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Abstract: The paper reviews the recent progress in the description of isospin-symmetry breaking
within the nuclear shell model and applications to actual problems related to the structure and
decay of exotic neutron-deficient nuclei and nuclei along the N = Z line, where N is the neutron
number and Z the atomic number. The review recalls the fundamentals of the isospin formalism for
two-nucleon and many-nucleon systems, including quantum numbers, the spectrum’s structure and
selection rules for weak and electromagnetic transitions; and at the end, summarizes experimental
signatures of isospin-symmetry breaking effects, which motivated efforts towards the creation of
a relevant theoretical framework to describe those phenomena. The main approaches to construct
accurate isospin-nonconserving Hamiltonians within the shell model are briefly described and recent
advances in the description of the structure and (isospin-forbidden) decay modes of neutron-deficient
nuclei are highlighted. The paper reviews major implications of the developed theoretical tools to (i)
the fundamental interaction studies on nuclear decays and (ii) the estimation of the rates of nuclear
reactions that are important for nuclear astrophysics. The shell model is shown to be one of the
most suitable approaches to describing isospin-symmetry breaking in nuclear states at low energies.
Further efforts in extending and refining the description to larger model spaces, and in developing
first-principle theories to deal with isospin-symmetry breaking in many-nucleon systems, seem to be
indispensable steps towards our better understanding of nuclear properties in the precision era.

Keywords: nuclear shell model; isospin symmetry and its breaking; structure of neutron-deficient
nuclei; superallowed Fermi beta decay; fundamental interactions; astrophysical rp-process

1. Introduction
1.1. Isospin Symmetry in Nuclear Structure

Atomic nuclei are unique quantum many-body systems composed of two sorts of
fermions—protons and neutrons, which are known to have similar masses and possess
similar properties with respect to the strong interactions. It was Heisenberg [1] (see English
translation in Ref. [2]) who soon after the discovery of the neutron, introduced an isospin
formalism similar to the ordinary spin formalism as an elegant mathematical tool for dealing
with protons and neutrons. Nucleons are considered to be isospin t = 1/2 particles and
represented by two-component spinors spanning an abstract vector space where the isospin
operator, t̂, acts. The neutron and the proton are two eigenstates of t̂3 (the third component
of the isospin operator):

ψn(~r) = ψ(~r)
(

1
0

)
, ψp(~r) = ψ(~r)

(
0
1

)
,

with eigenvalues mt= ±1/2, respectively, and~r the radius vector. The three components
of the isospin operator, analogues of the Cartesian components, generate an isospin SU(2)
algebra:

[t̂j, t̂k] = iεjkl t̂l , (1)
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where j, k, l = 1, 2, 3, εjkl is the Levi-Civita symbol, and the square of the isospin operator,

t̂2 = t̂2
1 + t̂2

2 + t̂2
3 , (2)

commutes with each of the components: [t̂2, t̂j] = 0.
Operators corresponding to various physical observables can be conveniently ex-

pressed using isospin formalism. For example, the third component of the isospin operator
t̂3 allows one to express the nucleon charge operator,

q̂ =

(
1
2
− t̂3

)
e ,

and the ladder operators t̂±,
t̂± = t̂1 ± it̂2 , (3)

transforming a proton into a neutron and vice versa, can be useful to formulate nuclear β
decay. Here, “e” denotes the elementary charge.

Nowadays, isospin symmetry is an important concept in particle physics describing a
symmetry between u and d quarks with respect to the strong interaction and their similarly
light masses as compared to the other known quarks. The isospin character of nucleons, and
of other hadrons composed from u and/or d quarks, is a consequence of isospin coupling.

Based on the conservation of charge and the approximate charge-independence of the
nuclear forces, Wigner [3] introduced the total isospin operator for an A-nucleon system
arising from the coupling of the individual isospin operators:

T̂ =
A

∑
k=1

t̂(k) ,

or for the components:

T̂± =
A

∑
k=1

t̂±(k) , T̂3 =
A

∑
k=1

t̂3(k) , (4)

with T(T + 1) and MT = (N − Z)/2 being eigenvalues of T̂2 and T̂3, respectively, N the
neutron number, and Z the atomic number. A charge-independent nuclear Hamiltonian
would commute with T̂,

[Ĥnucl, T̂] = 0 ,

or
[Ĥnucl, T̂±] = [Ĥnucl, T̂3] = 0 .

An additional isospin quantum number T appears to label A-nucleon states besides
the total angular momentum, J, and parity, π. The spectrum of Hnucl thus consists of
degenerate isobaric multiplets, which can be labeled by (Jπ , T) in nuclei with the same
mass number A and MT = −T, . . . , T, called isobaric analogue states (IAS).

It was realized long ago that electromagnetic interactions destroy this degeneracy.
However, as it was shown by Wigner [4], this leads mainly to dynamical breaking of the
isospin SU(2) symmetry. Indeed, the Coulomb interaction between protons, which is the
main source of the isospin-symmetry breaking on the nuclear level, can be represented
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as a linear combination of an isoscalar (V̂(0)), an isovector (V̂(1)) and an isotensor (V̂(2))
operator:

V̂Coul =
A

∑
i<k

(
1
2
−t̂3(i)

)(
1
2
−t̂3(k)

)
e2

|~r(i)−~r(k)|

=
A

∑
i<k


[

1
4
+

1
3

t̂(i)t̂(k)
]

︸ ︷︷ ︸
V(0)

− 1
2
(t̂3(i)+t̂3(k))︸ ︷︷ ︸

V(1)

+

[
t̂3(i)t̂3(k)−

1
3

t̂(i)t̂(k)
]

︸ ︷︷ ︸
V(2)


e2

|~r(i)−~r(k)| .
(5)

By estimating the effect of this charge-dependent operator on the isobaric multiplets
within the lowest order perturbation theory (due to its expectation value within the states
of a given isospin, T) and applying the Wigner–Eckart theorem in the isospace, one gets an
expression quadratic in MT :

〈ηTMT |V̂Coul|ηTMT〉 =
(TMT00|TMT)√

2T + 1
〈ηT||V̂(0)||ηT〉

+
(TMT10|TMT)√

2T + 1
〈ηT||V̂(1)||ηT〉 (6)

+
(TMT20|TMT)√

2T + 1
〈ηT||V̂(2)||ηT〉,

where double bar denotes reduction in the isospin space; (TMTλµ|TMT) are the Clebsch–
Gordan coefficients; and η refers to other quantum numbers characterizing an isobaric
multiplet: η = (A, Jπ , . . .). By inserting Clebsch–Gordan coefficients, one gets:

〈ηTMT |VCoul|ηTMT〉 = E(0)(η, T) + E(1)(η, T)MT + E(2)(η, T)
[
3M2

T − T(T + 1)
]

, (7)

where E(λ)(η, T) are related to the reduced in isospace matrix elements of isotensors, as
seen from Equation (6). This expression remains valid if leading-order terms of charge-
dependent forces of nuclear origin are included, as discussed in Section 1.2. Such a de-
pendence, re-written for nuclear masses, is known as the isobaric-multiplet mass equation
(IMME) [4],

M(η, T, MT) = a(η, T) + b(η, T)MT + c(η, T)M2
T , (8)

withM being an atomic mass excess. Experimental a, b and c coefficients can be deduced
from available data on nuclear masses and spectra of up to about A = 71 [5,6].

Interestingly, Equation (8) holds exceptionally well, even for isobaric multiplets with
more than three members (T > 1). This makes the IMME a powerful tool for predicting the
nuclear masses of nuclei along the N = Z line, as illustrated in Section 3. Deviations from
the quadratic form are rare and small. They are specifically searched for in experiments,
as they can bring important information on the presence of charge-dependent many-body
forces or witness strong isospin mixing.

From a group-theoretical point of view [7], Equation (7), or equivalently, Equation (8),
expresses a reduction of the isospin SU(2) group to its SO(2) subgroup. The eigenstates
of the full Hamiltonian, Ĥnucl + V̂Coul, can still be characterized by the isospin quantum
number T, but the (2T + 1)-fold degeneracy inherent to the isotopic multiplets is now
removed. This effect is analogous to a Zeeman splitting of atomic levels in the presence of
a magnetic field.

