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Abstract: A mirror with time-dependent boundary conditions will interact with the quantum vacuum
to produce real particles via a phenomenon called the dynamical Casimir effect (DCE). When asym-
metric boundary conditions are imposed on the fluctuating mirror, the DCE produces an asymmetric
spectrum of particles. We call this the asymmetric dynamical Casimir effect (ADCE). Here, we inves-
tigate the necessary conditions and general structure of the ADCE through both a waves-based and a
particles-based perspective. We review the current state of the ADCE literature and expand upon
previous studies to generate new asymmetric solutions. The physical consequences of the ADCE are
examined, as the imbalance of particles produced must be balanced with the subsequent motion of
the mirror. The transfer of momentum from the vacuum to macroscopic objects is discussed.

Keywords: quantum vacuum; vacuum fluctuation; dynamical Casimir effect; asymmetry; asymmetric
excitations; asymmetric dynamical Casimir effect

1. Introduction

In 1948, Hendrik Casimir introduced the notion that the macroscopic boundaries of
enclosed cavities impose strict limitations on the quantum vacuum and restrict fundamental
vacuum modes of the background free scalar field [1]. The physical interaction between
the quantum mechanical vacuum and surfaces with various geometries and boundary
conditions (or physically, the properties of the materials constituting that surface) is known
as the Casimir effect. This is commonly referred to as a physical manifestation of the
quantum vacuum [2–8]. Perhaps one of the most remarkable consequences of modern
quantum theory is the extension of this phenomenon into the case of an open cavity with
time-varying boundary conditions. When this occurs, the coupling between vacuum
quantum fields and time-dependent boundaries results in particle production from the
quantum vacuum. This was first introduced in Gerald T. Moore’s 1969 doctoral thesis [9],
in which he demonstrated that a moving cavity in one dimension produces nonzero
energy photonic modes from the initial vacuum state. Over the following decade, this
phenomenon would be more thoroughly examined by many others, including additional
studies by DeWitt [10] and Fulling and Davies [11,12], although it was not until 1989 that
the now commonplace name dynamical Casimir effect (DCE) was first introduced [13].

There is now an abundance of literature on the DCE; see [14–16] for several detailed
reviews of this topic. In these, the following definition of the DCE is given: “a macroscopic
phenomena caused by changes of vacuum quantum states of fields due to fast time vari-
ations of positions (or properties; e.g., plasma frequency or conductivity) of boundaries
confining the fields (or other parameters)” [16]. Most notably, the DCE will result in the gen-
eration of quanta (photons) of the electromagnetic field directly due to the time-dependent
interaction of a macroscopic process with the quantum vacuum.

While the DCE has also been investigated in various three-dimensional configurations,
such as cylindrical waveguides [17], parallel plates [18], and spherical [19], cylindrical [20],
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and rectangular cavities [21,22], we focus our attention on a (spatially) one-dimensional
model. Specifically, it is a (1+1)D (dimensional) spacetime permeated by a massless scalar
quantum field in the presence of a point mirror with certain optical properties. The (1+1)D
model provides an excellent proving ground by which the underlying fundamental physics
can be explored. This lets us directly examine the effects of altering the properties and
configurations of the mirrors and allows for the analysis of the general nature of the type of
time fluctuations needed to induce particle production from the vacuum [22–30]. We avoid
using a perfectly reflective mirror [9] as it produces an undesirable result: the renormalized
energy can be negative when the mirror starts moving [11,31]. With this in mind, we are
interested in the specific case of a partially reflective mirror, which has positive definite
(renormalized) radiative energy [31,32]. For a review of the physics of partially reflective
mirrors, see [33–42].

Our particular method of modeling a partially reflective mirror uses the established
δ − δ′ potential [35,39,41,43]. When constructing a δ − δ′ mirror (here δ′ is the spatial
derivative of the Dirac δ) [44,45], spatial asymmetry is built in, causing the quantum
vacuum to act unequally on either side of the mirror. Moving δ − δ′ mirrors [46] and
δ − δ′ mirrors with time-dependent boundary conditions [47,48] all lead to the creation
of an asymmetric distribution of particles due to the unequal vacuum interactions with
either side of the mirror. Specifically, this is due to the combination of broken spatial
symmetry and fast time fluctuations of the positions or properties of the mirror. We call
this phenomenon the asymmetric dynamical Casimir effect (ADCE).

This paper sets out to review the relevant literature on this topic and to put forward a
complete analysis of the necessary general conditions to generate this asymmetry, expand-
ing on previous analyses of the δ − δ′ mirror. We compare several different models and
examine the similarities between them to formulate a general approach to producing the
ADCE. Specifically, we show that both the scattering-based approach for an asymmetric
mirror in (1+1)D and the quantum-particles-based approach, in which we build in asym-
metry into a known DCE solution via an asymmetric Bogoliubov transformation, both lead
to remarkably similar asymmetric particle distributions. Lastly, we discuss some physical
consequences of the ADCE. Specifically, that an asymmetric production of particles results
in net motional forces on previously stationary objects.

Natural units are used throughout this paper, with c = h̄ = 1, where c denotes
the speed of light and h̄ is the reduced Planck constant. Here, we occasionally make
use of the Einstein summation notation, where Greek indices run over time and 1D space
coordinate pair, {t, x}. We normalize the Fourier transform following the wave propagation
convention, keeping a 1/2π factor on the forward transform. We note that some of the
literature cited here utilize other conventions and so caution is warranted when utilizing
these transforms.

2. Scattering Approach for Mirror in 1+1 Vacuum

Here, we review the scattering framework used to analyze the effect of mirrors on
quantum scalar fields [46]. We start with a massless scalar field, which we take to initially
be interacting with a (partially reflecting, possibly time-varying) mirror. Since this mirror’s
position is allowed to vary in time, one must exercise caution when introducing coordinates.
If the mirror is not moving relative to the laboratory frame, the laboratory and co-moving
coordinates are identical, so one is safe to not distinguish them. In the case of moving
mirrors, we introduce all of our formalism and fields in a frame co-moving with the mirror,
then transform back to a laboratory frame when calculating physical quantities of interest.
In this case, we denote the co-moving time coordinates with primes and the laboratory
frame coordinates without primes. In the limited cases where we must work with moving
objects in the frequency domain, we prime the functions themselves, so as to not confuse
them with Green’s function parameters.
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The massless scalar field, ϕ(t, x), is a solution to the Klein–Gordon equation,[
∂2

t − ∂2
x + 2U(t, x)

]
ϕ(t, x) = 0, (1)

where U(t, x) is some general potential modeling a mirror with various properties and ∂α

denotes the partial derivative with respect to α. This has the corresponding Lagrangian,

L = L0 − U(t, x)ϕ2(t, x), (2)

where L0 is the (1+1)D scalar Lagrangian,

L0 =
1
2
[
(∂tϕ(t, x))2 − (∂xϕ(t, x))2]. (3)

The corresponding Euler–Lagrange equation is

∂L

∂ϕ
− ∂ν

(
∂L

∂(∂νϕ)

)
= 0. (4)

The fields resulting from these equations may be decomposed as

ϕ(t, x) = Θ(x)ϕ+(t, x) + Θ(−x)ϕ−(t, x), (5)

where Θ(x) is the Heaviside step-function and ϕ± is the solution on either side of the mirror.
Since both of ϕ± obey the Klein–Gordon equation individually, they can be represented by
the sum of two freely counterpropagating fields in the frequency domain,

ϕ+(t, x) =
∫ dw√

2π

[
φout(ω)eiwx + ψin(ω)e−iwx

]
e−iwt (6)

and
ϕ−(t, x) =

∫ dw√
2π

[
φin(ω)eiwx + ψout(ω)e−iwx

]
e−iwt, (7)

where the amplitudes of the incoming and outgoing fields are labeled accordingly, and ω
denotes the frequency.

