parametric resonance.
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Figure 8. Comparison between the stability diagram of Equation (87) (a) with Figure 7c (b). The
motion of the parametric oscillator (87) is stable in color-shaded regions. We highlight a few peaks
and valleys of the curve in (b), and the corresponding points are shown in the stability diagram (a).
The straight line in (a) with varying hues of red, yellow, green, cyan, blue, and magenta corresponds
to the time tb = 10.5 to 15 in (b). The parameters in this plot are the same as in Figure 7.

The above examples illustrate a point that the dependence of the squeeze parameter ηk
on the duration of the parametric process does reflect qualitative features of the parametric
process. Actually, we can apply the same idea to the spectral dependence of the squeeze
parameter for various functional forms of the parametric processes. These will serve as
templates from which we may extract qualitative information about the parametric process
that the quantum field has experienced.

6. Summary

A major task of theoretical cosmology is to find ways to deduce the state of the early
universe from relics observed today such as features of primordial radiation and matter
contents. In addition to particle creation at the Planck time and structure formation after
the GUT (grand unified theory) time, we add here another fundamental quantum process:
quantum radiation from atoms induced by of quantum fields.

A massless quantum field in Minkowski space is subjected to a parametric process
which varies the frequencies of the normal modes of the field from one constant value to
another over a finite time interval. The initial (in-) state of the field will become squeezed
after the process. In the out-region we couple an atom to this field in the out-state; the
response of the atom certainly depends on this squeezing. Meanwhile, the radiation
generated by the interacting atom will send out signals outwards, such that an observer or
a probe at a much later time may still be able to identify the squeezing via the signatures in
the radiation.
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Once we have identified the squeezing, locally or remotely, we then ask how the
squeezing may depend on the details of the parametric process the field had been subjected
to. If we can work out templates that relate these quantities, then measurements of certain
features of squeezing can tell us something about the parametric process.

The salient points in our results are summarized below. In the first part of this paper
we showed the following:

• The radiation field at a location far away from the atom looks stationary; its nonsta-
tionary component decays with time exponentially fast.

• The net energy flow cancels at late times, similar to the case discussed in Ref. [2]. These
features are of particular interest considering that the atom that emits this radiation
is coupled to a squeezed field, which is nonstationary by nature. However, they are
consistent with the fact that the atom’s internal dynamics relaxes in time.

• This implies that we are unable to measure the extent of squeezing by measuring the
net radiation energy flow at a location far away from the atom.

• On the other hand, one can receive residual radiation energy density at late times,
which is a time-independent constant and is related to the squeeze parameter. How-
ever, it is of a near-field nature, so the observer cannot be located too far away from
the atom.

Note that there is always an ambient free component of the same squeezed quantum
field everywhere, in addition to the above radiation component generated by the atom’s
internal motion.

In the second part of this paper we focused on the dependence of the squeeze parame-
ter on the parametric process and obtained these results:

• Formally it can be shown that the squeeze parameter depends on the evolution of the
field in the parametric process.

• In the current configuration, for a given parametric process, the squeeze parameter
depends only on the duration of the process; it does not depend on the starting or the
ending time of the process.

• In general, for a monotonically varying process, the value of the squeeze parameter
decreases with increasing duration of the process.

• This implies that, for an adiabatic parametric process, the squeezing tends to be quite
small, but it can be quite significant for nonadiabatic parametric processes. These
results are consistent with studies of cosmological particle creation in the 1970s as
parametric amplification of vacuum fluctuations.

• If the parametric process changes with time sinusoidally, then the dependence of the
squeeze parameter on the duration of the process shows interesting additional struc-
tures. For certain lengths of the process, the squeeze parameter can have unusually
large values.

• This nonmonotonic behavior turns out to be related to parametric instability. The
resulting large squeeze parameter is caused by the choice of the parameter that falls
within the unstable regime of the parametric process.

Our results in this second part indicate that not much information about a monotonic
parametric process can be gleaned from the squeeze parameter. On the other hand, for a
nonmonotonic parametric process, the squeeze parameter shows nontrivial dependence on
the duration of the process. The latter is expected to be the typical case in nature in which
various scales are involved in a transition. Moreover, to conform to realistic measurements,
we can apply similar considerations to examine the mode dependence of the squeeze
parameter. Thus, the current scenario seems to offer a viable means to extract partial
information about the parametric process a quantum field has undergone.

As a final remark, we comment on applying the discussions in Section 4 to the case of
the atom coupled to quantized electromagnetic fields. To begin with, in conventional sense,
such a configuration has supra-Ohmic, Markovian dynamics. It is inherently unstable, as
discussed in Ref. [25]. It has runaway solutions, so it makes no sense to discuss the late-time
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behavior, relaxation, energy balance, or the fluctuation–dissipation relation of such a system.
Although we may render such a system to have stable dynamics by resorting to order
reduction [26] via the critical manifold argument, this approach is not satisfactory from
the viewpoint of open systems because order reduction only asymmetrically changes the
behavior of the dissipation on the atom side; it does not accordingly modify the fluctuation
noise force on the atom. Thus, the resulting nonequilibrium fluctuation–dissipation relation
associated with the atom’s internal dynamics will not take the elegant form we usually
see for the Ohmic, Markovian dynamics. Furthermore, this relation will depend on the
parameters of the reduced system, and thus loses its universality for interacting linear
systems and for some nonlinear systems.