As every symmetry, isospin symmetry proposes a number of selection rules for various
transition operators, on the basis of their tensorial character with respect to the SU(2) group
in isospace. For example, allowed β-decay, governed by the vector or axial-vector weak
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currents, is described by Fermi (F) or Gamow–Teller (GT) operators, respectively. In the
impulse approximation, these operators read

ÔF(β±) =
A

∑
k=1

t̂±(k) , ÔGT(β±) =
A

∑
k=1

σ̂σσ(k)t̂±(k) . (9)

Both operators are seen to be isovector components. The Fermi operator is a scalar, and the
Gamow–Teller operator is a vector in the ordinary spin space (σ̂σσ is the Pauli spin operator).
The Wigner–Eckart theorem establishes angular momentum parity, and isospin selection
rules can be established for transitions between an initial state (Jπi

i , Ti) and a final state
(J

π f
f , Tf ). For Fermi transitions, one has:

∆J = 0, ∆T = 0, ∆π = 0 ,

and for Gamow–Teller transitions, one has:

∆J = 0, 1, ∆T = 0, 1, ∆π = 0
(no Ji = 0→ J f = 0) .

From this one can conclude that Ji = 0→ J f = 0 decay can be only by the Fermi type.
A similar analysis can be performed for electromagnetic operators. Assuming a

one-body structure of nucleonic convection and spin currents and point-like nucleons,
electromagnetic operators can be shown to be a linear combination of an isoscalar and an
isovector operator [8], e.g., for an operator of multipolarity L, one has ÔLM = Ô(0)

LM + Ô(1)
LM,

where M = −L, . . . , L. Therefore, their matrix elements between states of given isospin can
be expressed as

〈J f M f ; Tf MT |ÔLM|Ji Mi; Ti MT〉 = δTiTf 〈J f M f |Ô
(0)
LM|Ji Mi〉

+
(Ti MT10|Tf MT)√

2Tf + 1
〈J f M f ; Tf ||Ô

(1)
LM||Ji Mi; Ti〉 ,

(10)

where δTiTf is the Kronecker delta.
From Equation (10) one immediately gets the isospin selection rules for electromagnetic

transitions [8].

• For ∆T = 1 transitions (Tf = Ti ± 1), the (reduced) matrix elements of analogue
transitions in mirror nuclei or between respective analogue states should be identical,
since they are governed only by the isovector term.

• In transitions between the states of the same isospin (Ti=Tf=T), both isoscalar and
isovector terms contribute, and the matrix element for analogue transitions within an
isobaric multiplet exhibits a linear trend as a function of MT :

〈J f M f ; TMT |ÔLM|Ji Mi; TMT〉 = 〈J f M f |Ô
(0)
LM|Ji Mi〉

+
MT√

T(T + 1)(2T + 1)
〈J f M f ; T||Ô(1)

LM||Ji Mi; T〉 .
(11)

• Another specific rule can be established for electric dipole operator. In the lowest
order of the long-wavelength approximation, the electric-dipole (E1) operator is an
isovector operator:

Ô(E1) =
A

∑
k=1

e(k)~r(k) =
A

∑
k=1

(
1
2
− t̂3(k)

)
e~r(k) . (12)
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Hence, E1 transitions between the states of the same isospin (Ti=Tf=T) in N = Z
nuclei are forbidden by the isospin symmetry because of the vanishing Clebsch–
Gordan coefficient, (T 0 1 0| T 0 ) = 0 (see Equation (11)).

Finally, isospin selection rules govern also nuclear reactions (see also, e.g., Refs. [9–11],
for specific topics). Restricting ourselves to nuclear decays, only nucleon, two-nucleon and
α-particle emission are mentioned here: for example, for isospin-allowed proton emission,
the difference in isospin between the initial and final states is ∆T = 1/2; for two-proton
emission, it is ∆T = 1; α emission should be consistent with ∆T = 0.

Observation of isospin-forbidden decay modes indicates explicit isospin-symmetry
breaking and the presence of isospin mixing in nuclear states.

1.2. Isospin-Symmetry Breaking

Although isospin symmetry proved to be quite a useful concept in nuclear and particle
physics, which helps to simplify theoretical modeling of the nucleon–nucleon interaction
and provides an efficient framework for the nuclear many-body problem, experimental
evidence has been accumulated on the breaking of isospin symmetry.

First, it is known that isobaric multiplets are not degenerate. The differences in
energy between states forming an isobaric multiplet are called Coulomb displacement ener-
gies, since the Coulomb interaction is the main contributor to the effect. Such splittings
can be explained within dynamical breaking of isospin symmetry, as was pointed out in
Section 1.1. However, observation of isospin-forbidden decays, i.e., decays which break
isospin selection rules, indicates that isospin is not a good quantum number, and there is
a certain amount of isospin mixing in nuclear states. To describe such phenomena, one
must introduce an explicit breaking of isospin symmetry within a nuclear structure model.
Development of microscopic approaches for an accurate description of isospin-symmetry
breaking is important not only for understanding the structure and decay of proton-rich
nuclei, but also for the evaluation of nuclear-structure corrections to weak processes in
nuclei. Taking isospin-symmetry breaking into account may also help to improve our
knowledge of certain reactions involving proton-rich nuclei, which are crucial for nuclear
astrophysics.

At the nuclear level, isospin symmetry is broken mainly due to the Coulomb interac-
tion among protons (a long-range component of the electromagnetic interaction between
protons), and to a minor extent by the proton and neutron mass difference and the presence
of the charge-dependent forces of nuclear origin (short-range). At the quark level, these
causes can be rooted to the u and d quark mass difference and electromagnetic interac-
tions between the quarks. The need for charge-dependent forces of nuclear origin was
established long ago from the analysis of the nucleon–nucleon (NN) scattering data. For
example, it is known that there are differences in the neutron–neutron (ann), proton–proton
(app, with electromagnetic effects being subtracted) and neutron–proton (anp) 1S0 (a T = 1
channel) scattering lengths [12,13]. Namely, the difference of ann and app,

ann − app = 1.6± 0.6 fm , (13)

is a signature of charge-symmetry breaking of the strong NN force; and the even larger
difference between anp and the average of ann and app,

1
2
(ann + app)− anp = 5.64± 0.40 fm , (14)

is known as the charge-independence breaking property.
Moreover, still long ago, Nolen and Schiffer [14] noticed that the Coulomb force

alone cannot satisfactorily explain the binding energy differences in mirror nuclei if one
requires the model to reproduce nuclear charge radii and vise versa (the so-called Nolen–
Schiffer anomaly). The insufficiency of the two-body Coulomb interaction in reproduction
of splittings of isobaric multiplets was also demonstrated in more refined shell-model
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calculations (e.g., Refs. [15–17]). Many-body approaches must therefore, take into account
short-range charge-dependent components of the nucleon–nucleon interaction.

Henley and Miller [18] proposed to divide two-nucleon forces into four classes accord-
ing to their isospin characters, namely,

• class I (VI) are charge-independent forces {1, t̂(1)·t̂(2)};
• class II (VI I) are forces which break the charge independence, but preserve the charge

symmetry of the two-nucleon system, {t̂3(1)t̂3(2)};
• class III (VI I I) are charge-symmetry breaking forces, which vanish in the neutron-

proton system, {t̂3(1)+t̂3(2)};
• class IV (VIV) are forces which do not conserve the isospin of the two-nucleon system:

{t̂(1)× t̂(2), t̂3(1)− t̂3(2)}.
If, as an example the two-body Coulomb interaction, acting between protons, is

considered, one may notice that it comprises terms of classes I, II and III, as seen in
Equation (5). It is important to note that although class II and class III forces commute
with the two-nucleon isospin operator, such forces do violate the isospin symmetry in an
A-nucleon system with A > 2.

Isospin-symmetry breaking two-nucleon forces have been constructed and explored
in earlier meson-exchange models [12,19] and within the modern chiral effective field
theory χEFT) [13,20–22]. The details of various contributions from hadronic mass splittings
and electromagnetic processes can be found in the above-given references. From χEFT,
the following hierarchy was deduced [20]: VI > VI I > VI I I > VIV . In addition, charge-
dependent three-nucleon (3N) forces have been constructed within χEFT see, e.g., the
review [13] and references therein). Those may contribute to possible deviations of the
IMME from its quadratic form, as discussed in Section 3.1 below.

Although charge-dependent realistic inter-nucleon interactions are frequently used
in many-body calculations, in particular, in ab initio approaches, there have been few
studies specifically focused on the degree of isospin-symmetry breaking. Nevertheless, ab
initio Green’s function Monte Carlo calculations with charge-dependent forces from the
realistic Argonne v18 NN + Illinois-7 3N potential supplemented by more refined charge-
dependent terms have been performed [23]. Quite good reproduction of the binding-energy
differences in a few pairs of light mirror nuclei and the expected amount of isospin-mixing
in 8Be were reported. A significant feature of those calculations is that they introduced
and demonstrated the role of class IV forces. Charge-dependent NN+3N forces from χEFT
are used in state-of-the-art no-core shell model calculations for light nuclei [24,25], and the
validity of isospin symmetry in electric quadrupole moments of mirror nuclei has been
probed within the same theoretical approach in Ref. [26].