The incoming fields, φin and ψin, are unaffected by the mirror and take the form

φin(ω) = (2|w|)−1/2[Θ(ω)aL(ω) + Θ(−w)a†
R(−w)

]
(8)

and
ψin(ω) = (2|w|)−1/2[Θ(ω)aR(ω) + Θ(−w)a†

L(−w)
]
, (9)

where aj(ω) and a†
j (ω) (j = L, R) are the annihilation and creation operators for the left (L)

and right (R) sides of the mirror, which obey the commutation relation

[ai(ω), a†
j (ω

′)] = δ(ω − ω′)δij, (10)

where δij is the Kronecker delta.
The ingoing and outgoing counterpropagating fields may be related using a scattering

matrix with possibly frequency dependent reflection (r±(ω)) and transmission (s±(ω))
coefficients. In this case, the scattering matrix is

S(ω) =

(
s+(ω) r+(ω)
r−(ω) s−(ω)

)
, (11)

with
Φout(ω) = S(ω)Φin. (12)
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Here, we are making use of the vectorized shorthand

Φin(ω) =

(
φin(ω)
ψin(ω)

)
and Φout(ω) =

(
φout(ω)
ψout(ω)

)
(13)

to represent ingoing and outgoing counterpropagating fields. In any situation where Φ(ω)
is used without a subscript, it can be assumed that the given relation holds for both ingoing
and outgoing fields. The S-matrix is required to be unitary and causally consistent. For a
complete analysis of the properties of the S-matrix, see [46,49,50]. Calculating the reflection
and transmission coefficients determines the scattering system and completely defines the
relationship between incoming and outgoing fields interacting with the mirror.

To solve for the components of the S-matrix, matching conditions between incoming
and outgoing fields must be calculated. This gives a system of equations, which can be
solved to obtain the reflection and transmission coefficients [44,51–53]. These matching
conditions are found by minimizing a variation on the action, which is to say, the resulting
system of equations is equivalent to solving the above Euler–Lagrange equation.

2.1. The Static Asymmetric δ − δ′ Mirror

The first step in adding in the necessary asymmetry needed to produce the ADCE is
to introduce an asymmetric δ − δ′ potential,

U(x) = µδ(x) + λδ′(x), (14)

into the Lagrangian, where µ is related to the plasma frequency of the mirror and λ is a
dimensionless factor. This potential models a partially reflective mirror [44,46,47]. The
Lagrangian in this case becomes

L = L0 −
[
µδ(x) + λδ′(x)

]
ϕ2(t, x). (15)

This potential results in the Klein–Gordon Equation (1), taking the form[
∂2

t − ∂2
x + 2µδ(x) + 2λδ′(x)

]
ϕ(t, x) = 0. (16)

In the frequency domain, this becomes[
−∂2

x + 2µδ(x) + 2λδ′(x)
]
Φ(ω, x) = ω2Φ(ω, x), (17)

which can be used to find the matching conditions [46],

Φ(w, 0+) =
1 + λ

1 − λ
Φ(w, 0−) (18)

and
∂xΦ(w, 0+) =

1 − λ

1 + λ
∂xΦ(w, 0−) +

2µ

1 − λ2 Φ−(w, 0−). (19)

These matching conditions govern the relationship between Φ±, which can be written
in terms of the reflection and transmission coefficients,

Φ+(ω, x) = s−(ω)e−iωxΘ(−x) + (e−iωx + r−(ω)eiωx)Θ(x) (20)

and
Φ−(ω, x) = (eiωx + r+(ω)e−iωx)Θ(−x) + s+(ω)eiωxΘ(x). (21)

Applying the matching conditions, the explicit forms for the components of the
scattering matrix are

r±(ω) =
−iµ0 ± 2wλ0

iµ0 + w(1 + λ2
0)

(22)
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and

s±(ω) =
w(1 − λ2

0)

iµ0 + w(1 + λ2
0)

, (23)

where we now include the notations µ0 and λ0 to explicitly denote these as the zeroth-order
terms. This distinction becomes important as we start to include perturbative effects below.
The inequality between r+(ω) ̸= r−(ω) is due to the underlying asymmetry of the potential
itself, i.e., it is a direct consequence of the δ′ term.

Note that, when λ0 = 1, the mirror is perfectly reflective and the left and right sides
now possess Dirichlet and Robin boundary conditions, respectively. Additionally, the
change λ0 −→ −λ0 will swap these properties from one side of the mirror to the other.

2.2. The Time-Varying Asymmetric Mirror
2.2.1. Particle Creation from Fluctuations in Boundary Conditions

Here, we make a digression to address the mechanism for particle creation resulting
from fluctuating boundary conditions. Thus far, we have not worried about such effects as
it can easily be shown that it is necessary to introduce time fluctuations to generate particle
production. Recall from Equation (12) that Φout(ω) = S(ω)Φin. Then, knowing Φout(ω)
allows for the computation of the spectrum of created particles as the spectral distribution
of created particles is given by [37]

N(ω) = 2ω Tr
[
⟨0in|Φout(−ω)ΦT

out(ω)|0in⟩
]
, (24)

where Tr[M] denoted the trace of a some matrix M, and the number of created particles is

N =
∫ ∞

0
dωN(ω). (25)

From Equation (24), one can see that, regardless of the asymmetry in S(ω), there are
no zeroth-order contributions to particle creation. Thus, it is necessary to introduce some
perturbation in time as the mechanism to cause particle production. One also sees that
spatial asymmetry leads to asymmetry in the spectrum of created particles.

We quantify this asymmetry by splitting both the spectral distribution and total
number of particles into their right (+) and left (−) components as

N(ω) = N+(ω) + N−(ω) (26)

and
N = N+ +N−, (27)

respectively. One can then make use of the quantities N∓/N±, N∓/N±, and ∆N =
N− − N+ as a means of comparing and quantifying the asymmetry between the two sides
of the mirror. We refer to the quantities N∓/N±, N∓/N±, and ∆N as the spectral ratio,
particle creation ratio, and spectral difference, respectively. Specifically, these quantities are
useful in evaluating and understanding the functional form of the asymmetry present in
the system. In particular, ∆N (and subsequently ∆N ) can be used to calculate potential
energy fluxes and force differentials that will play a part in the dynamics of the system.
More on this point is discussed in Section 5. When the mirror no longer exhibits asymmetric
interactions with the vacuum the ratios become unity and the difference vanishes.

Demonstrating and observing these physical quantities is an active area of research
for experimentalists in search of better tools to understand and quantify the real-world
limitations of the theory. While there have been experimental proposals of mechanically
induced DCE [54–59], there are many difficulties to overcome in the creation of a physically
realizable high-frequency mechanically oscillating mirror [16,60,61]. This issue has led
to the proposal of alternate methods for observing the DCE [13,54,60,62–69] and exper-
imental evidence supports the real production of particles from time-varying materials



Physics 2023, 5 403

[70–72]. Most notably, the first experimental DCE detection used a superconducting circuit
whose electrical length is changed by modulating the inductance of a superconducting
quantum interference device (SQUID) at high frequencies [61]. These experiments can be
effectively modeled with a time-dependent µ(t) in a single δ mirror, with the entire mirror’s
properties varying in time. This was a motivating factor for the investigation into time-
dependent material properties in the δ− δ′ mirror, specifically µ(t) [47,48], which we review
in Section 2.2.3. In addition to this solution, it is also convenient to model a δ − δ′ mirror
with perturbative fluctuations on λ, the scale factor attached to the δ′ term that determines
the magnitude of asymmetry. This is akin to altering the surface structure of the material, as
opposed to effectively changing the bulk material properties with the time-varying µ. This
solution provides a potentially better model for real-world applications and experimental
setups. For example, Mott insulators that undergo metal–insulator transitions can have
their surface properties change on picosecond timescales with a multiple-order magnitude
change in surface conductivity [73,74]. Experimentally, this can be performed through the
use of ultrahigh-frequency pulsed lasers to alter the surface structure on incredibly short
timescales [75–78].

2.2.2. Fluctuations in Position: q(t)

One of the standard methods for inducing time fluctuations to generate the DCE is to
have the position of a mirror change in time. From [46], there is a moving asymmetric δ − δ′

mirror, whose position is given by x = q(t) in the laboratory frame. The movement is taken
to be nonrelativistic (|q̇(t)| ≪ 1) and limited by a small value ϵ, such that q(t) = ϵg(t) with
|g(t)| ≤ 1. Scattering is assumed to be

Φ′
out(ω) = S(ω)Φ′

in(ω) (28)

in the co-moving frame where the mirror is instantaneously at rest (tangential frames). To
solve this in the laboratory frame, we use the relation

Φ′(t′, 0) = Φ(t, ϵg(t)) = [1 − ϵg(t)η∂t]Φ(t, 0) +O(ϵ2), (29)

where

Φ(t, x) =
(

φ̃(t − x)
ψ̃(t + x)

)
. (30)

Here, φ̃ and ψ̃ are components of the field in the temporal domain and η = diag(1,−1).
Taking advantage of the fact that dt = dt′ to the second order, Equation (29) can be
rewritten as

Φ′(t, 0) = [1 − ϵg(t)η∂t]Φ(t, 0). (31)

One finds that applying this transform to Equation (28) in the frequency domain yields

Φout(ω) = S0(ω)Φin(ω) + ϵ
∫ dω′

2π
δSq(ω, ω′)Φin(ω

′), (32)

where we suppress the evaluation of x = 0 in Φ(ω, 0) going forward for compactness. One
also has:

δSq(ω, ω′) = iω′G(ω − ω′)[S0(ω)η − ηS0(ω
′)], (33)

with G(ω) being the Fourier transform of g(t). We refer to δSq as the delta-S matrix, a
perturbative term that arises from the first-order perturbation in Equation (29) due to
the time-varying fluctuations of the mirror’s position. This term is of particular physical
importance, as it carries the asymmetry that will result in the asymmetric production of
particles on each side of the mirror.