To restore the stable dynamics of the atom’s internal dynamics [25] and the beauty
of the associated nonequilibrium fluctuation–dissipation relation, it is probably easier if
we generalize the Markovian spectrum of the quantized electromagnetic field to the non-
Markovian one. However, this introduces additional complexity to the analysis presented
in Section 4 because the radiation field will not have a simple local (apart from retardation)
form similar to Equation (47). Thus, it is not clear yet whether the rather general prop-
erties we expounded in Section 4 for a quantum scalar field also convey to a quantized
electromagnetic field; this is a topic saved for future investigation.
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Appendix A. Two-Mode Squeezed State

Here, we outline the properties of the two-mode squeezed operator Ŝ2(ζ) associated
mode 1 and 2,

Ŝ2(ζ) = exp
[
ζ∗ â1 â2 − ζ â†

1 â†
2

]
, (A1)

such that the two-mode squeezed thermal state is defined by

ρ̂TMST = Ŝ2(ζ) ρ̂β Ŝ†
2(ζ) . (A2)

where ρ̂β is a thermal state. The creation and annihilation operators satisfy the standard
commutation relation [â, â†] = 1. It is convenient to place the squeeze parameter ζ into a
polar form ζ = η eiθ , with η ∈ R+ and 0 ≤ θ < 2π. We thus have

Ŝ†
2 â1 Ŝ2 = cosh η â1 − e+iθ sinh η â†

2 , Ŝ†
2 â2 Ŝ2 = cosh η â2 − e+iθ sinh η â†

1 (A3)

such that

〈â2
i 〉TMST = Tr

{
ρβ Ŝ†

2 â2
i Ŝ2

}
= 0 , 〈â†2

i 〉TMST = 0 , (A4)

〈â1 â†
1〉TMST =

(
n̄1 + 1

)
cosh2 η + n̄2 sinh2 η , 〈â†

1 â1〉TMST = n̄1 cosh2 η +
(
n̄2 + 1

)
sinh2 η , (A5)

〈â2 â†
2〉TMST =

(
n̄2 + 1

)
cosh2 η + n̄1 sinh2 η , 〈â†

2a2〉TMST = n̄2 cosh2 η +
(
n̄1 + 1

)
sinh2 η , (A6)

〈â1 â2〉TMST = − e+iφ

2
(
n̄1 + n̄2 + 1

)
sinh 2η , 〈â†

1a†
2〉TMST = − e−iφ

2
(
n̄1 + n̄2 + 1

)
sinh 2η , (A7)
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where n̄i is the mean particle number of the thermal state associated with mode i,

n̄i = Tr
{

ρ̂β â†
i âi
}

(A8)

It is interesting to compare with the single-mode squeezed thermal state ρ̂ST, defined by

ρ̂ST = Ŝ(ζ) ρ̂β Ŝ†(ζ) . (A9)

Here, Ŝ(ζ) is the squeezed operator,

Ŝ(ζ) = exp
[1

2
ζ∗ â2 − 1

2
ζ â†2

]
. (A10)

We then find:

〈â〉ST = 0 = 〈a†〉ST , (A11)

〈â2〉ST = −e+iθ sinh 2η
(

n̄ +
1
2

)
, 〈a†2〉ST = −e−iθ sinh 2η

(
n̄ +

1
2

)
, (A12)

〈â† â〉ST = cosh 2η
(

n̄ +
1
2

)
− 1

2
= cosh 2η n̄ + sinh2 η , (A13)

where n̄ is the mean particle number of the thermal state. Both the two single-mode
squeezed state and the two-squeezed state are connected. We first write two modes in
terms of their normal modes i = ±,

â1 =
â+ + â−√

2
, â2 =

â+ − â−√
2

, (A14)

with [â+, â−] = 0. Then we can write the two-mode squeeze operator, Ŝ2 in (A1), as

Ŝ2 = exp
[ ζ∗

2
(
â+ + â−

)(
â+ − â−

)
− ζ

2
(
â†
+ + â†

−
)(

â†
+ − â†

−
)]

= exp
[ ζ∗

2
â2
+ −

ζ

2
â†2
+

]
× exp

[
− ζ∗

2
â2
− +

ζ

2
â†2
−

]
= Ŝâ+(ζ)× Ŝâ−(−ζ) . (A15)

That is, in terms of the normal modes, it can be decomposed into a product of two
single-mode squeezed operators.