This review is devoted rather to the description of isospin-nonconserving phenomena
in spectra and decays of heavier nuclei, for which a solution of the nuclear many-body
problem needs an approach requiring effective charge-dependent interactions. Various
theoretical frameworks aimed at a reliable description of isospin-symmetry breaking have
been developed to deal with the problem. Among them are state-of-the-art shell-model
calculations [15–17,27–35], including its no-core realization [36] and continuum-coupling
extension [37], mean-field approaches and beyond (e.g., [38–47]) and others. Earlier com-
prehensive reviews on isospin symmetry and its breaking can be found in Refs. [9,48–50].

The present paper focuses rather on a particular theoretical approach to the problem,
namely, on the nuclear shell model (e.g., see books [51–54]). Indeed, the shell model
conserves all fundamental symmetries of atomic nuclei (such as angular momentum and
particle number) and describes quite accurately individual states and transitions at low
energies. This makes it an adequate approach for searching for tiny isospin-symmetry
breaking effects. In the following sections, we highlight recent progress achieved by the
isospin nonconserving shell model. A short summary of selected results has already been
published in the proceedings of EuNPC2018 [55].
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2. Formalism

The starting point of the shell model is a non-relativistic Hamiltonian for point-like
nucleons containing nucleon kinetic energies and effective NN interactions (only two-body
interactions are considered here):

Ĥ =
A

∑
k=1

T̂kin(k) +
A

∑
k<l=1

V̂nucl(k, l) . (15)

By adding and subtracting a one-body spherically symmetric potential (e.g., a harmonic-
oscillator potential), one can rewrite the Hamiltonian as a sum of an independent-particle
Hamiltonian (Ĥ0) and a residual interaction (V̂):

Ĥ =
A

∑
k=1

[
T̂kin(k) + Û(k)

]
+

[
A

∑
k<l=1

V̂nucl(k, l)−
A

∑
k=1

Û(k)

]
= Ĥ(0) + V̂ . (16)

The eigenstates of Ĥ (ĤΨm = EmΨm) are searched for in terms of a complete orthonor-
mal set of eigenfunctions of Ĥ0 (Ĥ0Φm = E0mΦm):

Ψm = ∑
m′

Cmm′Φm′ .

Using this expansion, the eigenproblem is reduced for Ĥ to the diagonalization of
the Hamiltonian matrix, 〈Φm′ |Ĥ|Φm〉, computed from single-particle energies of valence-
space orbitals, εp,n(a), and two-body matrix elements (TBMEs) of the residual interaction,
〈ab; JMTMT |V̂|cd; JMT′MT〉 (a, b, c, d run over valence-space orbitals in a spherically sym-
metric mean field, i.e., a = (nala ja) and so on). As a result, one gets eigenvalues Em and
the corresponding sets of expansion coefficients {Cmm′}. If the nuclear Hamiltonian, which
is rotational invariant, is also taken to be charge-independent (the proton and neutron
single-particle energies are identical and TBMEs are independent from MT with T = T′),
its eigenstates are characterized by the angular momentum and isospin quantum numbers
(JMTMT), thereby forming degenerate spin (isospin) multiplets.

Since the model’s space dimensions grow quickly as the number of particles increases,
only for light nuclei can the shell model problem be solved for all nucleons considered in a
model space comprised of many harmonic-oscillator shells. When using realistic internu-
cleon interaction, the approach is referred to as an ab initio no-core shell model [24]. For
heavier nuclei, the shell-model problem is formulated for valence nucleons only, occupying
a model space consisting of one or two oscillator shells beyond a closed shell core. This
restriction of the model space has been proved to be sufficient for low-energy nuclear
structures. However, because of a severely truncated model space, one needs to derive a
so-called effective interaction.

In this context, the isospin formalism helps to reduce the number of parameters. Never-
theless, construction of robust valence-space effective Hamiltonians remains a challenging
and a long-standing problem of nuclear theory. Microscopic effective interactions have
been constructed, for example, within the many-body perturbation theory, starting from
the pioneering work in 60s [56,57] and continuing on into recent times (for reviews, see
Refs. [58–60]). In spite of important advances, microscopic interactions are known to be
less successful than more phenomenological parametrizations, based on the adjustment of
TBMEs to selected data on nuclear spectra from a given model space. In particular, with
two-nucleon forces only, the resulting effective interaction suffers from serious deficiencies
in their monopole component [61]. This feature was ascribed to missing 3N forces. In
addition, a number of theoretical issues in application of many-body perturbation theory
to nuclear effective interaction problem have been raised regarding convergence of the
expansion [62], which have not convincingly been answered yet.

In the last decade, new non-perturbative approaches to the construction of effective
valence-space Hamiltonians have been put forward, based on unitary transformation



Physics 2023, 5 359

techniques—the in-medium similarity-renormalization group approach (IMSRG) [60,63]
and the Okubo–Lee–Suzuki transformations of no-core shell-model solutions [64,65]. In
addition, similar ideas have been implemented within the coupled-cluster method [66–68].
Moreover, some of these approaches, including modern many-body perturbation theory [69,
70], have successfully incorporated three-nucleon forces in their frameworks, producing
state-of-the-art microscopic effective valence-space interactions from first principles.

In spite of all these developments, phenomenological effective interactions still re-
main a benchmark. Therefore, let us start the discussion of isospin-nonconserving (INC)
Hamiltonians from a phenomenological perspective.

2.1. Phenomenological Approaches

Phenomenological effective Hamiltonians are typically isospin-conserving; therefore,
the Coulomb contribution is usually evaluated and subtracted from the data before it is used
in a fit. The resulting interactions are called realistic, and they can provide high accuracy
in the description of nuclear excited states and transitions at low energies for a large set
of nuclei (ideally, all nuclei) from a given model space. The most famous examples are
the Cohen–Kurath Hamiltonians [71] in the p shell; the universal sd shell (USD) family of
Hamiltonians [72,73], and Kuo-Brown modified KB3G [74] and GXPF1A [75] Hamiltonians
in the p f shell.

An attractive option to construct an accurate INC Hamiltonian is thus to adopt a
well-established charge-independent Hamiltonian as a lowest-order approximation and to
add an INC term. The latter must contain the two-body Coulomb interaction and effective
charge-dependent NN forces (V̂CD), at least of classes II and III (no class IV forces are
discussed here, but eventually, the framework can be extended to include them as well).
Such an operator is a sum of an isoscalar, an isovector and an isotensor term:

V̂INC = V̂Coul + V̂CD = ∑
λ=0,1,2

V̂(λ)
INC , where


V̂(0)

INC = (vpp + vnn + vT=1
np )/3 ,

V̂(1)
INC = vpp − vnn ,

V̂(2)
INC = (vpp + vnn)/2− vT=1

np .

To describe the Coulomb effects of the core, an isovector one-body term is added
which gives rise to the so-called isovector single-particle energies, ε̃(a)=εp(a)−εn(a), where a
runs over model-space orbitals. In lowest-order perturbation theory, the splitting of the
isobaric multiplets is due to the expectation value of this operator; therefore, it is expressed
by a quadratic polynomial in MT , similarly to Equation (7):

〈ΨTMT |V̂INC|ΨTMT 〉 = E(0)(η, T) + E(1)(η, T)MT + E(2)(η, T)
[
3M2

T − T(T + 1)
]
.

In order to find the best set of parameters of V̂INC and isovector single-particle energies
ε̃a, one can perform a fit requiring that theoretical isovector and isotensor components
allow one to reproduce experimentally deduced b and c IMME coefficients for a wide
selection of lowest and excited isobaric multiplets with T = 1/2, 1, 3/2, . . .. This procedure
was first proposed in Ref. [15] and was used in the later work related to the sd-shell [16,27]
and p f -shell and heavier nuclei [28]. Among various possible forms of V̂CD, modelization
of that term either by a ρ-exchange Yukawa-type potential (with a scaled meson mass) or
by the T = 1 term of the isospin-conserving Hamiltonian in the isovector and isotensor
channels resulted in similar quality fits [15,27]. At the same time, the use of the π-exchange
potential was found to require much stronger renormalization of the two-body Coulomb
force, and therefore, it was not retained.