Due to the introduction of the small deviation in mirror position g(t), a first-order term
emerges that will give rise to particle production. As it is shown below, the introduction of
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the δ − δ′ potential leads to an asymmetric production of particles about the two sides of
the mirror.

We now prescribe a specific form to the motion,

g(t) = cos(ω0t) exp(−|t|/τ), (34)

where τ is the effective oscillation lifetime and ω0 is the characteristic frequency of oscilla-
tion. Only the monochromatic limit is considered, with ω0τ ≫ 1. In this limit, the system
undergoes (effectively) spatially symmetric motion about its starting position. The Fourier
transform of Equation (34) is approximately

|G(ω)|2
τ

≈ π

2
[δ(ω + ω0) + δ(ω − ω0)]. (35)

One can also obtain the right and left spectral distributions as

N±(ω)

τ
=

ϵ2

π
ω(ω0 − ω)Λ±(ω, ω0 − ω)Θ(ω0 − ω), (36)

where the asymmetry in the distribution of particles of the two sides can be seen in

Λ±(ω, ω − ω0) =
1
4

Re

[
8λ2

0ω(ω0 − ω)− 2µ2
0 + iµ0ω0(1 ∓ λ0)

2

(iµ0 + ω(1 + λ2
0))[iµ0 + (ω0 − ω)(1 + λ2

0)]

]
. (37)

A change from λ0 −→ −λ0 flips Λ± −→ Λ∓ and therefore also flips N± −→ N∓ [35,36].
For a detailed analysis of the spectrum of particles created and the interplay between

different combinations of µ0 and λ0, see [46]. Highlighting a few key points, one can
see that setting λ0 = 1 produces the largest difference in magnitude between the spectra
emitted by the two sides with a spectral ratio of

N−
N+

=
[µ2

0 + 4ω(ω0 − ω)]2

(µ2
0 + 4ω2)[µ2

0 + 4(ω0 − ω)2]
. (38)

Additionally, when λ0 = 1, Λ− = 1/2, which corresponds to a Dirichlet spectrum. The
maximum spectral difference occurs when µ0/ω0 ≈ 1, where the mirror imposes perfectly
reflecting Dirichlet and maximally suppressed Robin conditions on the field about the
left and right sides of the mirror, respectively. The Robin side exhibits strong suppression
at this point, corresponding to a value of γ0ω0 ≈ 2.2, where γ0 is the Robin parameter,
γ0 = 2/µ0 [79–81]. The vast majority of the particles are produced on the left side of the
mirror. When λ0 = 0, the asymmetry vanishes and the results simplify to those of a δ
mirror [35,36]. This spectrum increases monotonically with µ0. As µ0 −→ ∞, the spectrum
asymptotically approaches a Dirichlet spectrum.

The spectral difference for the moving δ − δ′ mirror obeying the oscillation function (34),
shown in Figure 1, becomes

∆N
τ

=
ϵ2

π
λ0ω2

0(1 + λ2
0)Υ(ω)Υ(ω0 − ω)Θ(ω0 − ω), (39)

with
Υ(ω) =

µ0ω

µ2
0 + ω2(1 + λ2

0)
2

, (40)

which again indicates that more particles are produced on the left side of the mirror
(λ0 > 0).
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Figure 1. The plot of (ϵ2τ/π)−1 × ∆N, the difference between the spectral distributions of particles
created on the two sides of a δ − δ′ mirror as a function of ω/ω0 for different values of λ0, with
µ0 = 1. See text for details.

2.2.3. Fluctuations in Properties: µ(t)

As discussed in Section 2.2.1 above, while it is theoretically possible to oscillate a
thin mirror at high frequencies, current technological limitations prevent this from being
experimentally viable. Thankfully, the oscillation of a boundary’s position is not the
only option for introducing time dependence in surface interactions. In the δ − δ′ model,
it is possible to modify the fundamental properties of the mirror [47,48]. Now, we are
interested in modifying the plasma frequency (through the modification of µ), such that
µ −→ µ(t) = µ0[1 + ϵ f (t)], where µ0 ≥ 1 is a constant and f (t) is an arbitrary function
with | f (t)| ≤ 1 and ϵ ≪ 1. As done in Section 2.1 when deriving the matching conditions
in Equations (18) and (19), it is convenient to work in the frequency domain, where the
derivative matching condition term (19) now becomes

∂xΦ(ω, 0+) =
1 − λ0

1 + λ0
∂xΦ(ω, 0−) +

2
1 − λ2

0

∫ dω′

2π
M(ω − ω′)Φ−(ω′, 0−), (41)

where
M(ω) = µ0(δ(ω) + ϵF (ω)) (42)

is the Fourier transform of µ(t) and F (ω) is the Fourier transform of f (t). The matching
conditions now contain perturbative terms that modify the S-matrix.

To the first order, the final form of Φout(ω) = S(ω)Φin becomes

Φout(ω) = S0(ω)Φin(ω) +
∫ dω′

2π
δSµ(ω, ω′)Φin(ω

′), (43)

where S0 is the zeroth-order scattering matrix found from Equations (22) and (23). The asym-
metric correction that originates from the introduction of f (t) takes the form δSµ(ω, ω′) =
ϵα(ω, ω′)Sµ(ω′), where

αµ(ω, ω′) = − iµ0F (ω − ω′)
iµ0 + ω(1 + λ2

0)
(44)

with

Sµ(ω
′) =

(
s+(ω′) 1 + r+(ω′)

1 + r−(ω′) s−(ω′)

)
. (45)
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Using Equation (43), the spectrum of particles (24) can be calculated. The left and right
components of this spectrum are

N±(ω) =
ϵ2

2π2 (1 ± λ0)
2(1 + λ2

0)
∫ ∞

0
dω′n(ω, ω′) +O(ϵ2), (46)

where
n(ω, ω′) = Υ(ω)Υ(ω′)

∣∣F (ω + ω′)
∣∣2. (47)

The spectral distribution ratio and particle creation ratio are

N−
N+

=
N−
N+

=

(
1 − λ0

1 + λ0

)2
. (48)

Thus, one sees a constant, frequently independent difference between the spectrum of
particles created when the asymmetric mirror with time-dependent properties interacts
with the vacuum.

For positive (negative) values of λ0, the right (left) side has a greater production of
particles. When λ0 = ±1, only one side of the mirror experiences the creation of particles.
The asymmetry vanishes when λ0 = 0 as expected, once again highlighting the necessary
combination of spatial and temporal perturbations needed to produce the ADCE.

When f (t) takes the form (34), the spectral distribution becomes

N±
τ

=
ϵ2

4π
(1 ± λ0)

2(1 + λ2
0)Υ(ω)Υ(ω0 − ω)Θ(ω0 − ω), (49)

and the spectal difference between these two sides is now

∆N
τ

= − ϵ2

π
λ0(1 + λ2

0)Υ(ω)Υ(ω0 − ω)Θ(ω0 − ω). (50)

This is, remarkably, identical to the the spectral difference of the moving δ − δ′

mirror (39) up to an overall minus sign and factor of ω2
0. This is due to the fact that

∆N removes the symmetric background of the two fields and isolates the purely asym-
metric component of the spectrum, which amounts to calculating the difference between
Re[r+] and Re[r−].

More on this is the general form of the scattering is addressed.