In the current setting, the connection is even closer because the pair of modes in
Ŝ2 have the opposite momenta ±k. Since the two-mode squeeze operator, Ŝ2 in (A1)
symmetrically contains the annihilation and the creation operators of both modes, during
the mode counting, contributions from each pair (k,−k) will appear twice, and the resulting
expressions may look similar to that given by two single-mode squeezed state. For example,
let us compute the Hadamard function of the scalar field φ in the two-mode squeezed
thermal state in spatially isotropic spacetime,

G(φ)
H,0(x, x′) =

∫ d3k

(2π)
3
2

1√
2ω

∫ d3k′

(2π)
3
2

1√
2ω′

[
1
2
〈
{

âk, âk′
}
〉TMST eik·x+ik′ ·x′ e−iωt−iω′t′

+
1
2
〈
{

âk, â†
k′
}
〉TMST eik·x−ik′ ·x′ e−iωt+iω′t′ + H.C.

]
=
∫ d3k

(2π)3
1

2ω

[
1
2
〈
{

âk, âk
}
〉TMST eik·(x+x′)e−iω(t+t′) +

1
2
〈
{

âk, â−k
}
〉TMST eik·(x−x′)e−iω(t+t′)

+
1
2
〈
{

âk, â†
k
}
〉TMST eik·(x−x′)e−iω(t−t′) +

1
2
〈
{

âk, â†
−k
}
〉TMST eik·(x+x′)e−iω(t−t′) + H.C.

]
=
∫ d3k

(2π)3
1

2ω
eik·(x−x′)

[(
nω +

1
2
)

cosh 2ηω e−iω(t−t′) − eiθω
(
nω +

1
2
)

sinh 2ηω e−iω(t+t′) + H.C.
]

, (A16)
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with ω = |k| and the help of Equations (A4)–(A7). This is the same as the Hadamard
function of the field in the squeezed thermal state, consistent with Equation (A15).

Appendix B. Late-Time Behavior of 〈∆T̂µν〉
Appendix B.1. Late-Time Energy Flux Density 〈∆T̂tr〉

Here, we examine the late-time net radiation flux of the field at distance r sufficiently
far away from the atom, so that only the dominant contribution, independent r, is of our
interest. The energy flux density is given by

〈∆T̂rt(x)〉 = lim
x′→x

∂2

∂r∂t′
[

G(φ)
H (x, x′)− G(φ)

H,0(x, x′)
]

. (A17)

Let us first look at the stationary component.

Appendix B.1.1. Stationary Component 〈∆T̂tr〉ST

We assume that t� r, but place no other restrictions on r for the moment. Following
the decomposition in Equation (24), the stationary part of the contribution purely from the
radiation field is given by

lim
x′→x

∂2

∂r∂t′
1
2
〈
{

φ̂BR(x), φ̂BR(x′)
}
〉ST = −e2

∫ ∞

−∞

dω

2π
ω2 G̃(χ)

H (ω) |G̃(φ)
R,0 (x; ω)|2 , (A18)

with the help of

∂

∂r
G̃(φ)

R,0 (x; ω) =
(

iω− 1
r

)
G̃(φ)

R,0 (x; ω) , (A19)

∂

∂r
G̃(φ),ST

H,0 (x; ω) = cosh 2η coth
βω

2

[
ω Re G̃(φ)

R,0 (x; ω)− 1
r

Im G̃(φ)
R,0 (x; ω)

]
, (A20)

where the stationary part of the free-field Hadamard function is

G̃(φ),ST
H,0 (x, 0; ω) ≡ G̃(φ),ST

H,0 (x; ω) = cosh 2η coth
βω

2
sin ωr

4πr
. (A21)

To arrive at Equation (A18), we observe that the term proportional to r−1 is odd in
ω, thus, vanishing, and that Re G̃(χ)

R (ω) is an even function of ω. At time greater than the
relaxation time scale we may make the identification

G̃(χ)
H (ω) = cosh 2η coth

βω

2
Im G̃(χ)

R (ω) , (A22)

by the nonequilibrium fluctuation–dissipation relation [18,19,22] of the internal dynamics
of the atom if it is initially coupled to a squeezed thermal field.

On the other hand, for the cross-term, containing the correlation between the radiation
field and the free field at large distance from the atom, its stationary part is

lim
x′→x

∂2

∂r∂t′
1
2

[
〈
{

φ̂h(x), φ̂BR(x′)
}
〉ST + 〈

{
φ̂BR(x), φ̂h(x′)

}
〉ST

]
= −i e2

∫ ∞

−∞

dω

2π
ω2 ρ(ST)(ω) G̃(χ)

R (ω) |G̃(φ)
R,0 (x; ω)|2 . (A23)

Hereafter, it is convenient to introduce the shorthand notations

ρ(ST)(ω) = cosh 2η coth
βω

2
, and ρ(NS)(ω) = sinh 2η coth

βω

2
. (A24)
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Since the contribution from Re G̃(χ)
R (ω) is an even function of ω, one immediately

notices that it is the opposite of Equation (A18) by Equation (A22), and thus cancels with
Equation (A18). We already know from the case of the unsqueezed thermal state that
the corresponding contributions of Equations (A18) and (A23) cancel with one another.
Therefore, here, we showed that at late times the stationary part of the net energy flux
density far away from the atom vanishes even though the field is initially in the squeezed
thermal state, a nonstationary configuration.