Figure 1 shows the b coefficients for the lowest doublets and c coefficients for the lowest
triplets obtained from such phenomenological interactions for sd-shell and p f -shell nuclei,
in comparison with the experimental values. It is evident that the agreement between
theory and experiment is remarkable. The root-mean-square (rms) deviations between
theory and experiment represented in Figure 1 are 30 keV (95 keV) for b coefficients in the



Physics 2023, 5 360

sd (p f ) shell and around 9 keV (25 keV) for the c-coefficients in the sd (p f ) shell. One can
observe that the description of the p f -shell b coefficients worsens towards the middle of
the shell. By excluding data for A = 59, 61, 63, the rms deviation reduces to 55 keV. This
problem seems to be linked to the difficulty in the description of nuclei from the upper part
of the p f shell because of large dimensions involved, and may not be related to the form
of the INC terms. Note also that more realistic forms of V̂CD did not help to improve the
fit [16].
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Figure 1. Experimental (”Exp”) [5,76] and theoretical (”Theory”) IMME b coefficients for the lowest
doublets (left) and c coefficients for the lowest triplets (right) in the sd and p f shells. The sd-
shell results were quoted from Ref. [27], and p f -shell calculations were performed with GX1Acd
interaction [77]. See text for details.

As seen in Figure 1, the shell model well reproduces both the general trends and the
fine structure of b and c coefficients. The latter considers the staggering c coefficients as a
function of A, as well visible in Figure 1 (right): the c coefficients in A = 4n + 2 multiplets
are systematically larger than those in A = 4n (n being a positive integer). Similarly, the
b coefficients in doublets and quartets form two families for A = 4n + 1 and A = 4n + 3,
with opposite phases, however (for doublets, b coefficients are largest in A = 4n + 1 nuclei,
and for quartets, they are largest for A = 4n + 3 nuclei). To amplify the effect, in Figure 2,
the differences in b coefficients between A and A− 2 nuclei are plotted.
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Figure 2. Experimental [5,76] (left) and theoretical (right) differences in IMME b coefficients (∆b) for
the ground-state, first-excited and second-excited natural-parity T = 1/2 multiplets in the sd and p f
shells. The sd-shell results were obtained with the interaction from Ref. [27], and p f -shell calculations
were performed with GX1Acd interaction [77].

The staggering was noticed long ago and explained by the interplay between the
Coulomb force and the pairing TBMEs [78]. It should be visibly present in b coefficients
of multiplets with half-integer T and c coefficients of multiplets with integer values of
T. The same conclusions have been reached [79] within a simpler macroscopic approach
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supplemented by different proton and neutron average pairing gaps, which made it possible
to grasp the main features of staggering.

Modern microscopic approaches [27,28,34,44,45] using realistic interactions well re-
produce the effect. The main advantage of the shell-model type approaches is that they can
describe b and c coefficients of excited states as well. Figures 2 and 3 show the differences
among b coefficients, ∆b and c coefficients for the three lowest positive-parity multiplets
in doublets and triplets, respectively. Interestingly, that the amplitudes of oscillations
diminish with excitation energy. This hints that the pairing effect gradually weakens as
systems become more and more excited.
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Figure 3. Experimental [5,76] (left) and theoretical (right) IMME c coefficients for the lowest, first-
excited and second-excited T = 1 multiplets in the sd and p f shells. The sd-shell results were
obtained with the interaction from Ref. [27], and p f -shell calculations were performed with GX1Acd
interaction [77]. For A = 42, the data are given for Jπ = 0+, 2+, 4+ states. See text for details.

The approach described above can rather well reproduce an extended set of b and
c coefficients and provides an attractive tool with which to predict binding energies and
states in mirror systems using a method of Coulomb energy differences, described in
Section 3.1 below. At the same time, a few drawbacks exist—namely, that it (i) does not
allow one to predict nuclear masses on purely theoretical grounds, (ii) does not account for
the so-called Thomas–Ehrman shift and (iii) it does not provide enough accuracy in the
description of the differences in excitation energies of analogue states, usually referred to
as Coulomb energy differences.

Another strategy was put forward by Zuker, Lenzi and collaborators in a series of
papers starting from [17] (see also Refs. [80–82] for a recent review). The idea consists
in modeling charge-dependent forces of nuclear origin with a few TBMEs, adjusted to
reproduce the differences in excitation energies of isobaric multiplets relative to the lowest
in energy multiplet. Those quantities are known as mirror energy differences (MEDs) and
triplet energy differences (TEDs) in T = 1 multiplets, and they are related to the differences
in b or c coefficients between the lowest multiplet and an excited one. For example, for
triplets,

MED(J) = −2(b(J)− b0) ,
TED(J) = 2(c(J)− c0) ,

where b0 (c0) is a b (c) coefficient of the lowest triplet. Considered as a function of J along
an excitation band (a pattern of excited states linked by pronounced electromagnetic tran-
sitions), MEDs and TEDs can bring pertinent information on nuclear structure effects. A
vary accurate description has been achieved [17,80] of the p f shell by a phenomenological
parameterization of various physical effects, such as changes in nuclear radius (or defor-
mation) and electromagnetic corrections to the single-particle energies, with V̂CD being
modeled by a few J = 0 TBMEs in isovector and isotensor channels.

In Ref. [28], it was shown that modelization of VCD by two J = 0, T = 1 TBMEs
in the f7/2 orbital and theoretically calculated single-particle energies was sufficient to
reproduce the staggering behavior of b and c coefficients. This may not be surprising, since
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we understand the staggering effect is due to the Coulomb contribution to the pairing-type
matrix elements.

Later on, the approach was generalized to other model spaces using a more extended
form of a charge-dependent term of nuclear origin as a number of TBMEs in Refs. [31,32].
MED and TED appear to be sensitive tools to unveil the structure of excited states, and
in particular, TEDs and MEDs can shed light onto pair alignment process or on the shape
evolution. Detailed study of the heavy N = Z region allowed researchers to understand
co-existing shapes and other effects in A = 66, 70, 74, 78 (e.g., [29,83]).

Moreover, MEDs have been shown [84] to depend linearly on the difference between
neutron and proton radii, known as “neutron skin”, and that they strongly correlate with the
s1/2-orbital occupation. In general, low-l orbitals, especially s1/2 orbitals, are characterized
by an extended radius and play thus a special role in nuclear structure. In particular, it was
noted that MEDs of states having higher occupation of s1/2 are unusually large. It turns
out that states in proton-rich nuclei having high occupation of such an orbital experience a
stronger shift with respect to their mirror states in neutron-rich partners. This is the essence
of the so-called Thomas–Erhman effect [85,86]. Parameterizations of the charge-dependent
forces mentioned above do not necessarily include this effect, which thus requires special
care. In order to account for the Thomas–Ehrman shift, several approaches have been
developed. For example, one can vary the energy of the proton ε(s1/2) single-particle
orbital (e.g., Ref. [87]) or quench TBMEs which involve s1/2 orbitals [88]. Recently, a direct
construction of TBMEs based on a simultaneous fit of isoscalar, isovector and isotensor
terms has been undertaken, which lead to a few new types of USD interactions [34], aiming
at consistent description of proton-rich and neutron-rich nuclei on similar grounds.

2.2. Semi-Phenomenological Approaches

A first step towards a more theoretical framework was to use a more realistic form of
V̂CD on top of phenomenological wave functions. This was introduced in Ref. [16] for the
sd shell but found to be less successful than a purely phenomenological charge-dependent
term. More recently, in Ref. [33], microscopic charge-independence breaking p f -shell
Hamiltonians have been constructed from the two-body CD-Bonn, Argonne v18 and chiral
N3LO (next-to-next-to-next-to-leading order) potentials on top of the phenomenological
GXPF1A interaction. The authors compared theoretical IMME c coefficients as a function
of the angular momentum in selected p f -shell nuclei with experimental data and conclude
that the theory indicates too-strong of a contribution of the charge-independence breaking
terms of nuclear origin.

2.3. Microscopic Approaches

A recent breakthrough in the construction of the NN interaction from effective field
theories and advances in nuclear many-body methods led to the appearance of the first
semi-microscopic and fully microscopic effective charge-dependent Hamiltonians. In
particular, large-scale calculations for proton-rich nuclei in the extended sd f7/2 p3/2 and
p f g9/2 model spaces with effective Hamiltonians, derived within many-body perturbation
theory from χEFT NN+3N interactions, have been reported in Ref. [30].