2.3. General Form of Asymmetric Scattering

There are apparent similarities between the two given examples of time-dependent
δ − δ′ mirrors; thus, one may propose a general form of asymmetric time-dependent pertur-
bations on objects in (1+1)D that are capable of generating ADCE photons. The mechanism
that drives the time-dependent perturbations is arbitrary, but we specify that it is bounded
by | f (t)| ≤ 1 where f (t) is some (usually, but not necessarily, periodic) driving function of
the fluctuation. There must also be some spatial delineation that manifests in the boundary
conditions to produce the asymmetry on opposite sides of the object. This asymmetry
will show itself in the transmission and reflection coefficients of the S-matrix, where either
r+(ω) ̸= r−(ω) or s+(ω) ̸= s−(ω). Starting as before, we seek the first-order perturba-
tive effects on the scattering matrix, governing the relationship between the incoming
and outgoing fields interacting with an object Φout(ω) = S(ω)Φin(ω). Fluctuations in
time yield

Φout(ω) = S0(ω)Φin(ω) + ϵ
∫ dω′

2π
δS(ω, ω′)Φin(ω

′) +O(ϵ2), (51)
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where the S0 is the zeroth-order, time-independent scattering matrix for the system. Here,
the matrix δS takes the form

δS(ω, ω′) = α(ω, ω′)F (ω − ω′)S(ω, ω′), (52)

where S(ω, ω′) and α(ω, ω′) are the first-order scattering matrix and amplitude, respec-
tively, found by imposing the correct boundary conditions. While both terms can be
functions of both ω and ω′, this is not necessary, as is quite evident from the analysis on the
fluctuations in properties from Section 2.2.3. Additionally, F (ω) is the Fourier transform
of f (t).

The two examples just above follow this form. The same is true for a system that
modifies the mirror’s reflectivity by introducing a kinetic term in the δ − δ′ potential [48].
Adding the term 2χ0δ(x)(∂tϕ(t, x))2 to Equation (15), where χ0 is a constant parameter, and
varying the parameter µ(t) changes the transmission and reflection coefficients (22) and (23)
such that µ0 −→ µ0 − χ0ω2 in the denominator of these terms. Solving for Equation (52)
leads to

αχ(ω, ω′) = − iµ0

iµ0 − iχ0ω2 + ω(1 + λ2
0)

(53)

and

Sχ(ω
′) =

(
s+(ω′) 1 + r+(ω′)

1 + r−(ω′) s−(ω′)

)
, (54)

which are nearly identical to Equations (44) and (45). Additionally, while the spectrum of
particles is slightly modified by the addition of the χ0 term, the spectral ratio between the
two sides of the object are the same as Equation (48). In Section 2.4, one again observes
perturbations of the form (51) when we investigate what happens when the λ0 term of the
δ − δ′ mirror fluctuates in time.

To investigate the asymmetry of the particle production, we make use of the following
formula:

⟨0in|Φin(ω)ΦT
in(ω

′)|0in⟩ =
π

ω
δ(ω + ω′)Θ(ω). (55)

The spectral distribution becomes

N(ω) =
1

2π

∫ ∞

0

dw′

2π

w
w′ Tr

[
δS(ω,−ω′)δS†(ω,−ω′)

]
=

ϵ2

2π

∫ ∞

0

dω′

2π

ω

ω′
∣∣α(ω,−ω′)

∣∣2|F (ω + ω′)|2 Tr
[
S(ω,−ω′)S†(ω,−ω′)

]
,

(56)

which can be integrated over ω to find the total number of particles created, N .
The decomposition of Equation (56) into its left and right pieces is

N±(ω) =
ϵ2

2π

∫ ∞

0

dw′

2π

ω

ω′
∣∣α(ω,−ω′)

∣∣2|F (ω + ω′)|2Λ±(ω,−ω′), (57)

where Λ± = Tr[SS†]±.
Prescribing Equation (34) to Equation (57), we arrive at the general form of the spectral

decomposition when the time fluctuations are in the approximately symmetric monochro-
matic limit,

N±(ω) =
ϵ2

8π

(
ω

ω0 − ω

)
|α(ω, ω0 − ω)|2Λ±(ω, ω0 − ω)Θ(ω0 − ω), (58)

where one can see that the ratio N−/N+ is equal to Λ−/Λ+. The general spectral difference
∆N is now proportional to ∆Λ, the difference between Λ− and Λ+. The quantity ∆N is
useful not only because of its ability to isolate the difference in the asymmetric outputs
of the mirror, but also because it corresponds to the physically meaningful quantities
and this can manipulate the dynamics of the system. The asymmetry of the mirror is
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the foundational element that produces asymmetric quantum effects, whereby vacuum
excitations give rise to a non-null mean final velocity and cause a stationary object to begin
to move [47]. Keeping this in mind, within the framework of the scattering approach we
can make some general comments on the form of ∆N when the fluctuation takes the form
f (t) = cos(ω0t) exp(−|t|/τ). Since ∆N is proportional to ∆Λ, one can see that its solution
originates from the difference between the real part of Tr[SS†], which amounts to calculating
the difference between the asymmetric components of the first-order scattering matrix.
Specifically, since this matrix can be expressed in terms of the zeroth-order transmission and
reflection coefficients, it is really the fundamental asymmetry of the unperturbed S-matrix
that carries over into the asymmetry of the first-order fluctuations and thus into ∆N.

The specific form of the S-matrix can be constructed in such a way that its components
possess some sort of asymmetry, such as what we have seen thus far with the δ − δ′ poten-
tials in the Lagrangian. Actually, it is possible to analyze asymmetric systems without a
pre-described Lagrangian. As long as the the scattering matrix obeys its necessary condi-
tions [46,49,50], numerous asymmetric objects can be constructed. With the δ− δ′ mirrors in
Sections 2.2.2 and 2.2.3, the asymmetry is present due to the inequality, r+ ̸= r−. Thus, the
quantity ∆N for the mirror will be some function of Re[r− − r+]. As remarked before in
Section 2.2.3, this is the origin of the near equality between ∆N of the two δ − δ′ mirrors
with fluctuations in the position q(t) and the material property µ(t).

In general, there are three asymmetric forms of the S-matrix:

• when r+ ̸= r− and s+ = s−,
• when s+ ̸= s− and r+ = r−,
• when both r+ ̸= r− and s+ ̸= s−.

Thus, ∆N can ultimately be expressed as a function of the following, for the previous
forms:

• α Re[r− ± r+],
• β Re[s− ± s+],
• α Re[r− ± r+] + β Re[s− ± s+],

where α and β are calculable scale factors with functional dependence on variables that
define the S-matrix (µ0 and λ0 for the δ − δ′ mirror).

There is an important caveat we must address with regard to general scattering. These
similarities only hold when the mechanism driving scattering affects the position or some
material property related to the plasma frequency. This is because such mechanisms act
by causing the strength of the δ function in the potential to become time-dependent. Such
considerations do not extend straightforwardly to allowing the strength of the δ′ term,
which is addressed in Section 2.4 just below.

2.4. Fluctuations in Properties: λ(t)

Having already explored the consequences of making µ0 time-dependent in the δ − δ′

mirror, we now calculate the effects of taking λ0 −→ λ(t) = λ0[1 + ϵ f (t)]. Starting with the
field equation of the system,[

∂2
t − ∂2

x + 2µδ(x) + 2λ(t)δ′(x)
]
ϕ(t, x) = 0, (59)

we take the Fourier transform as conducted in Section 2.1. Then, one has;[
−∂2

x + 2µ0δ(x)
]
Φ(ω, x) + 2

∫ dω′

2π
L(ω − ω′)δ′(x)Φ(ω′, x) = ω2Φ(ω′, x), (60)
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where L(ω) is the Fourier transform of λ(t). Using the same machinery as before, one
arrives at the continuity equations needed to solve for the matching conditions,

−∂xΦ(ω, 0+) + ∂xΦ(ω, 0−) + µ
[
Φ(ω, 0+) + Φ(ω, 0−)

]
−
∫ dω′

2π
L(ω − ω′)(∂xΦ(ω′, 0+) + ∂xΦ(ω′, 0−)) = 0,

(61)

and

−Φ(ω, 0+) + Φ(ω, 0−) +
∫ dω′

2π
L(ω − ω′)(Φ(ω′, 0+) + Φ(ω′, 0−)) = 0. (62)

From these continuity equations, it becomes understandable that unlike the matching
conditions in Equations (18) and (19), general matching conditions for λ(t) cannot be
found using this approach. This is due to the presence of the convolution integral between
L(ω − ω′) and ∂xΦ(ω′) in Equation (61). This convolution ultimately leads to nonlinear
mixing of different frequency terms.