Here, it is worth emphasizing the significance of vanishing stationary component of
the net radiation flux. This is a unique feature of self-consistent quantum dynamics. The
cancellation between Equations (A18) and (A23) is not possible if the radiated field φR(x)
is not correlated with the free field φh(x). This correlation is established because the atom
that sends out the radiation field is driven by a free field, as seen by the Langevin equation
(7). It still holds when the field state is a vacuum state [2], so a pure classical system will
not have such correlation. Secondly, our system is distinct from the classical driven dipole
because the latter has a net outward radiation flux supplied by the external driving agent
and is then independent of the field state. This is best seen from the component (A18) of
the flux that is solely composed of the radiation field. This flux is field-state-dependent
because the internal dynamics of the atom are driven by the quantum fluctuations of the
field, rather than an external agent.

Appendix B.1.2. Nonstationary Component 〈∆T̂tr〉NS

Now we turn to the nonstationary contribution in 〈∆T̂rt(x)〉. The component purely
from the radiation field is given by

lim
x′→x

∂2

∂r∂t′
1
2
〈
{

φ̂BR(x), φ̂BR(x′)
}
〉NS

= i e4
∫ ∞

0

dω

2π

ω2

4π
ρ(NS)(ω)

(
iω− 1

r

)[
G̃(χ)

R (ω) G̃(φ)
R,0 (x; ω)

]2
e−i2ωt+iθ + C.C. , (A25)

while the counterpart from the cross-term is

lim
x′→x

∂2

∂r∂t′
1
2

[
〈
{

φ̂h(x), φ̂BR(x′)
}
〉NS + 〈

{
φ̂BR(x), φ̂h(x′)

}
〉NS

]
(A26)

= i e2
∫ ∞

0

dω

2π
ω ρ(NS)(ω) G̃(χ)

R (ω) G̃(φ)
R,0 (x; ω)

[
ω G̃(φ)

R,0 (x; ω)− 2
r

Im G̃(φ)
R,0 (x; ω)

]
e−i2ωt+iθ + C.C. .

Contrary to the stationary contribution, in general, Equation (A25) does not cancel
Equation (A26). This can be explicitly shown by examining the sum of the expressions
which are proportional to ω inside the curly brackets in both equations. We find that these
terms together give

i e2
∫ ∞

0

dω

2π
ω2ρ(NS)(ω) G̃(χ)

R (ω)
[

G̃(φ)
R,0 (x; ω)

]2[
i e2 ω

4π
G̃(χ)

R (ω) + 1
]

e−i2ωt+iθ + C.C.

= i e2
∫ ∞

0

dω

2π
ω2ρ(NS)(ω) Re G̃(χ)

R (ω)
G̃(χ)

R (ω)

G̃(χ)∗
R (ω)

[
G̃(φ)

R,0 (x; ω)
]2

e−i2ωt+iθ + C.C. , (A27)

where we use the fact that e2 = 8πγm and

Im G̃(χ)
R (ω) = 2mγω |G̃(χ)

R (ω)|2 . (A28)
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Apparently, Equation (A27) does not vanish in general. If the squeeze angle θ is really
a mode- and time-independent constant, we may set θ = 0 without loss of generality and
further simplify the nonstationary contribution (A27), in 〈∆T̂rt(x)〉 to

i e2
∫ ∞

0

dω

2π
ω2ρ(NS)(ω)

[
G̃(φ)

R,0 (x; ω)
]2 G̃(χ)

R (ω)

G̃(χ)∗
R (ω)

Re G̃(χ)
R (ω) e−i2ωt . (A29)

Equation (A27), or the special case Equation (A29), in general, is time-dependent and
is not identically zero.

For completeness, let us write down the sum of the terms proportional to 1/r in the
square brackets in Equations (A25) and (A26), which is

− i
e2

r

∫ ∞

0

dω

2π
ω ρ(NS)(ω) G̃(χ)

R (ω) G̃(φ)
R,0 (x; ω)

[
e2 ω

4π
G̃(χ)

R (ω) G̃(φ)
R,0 (x; ω) + 2 Im G̃(φ)

R,0 (x; ω)
]

e−i2ωt+iθ

= −e2

r

∫ ∞

0

dω

2π
ω ρ(NS)(ω)

{[
G̃(φ)

R,0 (x; ω)
]2 G̃(χ)

R (ω)

G̃(χ)∗
R (ω)

Re G̃(χ)
R (ω) + G̃(χ)

R (ω) |G̃(φ)
R,0 (x; ω)|2

}
e−i2ωt+iθ , (A30)

plus its complex conjugate. Here, again, we used Equation (A28) to recast the expression
into a more compact form. This will be useful later to check the consistency via the
continuity equation.

The sum of Equations (A25) and (A26) gives the only contribution of the net radiation
flux that is likely to survive after the relaxation time scale. However, in Appendix C, we
can argue that although Equations (A25) and (A26) do not cancel in general, their sum
still decays with time and, furthermore, it actually falls off to zero exponentially fast,
proportional to e−2γt.