Later on, valence space Hamiltonians were constructed within the IMSRG approach [35]
based on two forces obtained within χEFT. The author tested the ability of their fully ab
initio methods to reproduce the experimental IMME b and c coefficients for a large selection
of nuclei of interest for superallowed β-decay applications with A between 10 and 74.
Their conclusion is that although the major trend comes out correctly, their results are
interaction-dependent and not precise enough to get the fine details.

Numerous modern theoretical investigations of nuclear properties are performed
nowadays within ab initio approaches using charge-dependent realistic interactions (for
example, those from χEFT). We believe that specific issues of isospin-symmetry breaking
will definitely be addressed in forthcoming studies.
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3. Structure and Decay of Neutron-Deficient Nuclei

Development of charge-dependent Hamiltonians has its ultimate goal of providing
an accurate description of nuclei along the N = Z line and proton-rich nuclei, making
it possible to describe the signatures of isospin-symmetry breaking. This Section gives
examples of how theoretical IMME coefficients can serve to predict nuclear masses and
excited states in mirror nuclei, and it summarizes the progress in the description of isospin-
forbidden transitions. The latter provide important tests of isospin mixing in nuclear wave
functions to validate theoretical models.

3.1. IMME Coefficients for Masses and Excitation Spectra of Proton-Rich Nuclei

It was recognized long ago that the quadratic IMME, Equation (8), been successful
throughout the nuclear chart, can provide a powerful method to determine masses, called
the method of Coulomb displacement energies [28,79,89–92]. Namely, the mass excess of
a proton-rich nucleus (with MT = −T) on the basis of an experimental mass excess of its
neutron-rich mirror (with MT = T) and the theoretical b coefficient as

M(η, T, MT = −T) =M(η, T, MT = T)− 2 b(η, T) T . (17)

If theoretically Coulomb displacement energies are calculated, then they can be used
straight instead of 2bT in Equation (18), as is done in Ref. [28,92]. Since the IMME is also
applicable to describe excited multiplets, the method can be used to predict the positions of
excited states in proton-rich nuclei.

Even more precise determination of the energy-level position is possible in triplets if
two of three members of an isobaric multiplet are known experimentally:

M(η, T, MT = −1) = 2M(η, T, MT = 0)−M(η, T, MT = 1) + 2c(η, T) . (18)

Since the rms (root-mean-square) deviation for c coefficients is typically smaller than
that for b coefficients, one would expect to have a smaller theoretical uncertainty value.
These methods can be advantageous for determination of the level in proton-rich nuclei of
astrophysical interest (e.g., [93]), as pointed out in Section 5.

The methods described above rely on the quadratic IMME given by Equation (8).
Indeed, for isobaric mutliplets with T > 1, which involve more than three members,
deviations from the quadratic law can be expected. An extended IMME equation would
include terms proportional to M3

T and M4
T , i.e.,

M(η, T, MT) = a(η, T) + b(η, T)MT + c(η, T)M2
T + d(η, T)M3

T + e(η, T)M4
T , (19)

which can be tested on quartets and quintets. Up till now, very few cases of non-zero d
or e coefficients have been reported [5,6,94]; see also Refs. [95,96] and references therein.
Typical values reach tens of keV.

Theoretically [94,97], deviations from a quadratic IMME are possible due to the pres-
ence of charge-dependent three-nucleon forces and/or due to isospin-mixing with nearby
states. It is worth noting that the diagonalization of an INC shell-model Hamiltonian
can generate an extended IMME, and several calculations have been reported [96,98]. To
understand the challenge of getting reliable estimations of cubic and quartic terms on
purely theoretical grounds, it is sufficient to notice that the rms errors of b and c coefficients
are of the same order of magnitude or even larger than possible non-zero values of d and
e coefficients. To avoid these ambiguities, a dedicated analysis constraining theory by
available experimental information on A = 32 quintet have recently been performed [99].
Further efforts towards required precision will be crucial to advance our understanding of
the origin of the IMME beyond its quadratic form.
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3.2. Isospin-Forbidden Decays

Observation of transitions violating isospin selection rules, pointed to in the Introduc-
tion, signifies that the states are not pure in isospin. To predict theoretically the magnitudes
of isospin impurities based on a fully microscopic calculation represents quite a compli-
cated task. This can be understood as follows. In the shell model discussed here, isospin
impurities arise from mixing of states of the same spin and parity but different isospin,
if charge-dependent forces are present. Let us consider the simplest case of just two
eigenstates of a charge-independent Hamiltonian, |Jπ , T〉 and |Jπ , T′〉, of isospin T and T′,
respectively. Inclusion of a charge-dependent interaction will result in new eigenstates,
being linear combinations of unperturbed states, as

|a, Jπ〉 =
√

1− x2|Jπ , T〉+ x|Jπ , T′〉
|b, Jπ〉 =

√
1− x2|Jπ , T′〉 − x|Jπ , T〉 .

The mixing amplitude, x, in the first order is given by the ratio of the isospin-mixing
matrix element and the energy difference between the two states:

x ∼ 〈Jπ , T|VINC|Jπ , T′〉/∆E .

It is known that it is difficult to predict theoretically the energy difference between
states, especially for an odd–odd nucleus. Uncertainties of a few hundred keV may result
in huge uncertainty on the mixing probability. However, we would like to require from
theory to robustly predict the value of the mixing matrix element, 〈VINC〉. In practice, there
could be many-state mixing, and the theory should able to deal with such a problem.

Mixing matrix elements depend strongly on the structure of the states considered, and
therefore require in each case a dedicated calculation. Systematic calculations of 〈VINC〉,
and distinction between its long-range (Coulomb) and short-range contributions, may bring
interesting information, especially when compared to available experimental data (see
Refs. [16,49] for an earlier study). From various specific calculations, it seems that typical
values of 〈VINC〉 are between a few keV to a few tens of keV. Maximum values are 150 keV
in p-shell nuclei [23,100], around 100 keV for sd-shell nuclei [16] and about 50 keV in the p f
shell [101]. These estimations are in agreement with the largest observed values reported
until now: −145(20) keV for 8Be in the p shell [100], 106(40) keV for 24Mg [102] in the sd
shell and 40(23) keV for 56 Cu [103] in the p f shell. Although theoretical uncertainty on
energy differences between admixed states hampers direct predictions of isospin impurities
from theory, it often turns out that combining calculations with experimental data may be
sufficient to constrain predictions, as illustrated in Section 3.2.3 below.

3.2.1. Isospin-Forbidden β-Decay

To shed light on possible isospin impurities in nuclear states, one must appeal to
isospin-forbidden transition probabilities. Let us remark that the only model-independent
way to extract the amount of isospin-mixing from experiment is provided by Fermi β-
decay [49]. Since the Fermi operator (9) is given by the isospin ladder operators T̂±, its
matrix element between members of an isobaric multiplet can be expressed as

|M0
F| = |〈T, MT ± 1|T̂±|TMT〉| =

√
(T + MT)(T −MT + 1) . (20)

In isospin-symmetry limit, the whole strength would feed the IAS. A measured deple-
tion of the Fermi strength from the IAS or observation of Fermi transitions to non-analogue
states can bring information on the amount of isospin mixing in the IAS. In addition, if
a MT > 0 nucleus β+ (β−) decays, then the mixing is dominantly present in the parent
(daughter) nucleus, and inversely for a MT < 0 nucleus. Then, the isospin-forbidden
Fermi-matrix element in a non-analogue state can be estimated as |MIF

F | = |x||M0
F|.

Special cases of purely Fermi, non-analogue 0+ → 0+ transitions are known, and they
bring important information for the tests of the weak interaction in nuclear decays [104].
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Distribution of the non-analogue Fermi strength, as experimentally measured recently in
62Ga [105], can shed light on the mixing matrix elements to cross-check the theory.

Transitions between states of the same (but non-zero) angular momentum, Jπ → Jπ

(J 6= 0), are governed by both Fermi and Gamow–Teller components of the β-decay operator.
A separation of the Gamow–Teller matrix element is an experimental challenge, bringing,
however, direct knowledge on on isospin impurities, as elaborated in Refs. [49,106,107].

3.2.2. Signatures of Isospin-Symmetry Breaking from Electromagnetic Transitions

Observation of other isospin-forbidden decays requires theoretical calculations of
corresponding nuclear processes for extraction of the mixing probability. For example,
electromagnetic transitions which violate isospin selection rules propose another possibility
to test the degree of isospin-symmetry breaking.