To illustrate this difficulty straightforwardly, the form of f (t) used in prior Sections
(see Equation (34)) was employed in the continuity equations to investigate the resulting
scattering coefficients, assuming the preservation of linearity a priori. The result is that
the scattering coefficients in the frequency domain become dependent on ω ± ω0 modes
(s±(ω ± ω0), r±(ω ± ω0)). A detailed derivation of these scattering terms can be seen in
Appendix A. To that end, work is currently underway to apply the Bogoliubov approach to
this problem; however, those results are reserved for a future paper.

3. Bogoliubov Approach for Mirror in 1+1 Vacuum

In contrast to the waves-based scattering approach of Section 2 whereby the pertur-
bative effects of time fluctuations are present in higher-order terms of the S-matrix, in the
particle-based framework the perturbative effects can be calculated by investigating the
higher-order terms present in the Bogoliubov transform between the input and output
creation and annihilation operators of the field. The scattering approach is convenient
when looking at the consequences of adding a potential (i.e., mirror) to a background
vacuum field in a Lagrangian (3). However, it is often of interest to understand how the
vacuum interacts with mirrors that directly impose specific boundary conditions on the
field. The Robin boundary condition (henceforth Robin b.c.) is a suitable example of this,
as shown below. This approach allows for specific boundary conditions to be imposed on
the underlying field itself without directly knowing or specifying a generating potential.

The particles-based perturbative procedure introduced by Ford [82] has been used
extensively to describe the effects of small changes in simple mirror geometries that produce
radiative effects. Here, we draw from two separate instances of perturbative corrections on
a mirror with Robin boundary conditions: the first incorporates time-dependent changes in
properties of the boundary [83] and the second uses a moving boundary with an oscillating
position [79]. To illustrate how different manifestations of time-dependent fluctuations
produce the same effect, we first review [79,83] side-by-side, deriving the Bogoliubov
transformation for the different cases. These Bogoliubov transformations encode the
difference between the input/output creation and annihilation operators and provide a
parallel way of demonstrating the transformation of the scattering matrix seen in Section 2.
Following this, we demonstrate the ability to build in asymmetry to generate ADCE photons
from the originally symmetric moving Robin boundary in a similar manner to before.

3.1. Fluctuating Robin Boundary Condition

The Robin b.c. for a mirror in (1+1)D is

γ0

[
∂ϕ(t, x)

∂x

]
x=0

= ϕ(t, 0), (63)
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where γ0 is the parameter that allows for continuous interpolation between Dirichlet
(γ0 −→ 0) and Neumann (γ0 −→ ∞) boundary conditions. The Robin b.c. is a useful tool
for representing phenomenological models that describe penetrable surfaces [84] as the
Robin parameter is related to the penetration depth into the metallic boundary by the field.
The parameter γ−1

0 corresponds to the plasma frequency of the material and γ0 acts as the
plasma wavelength.

FLUCTUATIONS IN POSITION FLUCTUATIONS IN PROPERTIES

For a moving mirror, the Robin b.c. only holds
in the co-moving frame, where δq(t) is the time-
dependent position of the mirror. In the labora-
tory frame, this equation is

γ0

[
∂

∂x
+ δq̇(t)

∂

∂t

]
ϕ(t, δq(t)) =

ϕ(t, δq(t)),
(64)

where γ0 is the zeroth-order time-independent
Robin parameter.

A mirror with time-dependent boundary con-
ditions modifies the Robin b.c. with first-order
corrections to the Robin parameter, giving[

γ0 + δγ(t)
] ∂ϕ

∂x
(t, 0) = ϕ(t, 0), (65)

where δγ(t) is a smooth time-dependent func-
tion satisfying the condition |δγ(t)| ≪ γ0.

Adopting a perturbative approach and following Ford [82], we take ϕ(t, x) = ϕ0(t, x)+
δϕ(t, x), where ϕ0 is the unperturbed field of a static, time-independent mirror at x = 0 and
δϕ is the small perturbation from the fluctuations on the static boundary.

This is equivalent to expansions in δq and its
derivatives to the first order:

γ0

[
∂δϕ(t, x)

∂x

]
x=0

− δϕ(t, 0) =

δq(t)
[

∂ϕ0
∂x

(t, 0)− γ0
∂2ϕ0

∂x2 (t, 0)
]

−δq̇(t)γ0
∂ϕ0
∂t

(t, 0).

(66)

Using the fact that both ϕ0 and δϕ satisfy the
Klein–Gordon equation, we have

γ0

[
∂δϕ(t, x)

∂x

]
x=0

− δϕ(t, 0) =

− δγ(t)
∂ϕ0
∂x

(t, 0). (67)

It is now useful to work in the frequency domain; thus, we employ the following
Fourier transforms:

Φ(ω, x) =
∫

dt ϕ(t, x)eiωt, δQ(ω) =
∫

dt δq(t)eiωt,

δΦ(ω, x) =
∫

dt δϕ(t, x)eiωt, δΓ(ω) =
∫

dt δγ(t)eiωt.
(68)

The normal mode expansion of the unperturbed field for x > 0 is

Φ0 =

√
4π

|ω|
(
1 + γ2

0ω2
) [sin (ωx) + γ0ω cos (ωx)

][
Θ(ω)a(ω)− Θ(−ω)a†(−ω)

]
, (69)

where a(ω) and a†(ω) are the bosonic annihilation and creation operators, respectively,
which satisfy the commutation relation

[
a(ω), a†(ω′)

]
= 2πδ(ω − ω′). To solve for Φ, one

must first calculate δΦ, which can be found by introducing the following Green’s function:(
∂2

x − ω2
)

G(ω, x, x′) = δ
(
x − x′

)
. (70)
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By employing Green’s theorem, one obtains the following as the solution for the
outgoing field:

Φout(ω, x) = Φin(ω, x) +
[

G ret
R (ω, 0, x)− G adv

R (ω, 0, x)
]
×
[

∂δΦ
∂x

(ω, 0)− δΦ(ω, 0)
γ0

]
(71)

where G ret
R (G adv

R ) is the retarded (advanced) Robin Green function, given by

G ret
R (ω, 0, x) =

γ0

1 − iγ0ω
eiωt (72)

and
G adv

R (ω, 0, x) =
γ0

1 + iγ0ω
e−iωt. (73)

Using the following equality

γ0
∂δΦ
∂x

(ω, 0)− δΦ(ω, 0) =∫ dω′

2π

[
∂

∂x
+ ωω′

]
Φ0(ω

′, 0)

× δQ(ω − ω′) (74)

in the equation for Φout, the resulting Bogoli-
ubov transformation then becomes

aout = ain+

2i

√
ω

1 + γ2
0ω2

∫ dω′

2π

√
ω′

1 + γ2
0ω′2

×
[
Θ(ω′)ain(ω

′)− Θ(−ω′)a†
in(−ω′)

]
×(1 + γ2

0ωω′)δQ(ω − ω′).

(75)

Using the following equality

γ0
∂δΦ
∂x

(ω, 0)− δΦ(ω, 0) =

−
∫ dω′

2π

∂Φ0
∂x

(ω′, 0)× δΓ(ω − ω′). (76)

in the equation for Φout, the resulting Bogoli-
ubov transformation then becomes

aout = ain−

2i

√
ω

1 + γ2
0ω2

∫ dω′

2π

√
ω′

1 + γ2
0ω′2

×
[
Θ(ω′)ain(ω

′)− Θ(−ω′)a†
in(−ω′)

]
×δΓ(ω − ω′).

(77)

Thus one finds a relationship between the input/output Bogoliubov transforms of the
moving and time-dependent Robin b.c., whereby they differ by an overall minus sign and
an additional factor of

(
1 + γ2

0ωω′). Note that the two representations coincide when the
boundary reduces to the purely Dirichlet boundary condition (γ0 −→ 0), with the difference
between aout and ain reducing to

aout − ain = ±2i
∫ dω′

2π

√
ωω′

[
Θ(ω′)ain(ω

′)− Θ(−ω′)a†
in(−ω′)

]
δF (ω − ω′) (78)

where δF is the Fourier transform of the parameter that drives the small perturbation.
Here, the difference between aout and ain isolates the terms that encode particle production
and highlights the similarities between different methods of creating particles via unique
ways of generating time-varying perturbations.