Thus, combining the discussions about the stationary component, we show that at
late times no net radiation flux exudes to spatial infinity from a static atom even though
the internal degree of freedom of the atom is driven by the quantum fluctuations of the
squeezed field caused by its parametric process. At late times it leaves no trace of detectable
signal to a detector at distance much greater than the typical scales in the atom’s internal
dynamics, except for the case of extremely large squeezing where we might have the
chance to see a trace of the net flux since it will take a longer time to decay. However,
the information of the squeeze parameter η can still be read out from the asymptotic
equilibrium state of the atom’s internal dynamics.

Appendix B.2. Late-Time Field Energy Density 〈∆T̂tt〉
The energy density is given by

〈∆T̂tt(x)〉 = lim
x′→x

1
2

(
∂2

∂t∂t′
+

∂2

∂r∂r′

)[
G(φ)

H (x, x′)− G(φ)
H,0(x, x′)

]
. (A31)

That is, we subtract off the energy density of the free field in the squeezed state, and
Equation (A31) tells us the change in energy density due to the atom–field interaction.

Appendix B.2.1. Stationary Component 〈∆T̂tt〉ST

We first consider the stationary component of Equation (A31). Following the decom-
position (24), the part purely caused by the radiation field is given by

lim
x′→x

1
2

(
∂2

∂t∂t′
+

∂2

∂r∂r′

)
1
2
〈
{

φ̂BR(x), φ̂BR(x′)
}
〉ST

= e2
∫ ∞

−∞

dω

2π
ρ(ST)(ω)

(
ω2 +

1
2r2

)
Im G̃(χ)

R (ω) |G̃(φ)
R,0 (x; ω)|2 . (A32)

The contribution from the cross-term is then
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lim
x′→x

1
2

(
∂2

∂t∂t′
+

∂2

∂r∂r′

)
1
2

[
〈
{

φ̂h(x), φ̂BR(x′)
}
〉ST + 〈

{
φ̂BR(x), φ̂h(x′)

}
〉ST

]
(A33)

= −e2
∫ ∞

−∞

dω

2π
ρ(ST)(ω)

{(
ω2 +

1
2r2

)
|G̃(φ)

R,0 (x; ω)|2 Im G̃(χ)
R (ω) +

ω

r
Re
[

G̃(χ)
R (ω) G̃(φ) 2

R,0 (x; ω)
]

− 1
2r2 Im

[
G̃(χ)

R (ω) G̃(φ) 2
R,0 (x; ω)

]}
,

with the help of Equations (A19) and (A20) to re-express the term

2 Re
[

G̃(χ)
R (ω) G̃(φ)

R,0 (x; ω)
]

Im G̃(φ)
R,0 (x; ω) = −|G̃(φ)

R,0 (x; ω)|2 Im G̃(χ)
R (ω) + Im

[
G̃(χ)

R (ω) G̃(φ) 2
R,0 (x; ω)

]
.

Adding both contributions together gives

〈∆T̂tt〉ST = −e2
∫ ∞

−∞

dω

2π
ρ(ST)(ω)

{
ω

r
Re
[

G̃(χ)
R (ω) G̃(φ) 2

R,0 (x; ω)
]
− 1

2r2 Im
[

G̃(χ)
R (ω) G̃(φ) 2

R,0 (x; ω)
]}

, (A34)

at late times and at large distance away from the atom. The dominant contribution of
the stationary component of the local field energy density vanishes, so Equation (A34) is
subdominant since it is proportional to 1/r3. It comes from the correlation between the
radiation field and the free field at the location far away from the atom, and it decays faster
with r. Note that there are two type of 1/r3 contributions in the cross-terms (A33) but
one of them cancels with its counterpart in Equation (A32). The residual energy density
(A34) has a relatively short range by nature. We note that it is proportional to e2, which is
proportional to the damping constant, γ. Since this is a time-independent constant, it means
that this may be an unambiguous aftereffect of the transient peregrinating radiation field.

Next, we turn to the nonstationary component.

Appendix B.2.2. Nonstationary Component 〈∆T̂tt〉NS

We first examine the late-time contribution purely from the radiation field,

lim
x′→x

1
2

(
∂2

∂t∂t′
+

∂2

∂r∂r′

)
1
2
〈
{

φ̂BR(x), φ̂BR(x′)
}
〉NS

= e4
∫ ∞

0

dω

2π

ω

4π
ρ(NS)(ω)

(
ω2 + i

ω

r
− 1

2r2

) [
G̃(χ)

R (ω) G̃(φ)
R,0 (x; ω)

]2
e−i2ωt+iθ + C.C. . (A35)

On the other hand, the corresponding contribution from the cross-term gives

lim
x′→x

1
2

(
∂2

∂t∂t′
+

∂2

∂r∂r′

)
1
2

[
〈
{

φ̂h(x), φ̂BR(x′)
}
〉NS + 〈

{
φ̂BR(x), φ̂h(x′)

}
〉NS

]
= −e2

∫ ∞

0

dω

2π
ρ(NS)(ω)

{
i
(

ω2 + i
ω

r

)
G̃(χ)

R (ω)
[

G̃(φ)
R,0 (x; ω)

]2

+
1
r2 G̃(χ)

R (ω) G̃(φ)
R,0 (x; ω) Im G̃(φ)