Electric dipole transitions play a special role in these explorations due to a specific
isovector character of the operator; see Equation (12). In particular, in Section 1.1, it was
mentioned that E1 transitions between the states of the same isospin in self-conjugate
(N = Z) nuclei are forbidden by isospin symmetry. A few cases of observation of weak E1
transitions in N = Z nuclei between states of the same isospin have been reported [108,109].
This indicates breaking of isospin symmetry in the states involved in the decay. The shell-
model calculation of individual E1 transition rates is hampered by the fact that the model
space should contain orbitals of different parities, which could also lead to a center-of-mass
motion. Given that the center-of-mass separation is only approximate, it is a challenge
to give a precise estimation of the E1 strength. Observed enhancements of E1 rates in
N = Z nuclei and enhanced asymmetries of mirror E1 transitions can be related to the
giant isovector monopole resonance [109].

An original idea of using E2/M1 (electric quadrupole/magnetic-dipole) mixing ratio
of decays in a self-conjugate nucleus 54Co has been elaborated in Ref. [110] to pin down
isospin impurities in a 4+ doublet.

Electromagnetic transitions between isobaric analogue states provide other possibili-
ties to test isospin selection rules. For example, linear dependence of the E2 matrix elements
on MT in ∆T = 1 analogue transitions have been explored experimentally in a number of
triplets (see Refs. [111,112] and references therein), and tests of equality of isovector matrix
elements in mirror systems have been carried out [113,114].

An interesting idea to extract the amount of isospin mixing from E1 transition rates in
mirror nuclei has been proposed and explored in Ref. [115].

Other possibilities to deduce isospin mixing in nuclear states from electromagnetic
responses have been explored, e.g., in electron-scattering experiments [116] or via excitation
of giant dipole resonance in N = Z nuclei, e.g., in Refs. [117–119].

3.2.3. β-Delayed Proton, Diproton or α Emission

Nucleon(s) emission may serve as a stringent test of isospin purity [120]. Interesting
cases are provided by β-delayed proton (or two-proton, α) emission when an IAS, populated
in the β-decay, is located beyond the corresponding particle separation threshold [121,122].
As follows from a typical energy balance, in this case the proton (two-proton, alpha)
emission from the IAS (Jπ , T), populated in the β-decay of a MT < 0 precursor, is forbidden
by isospin symmetry (see Figure 4). Observation of such processes evidences the presence
of isospin mixing, mainly, in the IAS which is surrounded by states of another isospin,
(Jπ , T − 1). A large amount of mixing can be deduced from the missing Fermi strength.
However, small amounts may be hidden by experimental uncertainties.
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Figure 4. Schematic picture of β-delayed p, γ, 2p and α emission from an IAS. See text for details.

To deduce spectroscopic factors from isospin-forbidden proton emission on purely
theoretical grounds is challenging [120,123]. Nevertheless, recently, it has been shown
that one can deduce isospin mixing using experimental proton-γbranching ratios in the
case of β-delayed pγ-emission [101,124] (two-proton or α emission were supposed to be
absent or negligible in that study). Since the proton to γ-decay branching ratio for the IAS,
IIAS
p /IIAS

γ , equals to the ratio of the corresponding widths, with the help of the theoretical
electromagnetic width, ΓIAS

γ , one can extract the proton width of the IAS as

ΓIAS
p = ΓIAS

γ

IIAS
p

IIAS
γ

. (21)

Generally, the shell model provides a relatively robust description of electromagnetic
widths, if experimental energies are used. Deduced proton widths are important in astro-
physics applications. For example, radiative proton capture is an inverse process, where a
nucleus capturing a proton gets excited to a specific level and is de-excited by γ emission.
Proton and electromagnetic widths are thus essential ingredients with which to estimate
the contribution of resonant capture.

In addition, if the angular momentum, l, of the proton is unambiguously determined
(as in the decay from 0+ state), from Equation (21) one can deduce the spectroscopic factor
for an isospin-forbidden proton emission from the IAS. To this end, one can estimate
theoretical single-particle proton width, ΓIAS

sp , of the IAS and express the spectroscopic
factor as

SIAS
p =

ΓIAS
γ

ΓIAS
sp

IIAS
p

IIAS
γ

. (22)

Let us remark that this estimation does not rely on the isospin mixing in the IAS, which
would depend on energies of admixed states, but only on the experimental ratio of proton
and gamma intensities and on the calculated width.

If a two-state mixing hypothesis approximately holds, for example, when the IAS is
mostly mixed with a single nearby non-analogue state (Jπ , T − 1), then one can approxi-
mately estimate the amount of isospin mixing in the IAS. Namely, using the shell-model
value for the spectroscopic factor of the admixed state, ST−1

p , the probability of mixing can
be expressed as x2 = SIAS

p / ST−1
p . This procedure can be generalized to include isospin-

forbidden 2p or α-particle emission from the IAS.
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For several measured proton branches that form the IAS, one can apply the above
formalism to each of them separately, since relation (21) holds:

ΓIAS
p,i = ΓIAS

γ

IIAS
p,i

IIAS
γ

. (23)

Proceed to extract spectroscopic factors and isospin mixing, if a two-level mixing
model is applicable. This proposes an interesting possibility to cross-check the values of
x2 deduced from various branches. Such cases of β-delayed pγ emission from an odd A
precursor have also been reported (see, e.g., Refs. [121,122,125]).

Actually, one can also determine an approximate value of isospin mixing in the
IAS in a two-level mixing case, even if the set of quantum numbers (nlj) characterizing
the emitted proton is not unique. In this case, the proton width is a sum of contribut-
ing partial widths corresponding to all allowed orbitals from a given model space, e.g.,
ΓIAS

p = ∑nlj SIAS
p (nlj)ΓIAS

sp (nlj). Therefore, providing shell-model values of isospin-allowed
spectroscopic factors, ST−1

p (nlj), one can estimate the amount of isospin impurity of the
IAS to be

x2 =
ΓIAS

p

∑nlj ST−1
p (nlj)ΓIAS

sp (nlj)
, (24)

where ΓIAS
p is deduced as in Equation (21) and the denominator is evaluated theoretically.

Finally, individual spectroscopic factors (for each nlj channel) for isospin-forbidden proton
emission can be obtained as SIAS

p (nlj) = x2ST−1
p (nlj) The uncertainty of theoretical estima-

tion increases in this case, since a few theoretical quantities have to be used. In general, one
should also remember that small spectroscopic factors (below 0.1) carry a significant theo-
retical uncertainty and this may prohibit extraction of the detailed information according
to the proposed method.

4. Theoretical Isospin-Symmetry Breaking Corrections to Weak Processes in Nuclei

At present, many-body calculations for nuclear structure are required to link exper-
imental information on weak processes involving nuclei to the underlying theories of
fundamental interactions. In this context, the nuclear shell model is among the most fa-
vorite tools to provide nuclear matrix elements necessary for the tests of the symmetries
of the standard model and for the searches for physics beyond it. Those can be probed
in nuclear β-decay, but also in charge–exchange reactions or, eventually, in muon capture
experiments. Calculations allowing to account for isospin-symmetry breaking may become
vital in studies of individual transitions involving proton-rich nuclei and nuclei along
N = Z line.

The discussion below focuses on two activities related to the study of beta decay, which
can be described by an effective axial-vecor and vector, V–A, interaction Hamiltonian,

ĤV−A =
GV√

2
Ĵ†
µ ĵµ + h.c. , (25)

where J†
µ ((jµ) is hadronic (leptonic) weak current, the index µ represents the space-time

4-vector index and takes valuse 0 (time),1, 2, and 3 (space), “h.c.” stays for “hermitian
conjugate”, and GV is the weak-interaction coupling constant responsible for this semi-
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leptonic decay. The most general form of a Lorentz-covariant form of the vector and
axial-vector nucleon currents read

Ĵ†
µ = V̂µ + Âµ (26)

V̂µ = iψp

(
gV(k2)γµ +

gW(k2)

2mN
σµνkν + igS(k2)kµ

)
ψn (27)

Âµ = iψp

(
gA(k2)γµ +

gT(k2)

2mN
σµνkν + igP(k2)kµ

)
γ5ψn (28)

where ψp and ψn are nucleon field operators, mN is the nucleon mass; kµ is the 4-momentum
transferred from hadrons to leptons; σµν = [γµ, γν]/2i and γµ are Dirac matrices. The six
form-factors are arbitrary real functions of Lorentz invariants of k2, to be compatible with
time-reversal invariance. At low momentum transfer, they are known as the vector (gV),
weak magnetism (gW), scalar (gS), axial-vector (gA), tensor (gT) and pseudo-scalar (gP)
coupling constants.