3.2. Moving Asymmetric Robin Boundary

Just as it was examined in the Section 2 in order to induce the ADCE, the system must
be set up in such a way that the boundary divides the space and imposes an asymmetry.
This was accomplished by introducing the asymmetric δ − δ′ potential into the Lagrangian
for the free scalar field to simulate a mirror whose two sides possess different properties.
One must be mindful when building asymmetry into these field solutions, as it is possible
for mathematical inconsistencies to arise if the asymmetry is not carefully introduced [85].
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Here, we introduce asymmetry into the moving Robin boundary [79] analyzed in
Section 3.1. An asymmetric perturbation on the moving Robin b.c. begins the same way as
the standard moving Robin mirror, with[

∂

∂x
+ δq̇(t)

∂

∂t

]
ϕ(t, δq(t)) =

1
γ0

ϕ(t, δq(t)) (79)

being the Robin boundary condition in the laboratory frame for a small deviation δq(t)
about x = 0.

Following the same procedure as Ref. [79], one finds the first-order field (ϕ = ϕ0 + δϕ)
satisfies the following equation at x = 0:[

∂δϕ(t, x)
∂x

]
x=0

− 1
γ0

δϕ(t, 0)

= δq(t)
1

γ0

[
∂ϕ0(t, x)

∂x
− γ0

∂2ϕ0(t, x)
∂x2

]
x=0

− δq̇(t)
[

∂ϕ0(t, x)
∂t

]
x=0

. (80)

It is here that we impose the asymmetry of the mirror. Motivated by the use of the
δ′-potential in the δ − δ′ examples from the scattering section, we take advantage of the
properties of the δ′-potential and incorporate it into Equation (80). Recall the definition of
δ′(x) from Ref. [46],

δ′(x) f (x) = δ′(x)
f (0+) + f (0−)

2
− δ(x)

f ′(0+) + f ′(0−)
2

. (81)

Using the symmetry of the time-independent Robin solution, one finds that

δ′(x)
∂ϕ0(t, x)

∂x
= δ′(x)

[
∂ϕ0(t, x)

∂x

]
x=0

− δ(x)
[

∂2ϕ0(t, x)
∂x2

]
x=0

. (82)

Thus, to build asymmetry into the moving Robin b.c., while at the same time remaining
mathematically consistent with the definition of δ′, we incorporate a δ − δ′ term into the
spatial derivatives at zero in Equation (80) giving the new equality,[

∂δϕ(t, x)
∂x

]
x=0

− 1
γ0

δϕ(t, 0)

= δq(t)
1

γ0

[
δ′(x)

[
∂ϕ0(t, x)

∂x

]
x=0

− γ0δ(x)
[

∂2ϕ0(t, x)
∂x2

]
x=0

]
− δq̇(t)

[
∂ϕ0(t, x)

∂t

]
x=0

. (83)

This manifests in there being two separate solutions about x = 0,[
∂δϕ(t, x)

∂x

]
x=0±

− 1
γ0

δϕ(t, 0±)

= δq(t)
1

γ0

[
±∂ϕ0(t, x)

∂x
− γ0

∂2ϕ0(t, x)
∂x2

]
x=0±

− δq̇(t)
[

∂ϕ0(t, x)
∂t

]
x=0±

. (84)

Following the same derivation as in Section 3.1, one arrives at the Bogoliubov trans-
form for the relationship between annihilation operators aout and ain, appropriately labeled
with a positive (negative) superscript for the x > 0 (x < 0) region,

a(±)
out = a(±)

in + 2i

√
ω(

1 + γ2
0ω2

) ∫ dω′

2π

(
±1 + γ2

0ωω′
)√ ω′(

1 + γ2
0ω′2)

×
[
Θ(ω′)a(±)

in (ω′)− Θ(−ω′)a(±)

in (−ω′)†
]
δQ(ω − ω′), (85)
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where we see that the positive solution is the same as in Section 3.1 Note that the vacua
solution only accounts for the outgoing solution about either side of the mirror since
δϕ(t, x) must describe the contribution from the mirror and not the incoming waves moving
towards the mirror [83].

3.2.1. Spectral Distribution

The infinitesimal spectral distribution of the particles created on either side of the
mirror, between ω and ω + dω (ω ≥ 0), is given by

N±dω = ⟨0in|a(±)

in (ω)†a(±)

in (ω)|0in⟩
dω

2π
. (86)

The complete spectrum is found by using Equations (85) in (86), giving

N± =
2ω

π
(
1 + γ2

0ω2
) ∫ ∞

0

dω′

2π

ω′[1 ∓ γ0ωω′]2(
1 + γ2

0ω′2) ∣∣δΓ(ω + ω′)
∣∣2. (87)

One may once again assign a specific form to the time-dependent function that drives
the motion of the mirror. Following the same procedure from Refs. [46,79,83], implemented
for the moving δ − δ′ system in Section 2, we use

δγ(t) = ϵ cos (ω0t) exp(−|t|/τ), (88)

where, as before in Equation (34), τ is the oscillation lifetime and ω0 is the characteristic
frequency of the oscillation with ω0τ ≫ 1. We denote the Fourier transform of γ(t) with
δΓ(ω). The function δΓ(ω) contains two extremely narrow peaks around ω = ±ω0 and
can therefore be approximated as

|δΓ(ω)|2
τ

≈ ϵ2 π

2
[δ(ω − ω0) + δ(ω + ω0)]. (89)

The new definition of δΓ(ω) in Equation (89) allows us to explicitly compute the
spectrum on either side of the mirror, which becomes

N±
τ

=
ϵ2

2π

ω(ω0 − ω)
[
1 ∓ γ2

0(ω0 − ω)ω
]2(

1 + γ2
0ω2

)[
1 + γ2

0(ω0 − ω)2
] Θ(ω0 − ω), (90)

where one sees, as in Refs. [79,83], that no particles are created for frequencies higher than
the characteristic frequency ω0 of the time-dependent perturbation on the Robin b.c. As
expected, the spectrum is invariant under the replacement ω −→ ω0 − ω and is symmetric
about ω = ω0/2. This indicates that particles are created in pairs such that the sum of their
frequencies is ω0.

Once again, one may calculate physically relevant quantities that give us more insight
into the dynamics of the system. The spectral ratio is

N−
N+

=

(
1 + γ2

0ω(ω0 − ω)

1 − γ2
0ω(ω0 − ω)

)2

, (91)

and the spectral difference is

∆N
τ

=
ϵ2

π

2[γ0ω(ω0 − ω)]2(
1 + γ2

0ω2
)[

1 + γ2
0(ω0 − ω)2

]Θ(ω0 − ω). (92)

One can see that the spectral ratio and difference for the newly calculated moving
asymmetric Robin boundary closely resembles those found in Section 2.2.2 for the time-
dependent moving δ − δ′ mirror. One sees from Equation (91) that the left half of the mirror
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always produces a larger number of particles than the right half, excluding the points ω = 0
and ω = ω0 where the spectrum vanishes. This is also apparent in spectral difference,
as it is positive for all values outside the end points. As expected, in the Dirichlet limit
when γ0 = 0 the asymmetry vanishes. For a closer look at the difference between spectral
outputs by the two sides of the moving asymmetric Robin b.c., including the influence of
difference values of γ0; see Figure 2.
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Figure 2. The spectral distribution of particles created on the two sides of the mirror as a function of
ω/ω0 for different values of γ0: (a) the plot of (ϵ2τ/π)−1 × N−; (b) the plot of (ϵ2τ/π)−1 × N+. See
text for details.

3.2.2. Particle Creation Rate

The total number of particles created, effectively the (average) particle creation rate, is

R± =
N±
τ

=

(
ϵ2

2π

) ∫ ω0

0

ω(ω0 − ω)
[
1 ∓ γ2

0(ω0 − ω)ω
]2(

1 + γ2
0ω2

)[
1 + γ2

0(ω0 − ω)2
] dω

=

(
ϵ2ω3

0
2π

)
F±(ξ)

(93)

where ξ = γ0w0 with

F+(ξ) =
ξ(4ξ + ξ3 + 12 arctan(ξ))− 6(2 + ξ2) ln (1 + ξ2)

6ξ4(ξ2 + 4)
(94)

and

F−(ξ) =
ξ(24ξ + ξ3 − 36 arctan(ξ))− 6(−2 + ξ2) ln (1 + ξ2)

6ξ4 . (95)

This particle creation rate is the physically meaningful quantity that can be experimen-
tally measured. One can see that N is proportional to τ (a result of the open geometry of
the cavity). The particle creation rate in the limits of γ0ω0 ≪ 1 (Dirichlet) and γ0ω0 ≫ 1
(Neumann) converge to the same value:

R± ≈
(

ϵ2ω2
0

12π

)
, (96)

which matches what is found in the literature [23,26,37].