R,0 (x; ω)
}

e−i2ωt+iθ + C.C. , (A36)

Now we use the same trick (A28) to combine both contributions, and we obtain:

〈∆T̂tt〉NS = −i e2
∫ ∞

0

dω

2π
ρ(NS)(ω)

{
−i
(

ω2 + i
ω

r
− 1

2r2

)[
G̃(φ)

R,0 (x; ω)
]2 G̃(χ)

R (ω)

G̃(χ)∗
R (ω)

Re G̃(χ)
R (ω)

+
1

2r2 G̃(χ)
R (ω) |G̃(φ)

R,0 (x; ω)|2
}

e−i2ωt+iθ + C.C. . (A37)

The dominant term in Equation (A37) has the same form as Equation (A27), and thus
will vanish at late times at distance far away from the atom.
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Therefore, at late times, 〈∆T̂tt〉 settles down to a constant value whose value decays
similar to 1/r3 away from the atom.

Appendix B.3. Continuity Equation

Here, in passing, we would like to examine the consistency of our results of the
nonstationary components of 〈∆T̂µt〉 in terms of the continuity equation ∂µTµt = 0. It turns
out convenient to list the previous results for the relevant components

〈T̂rt〉(RR)
NS = i e4

∫ ∞

0

dω

2π

ω2

4π
ρ(NS)(ω)

(
iω− 1

r

)[
G̃(χ)

R (ω) G̃(φ)
R,0 (x; ω)

]2
e−i2ωt+iθ + C.C. ,

〈T̂rt〉(HR)
NS = i e2

∫ ∞

0

dω

2π
ω ρ(NS)(ω) G̃(χ)

R (ω) G̃(φ)
R,0 (x; ω)

[
ω G̃(φ)

R,0 (x; ω)− 2
r

Im G̃(φ)
R,0 (x; ω)

]
e−i2ωt+iθ + C.C. ,

〈T̂tt〉(RR)
NS = e4

∫ ∞

0

dω

2π

ω

4π
ρ(NS)(ω)

(
ω2 + i

ω

r
− 1

2r2

) [
G̃(χ)

R (ω) G̃(φ)
R,0 (x; ω)

]2
e−i2ωt+iθ + C.C. ,

〈T̂tt〉(HR)
NS = −e2

∫ ∞

0

dω

2π
ρ(NS)(ω) G̃(χ)

R (ω)
{

i
(

ω2 + i
ω

r

)[
G̃(φ)

R,0 (x; ω)
]2

+
1
r2 G̃(φ)

R,0 (x; ω) Im G̃(φ)
R,0 (x; ω)

}
e−i2ωt+iθ + C.C. .

The superscript “RR” represents the contributions purely from the radiation field such
as Equations (A25) and (A35), while the superscript “HR” denotes those from the cross-terms
such as Equations (A26), and (A36). For our configuration, we do not have Tϑt and Tϕt
where ϑ and ϕ are, respectively, the polar angle, and azimuthal angle, so, explicitly, the
continuity equation can be written in the form

∂µT̂µt = 0 = ∂tTtt −
1
r2 ∂r

(
r2Trt

)
. (A38)

Thus, we find:

1
r2 ∂r

(
r2〈T̂rt〉(RR)

NS

)
= −2i e4

∫ ∞

0

dω

2π

ω2

4π
ρ(NS)(ω)

(
ω2 + i

ω

r
− 1

2r2

)[
G̃(χ)

R (ω) G̃(φ)
R,0 (x; ω)

]2
e−i2ωt+iθ + C.C. ,

which is equal to ∂t〈T̂tt〉(RR)
NS , and

1
r2 ∂r

(
r2〈T̂rt〉(HR)

NS

)
= 2e2

∫ ∞

0

dω

2π
ρ(NS)(ω) G̃(χ)

R (ω)
{

i
(

ω2 + i
ω

r

)[
G̃(φ)

R,0 (x; ω)
]2

+
1
r2 G̃(φ)

R,0 (x; ω) Im G̃(φ)
R,0 (x; ω)

}
e−i2ωt+iθ + C.C. .

It is exactly ∂t〈T̂tt〉(HR)
NS . Thus, the continuity equation is satisfied.

Appendix C. Late-Time Behavior of the Nonstationary Contribution in 〈∆T̂rt〉
It turns out that the nonstationary contribution in 〈∆T̂rt(x)〉 still decays with time.