The six terms have definite properties under the Ĝ-parity transformation, which is a
combination of charge-conjugation (Ĉ) and rotation in isospin space over 180 degrees about
the 2-axis (Ĝ = Ĉ exp (iπT̂2)). Those which transform as leading-order vector and axial-
vector terms are called first-class currents, and those which have opposite transformation
properties are called second-class currents. Of the latter type are the induced scalar term in
the vector current and induced tensor term in the axial-vector current.

Various constraints on these coupling constants come from the symmetries underlying
the standard model [126]. The most stringent condition is provided by the conserved
vector current (CVC) hypothesis, which is based on the similarity in structure of the vector
weak current and the isovector electromagnetic current. From CVC, it follows that the
vector and weak-magnetism form factors are related to their electromagnetic counterparts,
in particular, gV(k2 → 0) = 1. This symmetry also implies that the induced scalar term
vanishes (gS = 0).

For the axial-vector current, only a partially conserved axial-vector current hypothesis
exists, and it is less restrictive: it allows one to relate the main axial-vector coupling constant
to the pion–nucleon coupling constant by famous Goldhaber–Trieman relations.

Nuclear β-decay experiments provide an excellent ground to test the structure of
these currents and experimentally determine the magnitude of the coupling constants (see
extensive reviews [127,128]). Two particular domains are described below, when theoretical
calculation of nuclear matrix elements is required, along with an accurate treatment of
isospin-symmetry breaking.

4.1. Superallowed Fermi β-Decay

The most prominent application of the theoretical formalism exposed just above is the
calculation of realistic Fermi-matrix elements for β-decay between 0+ states or between the
mirror states in T = 1/2 nuclei [129].

Indeed, Fermi type β-decay is governed uniquely by the vector part of the weak
current. According to the CVC hypothesis, the absolute Ft values of such transitions in
various emitters with a given isospin T should be the same. If this feature holds, from Ft
one can deduce the vector’s coupling constant, GV , that is responsible for this semi-leptonic
decay (u→ de+νe). Combining GV with the value of fundamental weak coupling constant
GF obtained from a purely leptonic muon decay (µ+ → e+νeνµ), one can determine the
absolute value of the |Vud| = GV/GF matrix element of the Cabibbo–Kobayasi–Maskawa
(CKM) quark-mixing matrix:

VCKM =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

.
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Numerical values of CKM matrix elements are important for the unitarity tests, such
as the normalization condition for its first row: |Vud|2 + |Vus|2 + |Vub|2 = 1.

The absolute Ft value is obtained from the experimentally deduced f t value after in-
corporation of a few non-negligible theoretical corrections [130] as defined by the following
equation:

Ft0+→0+ ≡ f t0+→0+(1 + δ′R)(1 + δNS − δC) =
K

|M0
F|2G2

V(1 + ∆R)
. (29)

Here, f is the statistical rate function calculated from the decay energy, t is the partial
half-life of the transitions, K = 2π3h̄ ln 2(h̄c)6/(mec2)5, |M0

F| is the Fermi-matrix element in
the isospin-symmetry limit (20), h̄ is the reduced Planck’s constant, c is the speed of light,
and ∆R, δ′R and δNS are transition-independent, transition-dependent and nuclear-structure-
dependent radiative corrections; and δC is the isospin-symmetry breaking correction due
to the lost analogue symmetry between the parent and the daughter nuclear states. The
detailed description of the electroweak corrections and the current status in the field can
be found in the latest survey by Hardy and Towner [130]. The most prominent feature
discussed in recent years is an updated value of the transition independent term, ∆R, which
was re-evaluated using the formalism of the effective field theory, and this brought fragility
to the unitarity tests [131].

The present discussion focuses on the isospin-symmetry breaking correction, δC. This
correction is defined as a deviation of the squared realistic Fermi-matrix element from its
isospin-symmetry value: |MF|2 = |M0

F|2(1− δC). Therefore, the estimation of δC requires
an accurate calculation within a nuclear-structure model which can account for the broken
isospin symmetry.

There have been lots of efforts within various theoretical approaches during a few
decades already. Figure 5 summarizes predictions from different calculations for the 13
best known transitions (by now, the decay of 26Si has been added to this dataset).
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Figure 5. Isospin-symmetry breaking correction, δC, from various theoretical approaches: SM-
WS(2015) [130], SM-HF(1995) [132], RHF-RPA(2009) [39], RH-RPA(2009) [39], SV-DFT(2012) [42],
SHZ2-DFT(2012) [42], Damgaard(1969) [133], IVMR(2009) [134]. Figure is adapted from Ref. [135].

The values obviously diverge. In addition, to note is that theoretical approaches assign
important uncertainties to their values (those which present associated uncertainties).
Currently, evaluation of δC provides the largest contribution to the Ft-value uncertainty.
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As has been demonstrated in Section 2 above, the INC shell model represents a well-
suited tool for the δC calculation. By expressing the Fermi-matrix elements in the second
quantization, one gets:

MF = 〈Ψ f |T̂+|Ψi〉 = ∑
α

〈 f |ĉ†
αn ĉαp |i〉〈αn|t̂+|αp〉 , (30)

where ĉ†
α and ĉα are nucleon creation (destruction) operators; α denotes a full set of spherical

quantum numbers, α = (na, la, ja, ma) ≡ (a, ma) and the two ingredients of Equation (30)
are (i) one body-transition densities:

〈 f |ĉ†
αn ĉαp |i〉 ≡ ρα , (31)

and isospin single particle matrix elements, given by overlap integrals:

〈αn|t̂+|αp〉 =
∫ ∞

0
Rαn(r)Rαp(r)r

2dr ≡ Ωα. (32)

Here, Rα denotes the radial part of the single-particle wave function.
It has been pointed out by Miller and Schwenk [136,137] that the use of the exact

isospin operator in Equation (30) would involve terms where the radial quantum number,
nα, for of a proton state, αp, is different from that of a neutron state αn. Up till now, all
shell-model work [132,135,138,139] has been done within an approximation that allows
one to express the radial overlaps by Equation (32).

Calculation of realistic Fermi-matrix elements implies the use of one-body transition
densities computed using many-body states obtained from the diagonalization of an INC
Hamiltonian, and the use of radial wave functions, obtained from a realistic spherical
single-particle potential, such as Wood–Saxon (WS) or Hartree–Fock (HF) potential, instead
of the harmonic oscillator. Therefore,

MF = ∑
α

ραΩα ,

and the model-independent value (20) can be obtained from one-body transitions densities
in the isospin limit (ρ0

α) and harmonic-oscillator radial overlaps (Ω0
α = 1):

M0
F = ∑

α

ρ0
αΩ0

α = ∑
α

ρ0
α

(the superscript "0" indicates that those quantities were calculated in the isospin limit).
Therefore, there are two sources of isospin-symmetry breaking in the Fermi-matrix element:
first comes from the difference in configuration mixing of the parent and daughter nuclei
as obtained from the shell-model diagonalization of an INC Hamiltonian. The other is
due to the deviation of the radial overlaps from unity, when calculated with realistic
single-particle wave functions instead of the harmonic-oscillator ones. These deviations of
one-body transitions densities and radial overlaps from their isospin-symmetry values are
typically small. Keeping only linear terms in small quantities, one can express |MF|2 as

|MF|2 ≈ |M0
F|2
[
1− 2

M0
F

∑
α

(
ρ0

α − ρα

)
︸ ︷︷ ︸

δC1

− 2
M0

F
∑
α

ρ0
α(1−Ωα)︸ ︷︷ ︸

δC2

]
,

From this expression, it is seen that the correction splits into two terms according to
the two sources of isospin-symmetry breaking mentioned above:

δC ≈ δC1 + δC2 .



Physics 2023, 5 371

To get δC1, it is sufficient to perform calculations with INC interactions. As has been
discussed in Section 3, the theoretical value for a depletion of the Fermi strength in the IAS
is due to the mixing of the IAS with non-analogue states (see Figure 6 (left)). Therefore, the
position of those states is vital.

Tz =1 
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0+ 

0+ 

T = 0 0+ 

0+ 

0+ Tz =0 

T = 1 

T = 1 

T = 1 

T = 2 
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(A-1,Z-1)

(A,Z-1)

T=1

T=1/2, 3/2 ۧȁ𝜋
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εn 0+

0+
T=1

εp

Figure 6. Schematic picture of the Fermi strength distribution in the daughter nucleus due to
the isospin-symmetry breaking effects, as can be viewed from the shell-model’s perspective. Left:
depletion of the Fermi strength from an IAS because of non-analogue transitions. Right: insertion of
the intermediate states to better constrain the radial part of the single-particle wave functions.