4. Comparison between the Different Approaches

The moving asymmetric Robin boundary solution that we constructed in Section 3.2
bears a striking resemblance to the moving δ − δ′ mirror that originates from the scattering
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approach. One can examine the two solutions alongside each other by looking at their
respective spectral distributions in Figures 2 and 3. For the sake of comparison, let us
consider the maximally asymmetric cases for the different solutions, which correspond to
λ0 = 1 and γ0 = 2 (taking µ0 = 1 with γ0 = 2/µ0). The spectrum N+, on right side of
the mirror, is the same as both the original unperturbed moving Robin b.c. spectrum [79]
and the spectrum produced by the right side of the moving δ − δ′ mirror [46]. This Robin
spectrum, in Figure 2b, is associated with the highest degree of asymmetry as it is maximally
suppressed when γ0 = 2 (or λ0 = 1), with the spectrum completely vanishing at ω0/2.
From Figures 2a and 3a, the spectrum produced by the left half, N−, is a purely reflective
Dirichlet spectrum when λ0 = 1 and γ0 = 0 for the moving δ − δ′ and asymmetric Robin
mirror, respectively. However, in the maximally asymmetric case of the moving asymmetric
Robin mirror, when γ0 = 2, there is an inhibition of modes away from ω0 = 2 that sharpens
the purely reflective Dirichlet peak and leaves the maximum value at ω0/2 unchanged.

The slight inhibition of modes away from ω0/2 in the maximally asymmetric case of
the moving asymmetric Robin b.c. solution, seen in Figure 4b, is what leads to the difference
between the particle production ratio N+/N− of the asymmetric Robin and δ − δ′ mirrors.
This is well seen in the increased asymmetry in the δ − δ′ solution for different values of
w0 when compared to the asymmetric Robin solution. Particle production is maximally
suppressed for γ0ω0 ≈ 2.2, the frequency of maximal asymmetric particle production,
which gives rise to approximately the same minimum in the particle creation ratios seen in
Figure 5. Both minima occur at ω0 ≈ 1.1, where N+/N− ≈ 0.016 for the asymmetric Robin
and N+/N− ≈ 0.013 for the δ − δ′ mirrors. From another view, the left side produces
about 60 and 75 times that of the right side, respectively.
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Figure 3. The spectral distribution of particles created on the two sides of a moving δ − δ′ mirror
as a function of ω/ω0 for different values of λ0, with µ0 = 1: (a) the plot of (ϵ2τ/π)−1 × dN−/dω;
(b) the plot of (ϵ2τ/π)−1 × dN+/dω. See text for details. Figure is generated from results within
Ref. [46].
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0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

ω0

N+
N−

moving δ − δ′ DCE

moving δ′ Robin

Figure 5. The particle creation ratio of N+/N− for both the moving asymmetric Robin and δ − δ′

boundaries. For comparison, the asymmetric Robin mirror with γ0 = 2 and the δ − δ′ mirror with
λ0 = µ0 = 1 are shown.

5. Discussion

The means by which macroscopic systems interacting with the quantum vacuum are
able to produce the ADCE are apparent; it is necessary to generate solutions that include
both fluctuations in time and explicitly broken spatially symmetry. Without fluctuations
in time, be it on the object’s position, material properties, etc., the production of particles
vanishes. Unless asymmetric boundary conditions are imposed on either side of an object
in (1+1)D, the production of particles will always be symmetric about the two sides of
the object and the ADCE will not exist. The appearance of the ADCE is independent of
the method used to generate the boundary that interacts with the vacuum. Whether an
asymmetric system is solved in a waves-based scattering interaction framework or with
a particle-based calculation of the creation/annihilation operators, the same asymmetric
effect is present in the solutions of these two approaches. This is especially evident in
our newly constructed moving asymmetric Robin b.c. solution, where the introduction
of spatial asymmetry to an otherwise symmetric mirror obeying the Robin b.c. induced a
change in the particle output of one side of the mirror.

One of the more remarkable consequences of the ADCE is that the unbalanced produc-
tion of particles will cause an otherwise stationary system to be perturbed via its interaction
with the vacuum and induce motion as momentum is “extracted” from the vacuum [47].
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The initial state of the object, for t < −τ (τ > 0), is that of a stationary, time-independent
object interacting with a field. It is completely described by the quantum vacuum state as
there are no quantum interactions before the time fluctuations occur. The characteristic
oscillations of the time-dependent boundary begin at −τ, i.e., some generic variable of the
system ε0 −→ ε(t), after which the object is free to move. Note that, once the object is able
to move, the quantum field will cause the object to experience Brownian motion [86–89].
Assuming the object is large enough, this motion can be neglected. At this point, if the object
possesses no spatial asymmetry while undergoing time fluctuations, the object remains in
its starting position as the symmetric production of particles applies an equal and opposite
response to the object. For an asymmetric object, particle production is favored to one
side, which results in a net force on the object, a transfer of momentum to the previously
stationary system, and a dissipation of energy from the mirror. This is expected from the
underlying symmetries of quantum field theory (translational invariance, locality, and
unitarity). A nonzero vacuum momentum, and a nonvanishing total force, are to be found
in any asymmetrically excited system [90].

The total energy of the created particles, E = E+ + E−, is the sum of the two sides
where E± =

∫ ∞
0 dωN±(ω)ω. The momentum is now P = P+ + P−, where P± = ±E±.

The quantity that determines the asymmetric dynamics is ∆N, as one now has ∆E , ∆P , and
∆F ̸= 0. If the system is closed, the energy of the particles emitted comes at the expense
of the internal energy of the object, as energy is needed to drive the time fluctuations,
and the mass of the object will now change in time. To ensure the total momentum of
the system is conserved, the object experiences a net force and now has a nonzero final
momentum since the total momentum of the particles no longer vanishes for asymmetric
objects. For a detailed analysis of the forces and dynamical evolution of an asymmetric
object with time-dependent material properties interacting with the vacuum, see [47]. Here,
it is necessary to not only include the motional contribution from the vacuum’s interaction
with the time-dependent properties of object, but also the interaction due to its newly
perturbed fluctuation in position. Thus, to perform a detailed analysis of the motional
corrective terms introduced in [47], one must account for the interaction term between the
time dependence on µ(t) and the position q(t) in the δ − δ′ example that was explored in
Section 2 (see [91] for this process conducted on a symmetric Robin boundary). Accounting
for every form of time fluctuations is necessary to understand the full dynamics of the
system, an analysis we intend to perform in the future.

Understanding the fundamental mechanisms of asymmetric vacuum interactions
provides the basis to investigate an abundance of vacuum interactions that seek to probe the
extreme limits of physical theory. Already, we have seen an otherwise stationary object gain
momentum out of seemingly nothing, due to its interaction with the vacuum, a surprising
result that actually arises from the conservation of momentum. This is not the only time that
asymmetric systems have gained momentum from vacuum interactions. It has been shown
that a net transfer of linear momentum can occur in a system composed of two excited,
dissimilar atoms [90]. Just as it was seen throughout this paper, a quantum system with
asymmetric excitations leads to an imbalanced production of emitted particles and gives
rise to a net force and transfer of momentum from the vacuum. Linear asymmetry is not
the only means by which to generate some motive force from the vacuum: chiral particles
can also achieve a similar effect. These particles, which do not posses mirror invariance, can
gain kinetic “Casimir” momentum when subjected to a magnetic field [92,93]. There are
claims, albeit controversial [94–97], that the vacuum can impart momentum asymmetrically
on magnetoelectric materials [94]. Asymmetric momentum transfer is said to arise from the
magnetoelectric molecular structure, as it possesses optical anisotropy since the structure
breaks the temporal and spatial symmetries of electromagnetic modes. Even though the
details still need to be fully worked out, it is clear that asymmetric vacuum interactions
play a role in understanding magnetoelectric and other anistropic materials.
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6. Conclusions

We reviewed past studies on the δ − δ′ mirror and showed that, regardless of the mech-
anism and form of the time-dependent fluctuations, the ADCE is produced. Fluctuations
on λ0 were explored and we discussed obstructions to analyzing linear scattering in this
case. Experimental motivations were discussed. We showed, in the scattering framework,
that physically relevant quantities originate purely from the difference between right- and
left-half asymmetric transmission and reflection coefficients. A newly formulated solution
using the Bogoliubov transform introduces an asymmetric formulation of the moving
Robin boundary. This solution bears a striking resemblance to the moving δ − δ′ mirror,
demonstrating the ability to break symmetric boundary solutions and build up new forms
of ADCE configurations. Byproducts of the ADCE were explored, namely the transfer
of momentum to otherwise stationary systems, causing an object to move through the
vacuum without any addition external forces beyond the vacuum interactions. Remark-
ably, momentum transfer here emerges from the enforcement of conservation laws, not a
violation of them.