To begin with, it proves useful to quote the late-time expressions of the energy exchange
between the atom and the surrounding field [2,22]. For times greater than the relation time,
the nonstationary contribution of the energy flow into the atom from the field has the form,

P(NS)
ξ (t) = i e2

∫ ∞

0

dω

2π

ω2

4π
sinh 2η coth

βω

2

{
G̃(χ)

R (ω) e−i2ωt+iθ −C.C.
}

, (A39)

and the corresponding contribution of the energy flow out of the atom due to friction is

P(NS)
γ (t) = −e4

∫ ∞

0

dω

2π

ω3

(4π)2 sinh 2η coth
βω

2

{[
G̃(χ)

R (ω)
]2

e−i2ωt+iθ + C.C.
}

. (A40)
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For comparison, let us place the terms proportional to ω inside of the curly brackets of
(A26) and (A25) here,

(A26) : i e2
∫ ∞

0

dω

2π

ω2

(4π)2r2 sinh 2η coth
βω

2

{
G̃(χ)

R (ω) e−i2ω(t−r)+iθ −C.C.
}

, (A41)

(A25) : − e4
∫ ∞

0

dω

2π

ω3

(4π)3r2 sinh 2η coth
βω

2

{[
G̃(χ)

R (ω)
]2

e−i2ω(t−r)+iθ + C.C.
}

. (A42)

One can see correspondence between Equations (A39) and (A41), as well as between

Equations (A40) and (A42). For example, the integrand of Equation (A41) is
ei2ωr

4πr2 times
the integrand of Equation (A39). The same applies to the pair of Equations (A40)–(A42).
For a fix r and at times t � r, we may shift or redefine t in Equations (A41) and (A42) by
t− r → t such that the integrals in both equations are essentially proportional to those in
Equations (A39) and (A40). We numerically showed in Ref. [19] that Equations (A39) and (A40)
vanish as t→ ∞, so we conclude that the terms proportional to ω inside of the curly brack-
ets of Equations (A25) and (A26) will also vanish at late times. For example, as shown in
Figure A1, generated by numerical calculations, the contribution in Equation (A25) actually
decays exponentially fast to zero.

15 20 25 30

- 1.5×10- 6

- 1.×10- 6

- 5.×10- 7

5.×10- 7

1.×10- 6

Figure A1. The time -dependence of Equation (A25), one of the nonstationary components of the
radiation flux. The curve falls off to zero exponentially fast. Here, β−1 = 0, γ = 0.2, r = 10, and
ωR = 1 are chosen.

For terms that are proportional to 1/r inside of the curly brackets of
Equations (A26) and (A25), we immediately see that if we take the time derivative of
Equation (A25), we obtain an expression which is 2/r times Equation (A42). Likewise, the
time derivative of Equation (A26) gives

2
r
× i e2

∫ ∞

0

dω

2π

ω2

(4π)2r2 sinh 2η coth
βω

2

{
G̃(χ)

R (ω)
[
e−i2ω(t−r)+iθ − e−i2ωt+iθ

]
−C.C.

}
. (A43)

Following the previous arguments, for a fixed r, it vanishes in the limit t → ∞ too.
Thus, we have demonstrated that the time derivatives of the terms proportional to 1/r
inside of the curly brackets of Equations (A26) and (A25) vanish, so these terms must be
constants for sufficiently large time. On the other hand, these terms are time-dependent
and are not sign-definite, so the asymptotic constants must be zero.

Placing these results together, we reach the conclusion that the nonstationary terms of
the net radiation flux vanish eventually at large distance away from the atom. However,
this does tell us how slowly the nonstationary terms decay. Actually, at least for the
zero-temperature limit β → ∞, we can carry out the above integrals analytically, and
the brute-force calculations show that for fixed r, these integrals give results that decay
exponentially fast to zero in a form proportional to sinh 2η e−2γt. Thus, at late times, no net
radiation energy flux leaks to the spatial infinity from the atom even though the internal
degree of freedom of the atom is coupled to a nonstationary squeezed quantum field.
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Appendix D. Time-Translational Invariance of the Squeeze Parameter in
the Out-Region

Next we argue that if we shift the parametric process by ∆ along the time axis, as
shown in Figure A2, then we have

d
(II)
i (t + ∆, ta + ∆) = d(II)

i (t, ta) (A44)

where i = 1, 2, and d
(II)
i (t + ∆, ta + ∆), in sans serif style, is the fundamental solution

in-region II for the shifted case described by the orange curve in Figure A2.
Since the fundamental solutions d(II)

i (y, ya) in-region II for the orange curve satisfy the
equation of motion

d̈
(II)
i (y, ya) + ω2(y) d(II)

i (y, ya) = 0 , (A45)

with the standard initial conditions given at ya = ta + ∆, while the fundamental solutions
d(II)

i (y, ya) in-region II for the blue curve satisfy the equation of motion

d̈(II)
i (t, ta) + ω2(t) d(II)

i (t, ta) = 0 , (A46)

with the standard initial conditions given at ta, one can immediately notice that both cases
are related by y = t + ∆, and thus we arrive at Equation (A44), and in particular,

d
(II)
i (tb + ∆, ta + ∆) = d(II)

i (tb, ta) . (A47)

Here below, we use this result.

Figure A2. The parametric process described by a piecewise continuous function. The transition
begins at ta, and ends at tb, region II. Between ti and ta, region I, the frequency ω(t) takes on a
constant value ωi and is given by another constant ω f after t ≥ tb, region III. We consider a shift ∆
of the parametric process along the timeline while keeping the functional form, the duration tb − ta

of the process, and the initial time ti of the motion unchanged. We displace these two cases by a
horizontal displacement for discernibility. See text for details.

Now we would like to explicitly show that a detector, in the out-region with t > tb + ∆,
will find the same squeeze parameter for both cases described in Figure A2, independent of
the shift ∆, even if it carries out the measurement at the same time t. Note that in both cases
the motion starts at the same ti = 0. We focus on the moment t = tb + ∆, since afterward,
the squeeze parameter is a constant. Before we start, let us first note that d(I)

i (t) is essentially
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the same as d(I)
i (t), except that the former applies to the time interval 0 = ti ≤ t ≤ ta + ∆

while the latter only to 0 = ti ≤ t ≤ ta. With this recognition, we can write d
(I)
i (ta + ∆) as

d
(I)
i (ta + ∆) = d(I)

1 (∆) d(I)
i (ta) + d(I)

2 (∆) ḋ(I)
i (ta) . (A48)

Now we write di(tb + ∆, 0) in terms d(X)
i with X = I, II, and III of the unshifted

process; see Figure A2. We show the calculations explicitly for d1(tb + ∆), and the result for
d2(tb + ∆) follows similarly. Pretty straightforwardly, we have:

d1(tb + ∆, 0) = d
(II)
1 (tb + ∆, ta + ∆) d(I)

1 (ta + ∆) + d
(II)
2 (tb + ∆, ta + ∆) ḋ(I)

1 (ta + ∆) (A49)

= d(II)
1 (tb, ta)

[
d(I)

1 (∆) d(I)
1 (ta) + d(I)

2 (∆) ḋ(I)
1 (ta)

]
+ d(II)

2 (tb, ta)
[
ḋ(I)

1 (∆) d(I)
1 (ta) + ḋ(I)

2 (∆) ḋ(I)
1 (ta)

]
with the help of Equations (A44) and (A48). We use a trick that only applies to the un-
damped harmonic oscillator. For in-region I, we have the identities,

ḋ(I)
2 (t) = d(I)

1 (t) , ⇒ d(I)
2 (∆) ḋ(I)

1 (ta) = d(I)
2 (ta) ḋ(I)

1 (∆) , (A50)

and it allows us to rewrite Equation (A49),

d1(tb + ∆, 0) = d(II)
1 (tb, ta)

[
d(I)

1 (∆) d(I)
1 (ta) + ḋ(I)

1 (∆) d(I)
2 (ta)

]
+ d(II)

2 (tb, ta)
[
ḋ(I)

1 (∆) d(I)
1 (ta) + d(I)

1 (∆) ḋ(I)
1 (ta)

]
=
[
d(II)

1 (tb, ta) d(I)
1 (ta) + d(II)

2 (tb, ta) ḋ(I)
1 (ta)

]
d(I)

1 (∆) +
[
d(II)

1 (tb, ta) d(I)
2 (ta) + d(II)

2 (tb, ta) d(I)
1 (ta)

]
ḋ(I)

1 (∆)

= d1(tb, 0) d(I)
1 (∆) + d2(tb, 0) ḋ(I)

1 (∆) . (A51)

Similarly, for d2(tb + ∆, 0), we have

d2(tb + ∆, 0) = d1(tb, 0) d(I)
2 (∆) + d2(tb, 0) ḋ(I)

2 (∆) . (A52)

Now we plug these results into the expressions in Equations (68)–(70) to find the
corresponding squeeze parameter in out-region III,

1
ω f ωi

ḋ
(1)2
k (tb + ∆) +

ωi
ω f

ḋ
(2)2
k (tb + ∆) +

ω f

ωi
d
(1)2
k (tb + ∆) + ω f ωi d

(2)2
k (tb + ∆)

=
1

ω f ωi
ḋ(1)2k (tb) +

ωi
ω f

ḋ(2)2k (tb) +
ω f

ωi
d(1)2k (tb) + ω f ωi d(2)2k (tb) , (A53)

1
ω f ωi

ḋ
(1)2
k (tb + ∆) +

ωi
ω f

ḋ
(2)2
k (tb + ∆)−

ω f

ωi
d
(1)2
k (tb + ∆)−ω f ωi d

(2)2
k (tb + ∆)

=
1

ω f ωi
ḋ(1)2k (tb) +

ωi
ω f

ḋ(2)2k (tb)−
ω f

ωi
d(1)2k (tb)−ω f ωi d(2)2k (tb) , (A54)

1
ωi

d
(1)
k (tb + ∆)ḋ(1)k (tb + ∆) + ωi d

(2)
k (tb + ∆)ḋ(2)k (tb + ∆)

=
1

ωi
d(1)k (tb)ḋ

(1)
k (tb) + ωi d(2)k (tb)ḋ

(2)
k (tb) , (A55)

due to

d(I)
1 (∆) ḋ(I)

1 (∆) = −ω2
i d(I)

2 (∆) ḋ(I)
2 (∆) , d(I)2

1 (∆) + ω2
i d(I)2

2 (∆) = 1 ,
1

ω2
i

ḋ(I)2
1 (∆) + ḋ(I)2

2 (∆) = 1 .

The results for the shifted process are the same as those for the unshifted process.
Thus, both cases generate the same squeezing at t ≥ tb + ∆.
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