Within the framework of objects interacting in (1+1)D with the massless scalar quan-
tum field, we have explored the effects of introducing asymmetry to time-dependent
systems interacting with the quantum vacuum and demonstrated general consequences
that asymmetric boundary conditions impart upon these systems. Whether the problem is
approached from the perspective of quantum particles or quantum fields, the end result
is the same: an asymmetric production of photons between the two sides of an object.
An explicit breaking of mirror symmetry about the two sides of an object is necessary to
generate the asymmetry needed to produce different spectra and quantities of particles
about the two sides of the object. Additionally, without time-dependent fluctuations of
object–vacuum interactions the particle production vanishes. It is necessary to have pertur-
bations on both the spatial and temporal domains of the system to break the underlying
symmetry of vacuum interactions.

Author Contributions: Conceptualization, M.J.G.; methodology, M.J.G.; software, M.J.G. and W.D.J.;
validation, M.J.G., W.D.J., P.M.B. and J.A.M.; formal analysis, M.J.G., W.D.J., P.M.B. and J.A.M.; investi-
gation, M.J.G. and W.D.J.; resources, G.B.C.; data curation, M.J.G. and W.D.J.; writing—original draft
preparation, M.J.G. and W.D.J.; writing—review and editing, P.M.B., J.A.M. and G.B.C.; supervision,
G.B.C.; project administration, G.B.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Ramesh Radhakrishnan, Cooper Watson, and
Eric Davis for beneficial discussions and reviews. The authors would also like to thank the reviewers.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ADCE asymmetric dynamical Casimir effect
b.c. boundary condition
D dimension
DCE dynamical Casimir effect
SQUID superconducting quantum interference device

Appendix A. λ(t) Linear Scattering

Here, we provide a derivation of the scattering terms for f (t) chosen such that the
resulting expressions for matching conditions are as simple as possible. This allows us
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straightforward illustration of the way in which we are obstructed from deriving scattering
matrix elements as we did in the rest of this paper.

Starting from Equations (61) and (62),

−∂xΦ(ω0+) + ∂xΦ(ω, 0−) + µ[Φ(ω, 0+) + Φ(ω, 0−)]

−
∫ dω′

2π
L(ω − ω′)(∂xΦ(ω′, 0+) + ∂xΦ(ω′, 0−)) = 0

and

−Φ(ω, 0+) + Φ(ω, 0−) +
∫ dω′

2π
L(ω − ω′)(Φ(ω′, 0+) + Φ(ω′, 0−)) = 0,

it becomes seen that a general form of the matching conditions cannot be derived due to
convolution Fourier transforms. To demonstrate the difficulty these integrals provide for
the matching conditions, we take specific form λ(t) = λ0[1 + ϵ f (ω0t, |t|/τ)], where f is
assumed for now to have the same type of functional dependence found in Equation (34).
We note, though, that we do not specify an explicit functional definition for f . Instead,
making the general assumption that in the limit where τ → ∞, one has a “monochromatic-
like” limit where its Fourier transform satisfies

lim
τ→∞

F (ω) = b[δ(ω + ω0) + δ(ω − ω0)], (A1)

where b is some normalization constant for the Dirac delta distributions. Using this, one
then has the Fourier transform of λ(t) as

L(ω) = λ0[δ(ω) + ϵF (ω)], (A2)

where in what follows we assume we already computed the limit on τ whenever evaluat-
ing integrals.

Substituting L(ω − ω′) into Equations (61) and (62), one has:

−∂xΦ(ω0+) + ∂xΦ(ω, 0−) + µ[Φ(ω, 0+) + Φ(ω, 0−)]

− λ0

2π
[∂xΦ(ω, 0+) + ∂xΦ(ω, 0−)]− λ0ϵ

∫ dω′

2π
F (ω − ω′)(∂xΦ(ω′, 0+) + ∂xΦ(ω′, 0−)) = 0

(A3)

and

−Φ(ω, 0+) + Φ(ω, 0−) +
λ0

2π
(Φ(ω, 0+) + Φ(ω, 0−))

+λ0ϵ
∫ dω′

2π
F (ω − ω′)(Φ(ω′, 0+) + Φ(ω′, 0−)) = 0.

(A4)

Now, explicitly evaluating these integrals under the above limits and assumptions,
one obtains:

−∂xΦ(ω0+) + ∂xΦ(ω, 0−) + µ[Φ(ω, 0+) + Φ(ω, 0−)]− λ0

2π
[∂xΦ(ω, 0+) + ∂xΦ(ω, 0−)]

−λ0ϵb
2π

[∂xΦ(ω − ω0, 0+) + ∂xΦ(ω − ω0, 0−) + ∂xΦ(ω + ω0, 0+) + ∂xΦ(ω + ω0, 0−)] = 0
(A5)

and

−Φ(ω, 0+) + Φ(ω, 0−) +
λ0

2π
(Φ(ω, 0+) + Φ(ω, 0−))

+
λ0ϵb
2π

[Φ(ω − ω0, 0+) + Φ(ω − ω0, 0−) + Φ(ω + ω0, 0+) + Φ(ω + ω0, 0−)] = 0.
(A6)
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Next, we further assume that the ingoing and outgoing fields are linearly related as
before, giving

Φ+(ω, x) = s−(ω)e−iωxΘ(−x) + (e−iωx + r−(ω)eiωx)Θ(x)

and
Φ−(ω, x) = (eiωx + r+(ω)e−iωx)Θ(−x) + s+(ω)eiωxΘ(x).

Now, Equations (A5) and (A6) can be re-expressed explicitly in terms of transmission
and reflection coefficients, offering

Φ+:

−iω(1 +
λ0

2π
)(r−(ω)− 1)− iω(1 − λ0

2π
)s−(ω)

+µ[1 + r−(ω) + s−(ω)] =
λ0ϵb
2π

[i(ω − ω0)(r−(ω − ω0)− 1)

+i(ω − ω0)s−(ω − ω0) + i(ω + ω0)(r−(ω + ω0)− 1) + i(ω + ω0)s−(ω + ω0)],

(A7)

and

(
λ0

2π
− 1)(1 + r−(ω)) + (

λ0

2π
+ 1)s−(ω)

= −λ0ϵb
2π

[2 + r−(ω − ω0) + s−(ω − ω0) + r−(ω + ω0) + s−(ω + ω0)].
(A8)

Φ−:

−iω(1 +
λ0

2π
)s+(ω) + iω(1 − λ0

2π
)(1 − r+(ω)) + µ[1 + s+(ω) + r+(ω)]

=
λ0ϵb
2π

[i(ω − ω0)s+(ω − ω0) + i(ω − ω0)(1 − r+(ω − ω0))

+i(ω + ω0)s+(ω + ω0) + i(ω + ω0)(1 − r+(ω + ω0))],

(A9)

and

(
λ0

2π
− 1)s+(ω) + (

λ0

2π
+ 1)(1 + r+(ω))

= −λ0ϵb
2π

[2 + s+(ω − ω0) + r+(ω − ω0) + s+(ω + ω0) + r+(ω + ω0)].
(A10)

Equations (A7)–(A10) provide four coupled equations, with 12 unknown terms: four
scattering terms for each frequency argument appearing (ω, ω ± ω0). Therefore, there are
not enough constraints on the fields to produce a definitive solution to the λ(t) pertur-
bation for the (1 + 1)D mirror in this scattering approach. The authors are not aware of
any technique within this linear scattering framework that would allow for one to solve
problems of this type. Additionally, this result seems to suggest that there may be some
general obstruction that prevents this type of linear scattering framework from solution
when the potential contains a δ′ potential with time-dependent strength. This is because
potentials in this form typically couple different frequencies together in a way that prevents
the matching conditions from being solvable. The authors are still optimistic than an
approach based upon Bogoliubov transformations may be more successful, but such an
approach requires substantial development which is reserved for future work.
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