To avoid this uncertainty, one may scale the strengths of individual transitions to
non-analogue states with the energy difference between those states and the IAS [138]:

δC1 = δth
C1

(
∆Eth

∆Eexp

)2
.

Existing shell-model studies use various parametrizations of the INC Hamiltonian,
ranging from realistic phenomenological fits [132,135,140] to individual parametrization of
charge-dependent terms to each isobaric multiplet presented in Ref. [138,139]. Since this
part of the correction is small, the results of both approaches are within typical uncertainties.

In addition to the isospin-symmetry breaking inside the model space, one has to
replace harmonic-oscillator radial wave functions with realistic spherically symmetric
wave functions from a WS or a HF potential, including Coulomb. This is the largest part of
the correction; see Ref. [138] and references therein. A parametrization of a single-particle
potential is crucial for the value of the correction. Due to this reason, potential parameters
are adjusted to reproduce proton and neutron separation energies and nuclear charge
radii. To achieve this goal, a calculation has to be done beyond the closure approximation.
This means instead of inserts, a complete sum of intermediate nucleus states ({π}) in the
Fermi-matrix element. Then, the radial-overlap correction can be expressed as

δC2 =
2

M0
F

∑
α,π
〈 f |ĉ†

αn |π〉
0〈π|ĉαp |i〉0(1−Ωπ

α ) .

The two ingredients are the spectroscopic amplitudes, 〈 f |ĉ†
αn |π〉

0, obtained within the
isospin-symmetry limit, and the radial-overlap integrals

Ωπ
α =

∫ ∞

0
Rπ

αn(r)Rπ
αp(r)r

2dr ,

which now contain dependence on the excitation energy of the intermediate states π; see
Figure 6 (right).

This opportunity to constrain theoretical calculations by experimental observables
greatly helps to reduce uncertainty in the potential parameters and guaranties consistency
of the results, as has been discussed in detail in Ref. [135]. In particular, the largest
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contribution to theoretical uncertainty on δC2 is because of the experimental uncertainty on
the nuclear charge radii.

Up till now, systematic calculations with the WS potential are the only ones who
produce corrections consistent with the CVC hypothesis within a non-zero confidence
limit [141]. The use of the HF wave functions, pioneered by Ormand and Brown [132,140,142],
has been explored by a few other groups as well [138,143,144]. Self-consistent HF potentials
are not immediately appropriate for calculations and have to also be adjusted to give rise to
experimental proton and neutron separation energies. The procedures exploited by various
authors are somewhat different, and, in general, led to smaller corrections than those ob-
tained from a WS potential. This issue has recently been explored in detail in Ref. [144]. In
particular, the authors examined the role of previously neglected effects, taking care of the
approximate elimination of spurious isospin-mixing, two-body center-of-mass corrections,
exact treatment of the exchange Coulomb term and many others. Moreover, INC terms have
been added to the energy-density functional. Those corrective terms indeed explain some
of the difference between the HF and WS results, allowing to suppose that the remaining
part of the difference is due to the need for correlations beyond the HF approximation.
Further efforts towards more sophisticated theories should be addressed in future studies.

In spite of these challenges in the computation of theoretical corrections, nuclear
0+ → 0+ β-decay provides the best opportunity to test the CVC and to extract the Vud
value, among other ways (mirror transitions, neutron or pion beta decay) [130]. Therefore,
it is reasonable to persist with efforts in improving theoretical modelization of the isospin-
symmetry breaking correction.

4.2. β-Decay between Mirror T = 1/2 States

It was pointed also that β-decay between mirror states with T = 1/2, which are
governed by both Fermi and Gamow–Teller operators, can also serve for the tests of the
CVC hypothesis and extraction of Vud, once the GT component is eliminated [130,145]. To
this end, an additional correlation coefficient has to be measured. Similarly to 0+ → 0+

decay, the experimentally determined f t value has to be corrected for radiative effects and
for isospin-symmetry breaking in decaying states. The shell-model framework relies on a
similar expression of the realistic Fermi-matrix element, as discussed, with an intermediate
state summation which involves a larger number of different states because of non-zero
values of angular momenta involved. Currently achieved results are summarized in
Ref. [129].

4.3. Gamow–Teller Transitions in Mirror Nuclei

Another long-standing application is related to the asymmetry of Gamow–Teller
β-decay rates in mirror nuclei, defined as

δ =

∣∣∣∣∣M+
GT

M−GT

∣∣∣∣∣
2

− 1 , (33)

where M±GT are reduced matrix elements for mirror GT β± transitions. The initial interest
in the topic was due to the fact that the contribution to that asymmetry may be due to the
presence of the induced tensor term (gT) in the axial-vector current; see Equation (28).

To pin down a possible manifestation of the induced tensor term, an accurate calcu-
lation of GT matrix elements, including isospin-symmetry breaking, is required. In the
second-quantization formalism, the reduced matrix elements of the GT operator can be
expressed as follows:

M±GT = 〈Ψ f ||ÔGT(β±)||Ψi〉 =
1√
3

∑
a,b
〈J f ||[ĉ†

a ˆ̃cb]
(1)||Ji〉〈a, mta ||σ̂t̂+||b, mtb〉 , (34)
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where double bars denote reduction in angular momentum, and ˆ̃ca,ma = (−1)ja+ma ĉa,−ma .
Again, realistic calculations should be ensured beyond the closure approximation, thereby
inserting a complete sum over intermediate nucleus states. Several theoretical investi-
gations have been performed from the 60s up to the present, without any indication on
a possible application of the analysis to the weak-interaction problem because of high
theoretical uncertainty of the nuclear wave functions (see Ref. [146,147] and references
therein). Although experimental measurements of mirror transitions main an active field,
the main impact of the results is on the structural aspects of the states involved in the decay.
In this context, alternative constraints on the induced tensor current from β-α and β-γ
angular correlation experiments tend to be much more advantageous [148,149].

5. Astrophysical Applications

One of the greatest motivations to explore the properties of nuclei is their need for
nuclear astrophysics. Nuclear masses, half-lives, level densities, and nuclear, electromag-
netic and weak-interaction reaction rates represent crucial ingredients for simulations and
understanding of astrophysical processes [150]. In particular, the structure of neutron-
deficient nuclei is important for comprehension of nucleosynthesis during stellar explosive
hydrogen burning. Among the possible sites are X-ray bursts and novae outbursts.

Novae are understood as a result of thermonuclear runaway at the surface of a white
dwarf within a binary star system. At high temperatures (∼ 108 K) and densities in
O-Ne type novae, the break-out of the hot CNO (carbon-nitrogen-oxygen) cycle leads to
nucleosynthesis of heavier elements A ≥ 20 by mainly (p, γ), in competition with (α, p) and
inverse reactions, with the end point around Ca [151]. In X-ray bursts [152,153], based on a
neutron star accreting hydrogen matter within a binary system, the temperatures are even
higher (up to 2× 109 K), and radiative proton capture reactions involve proton-rich nuclei
towards the proton-drip line, being the most important reaction type in nucleosynthesis
with up to roughly A ∼ 100 (rp process). Simulations of X-ray bursts exploit a huge set of
nuclear reactions which have to be constrained.

For stable nuclei, the proton-capture reaction Q-values are relatively high, and the
reaction rate may be approximated by a statistical model. For unstable (proton-rich) nuclei,
Q values become small (in the order of a few MeV or less), and hence, the reaction rate
is dominated by a few isolated resonances above the proton-emission threshold, together
with a non-resonant reaction contribution in the energy range within a Gamow peak. In
this case, accurate knowledge of resonance energies and decay widths is required.

Current state-of-the-art simulations are based on experimentally deduced information
when it is available. If no data exist yet, then one can either deduce the missing information
from mirror systems, assuming the isospin symmetry, or appeal to theory. Therefore,
higher-precision theoretical calculations are important to reduce uncertainties.

Shell modeling is one of the approaches which can provide detailed information on
nuclear states and transitions at low energies. The resonant part of a thermonuclear (p, γ)
reaction rate for a single resonance can be expressed [154] as

NA〈σvs.〉r = 1.540× 1011 (µT9)
−3/2 ω γ exp

(
−11.605 Er

T9

)
cm3 s−1 mol−1 , (35)

where µ = Ap A/(Ap + A) is the reduced atomic mass number and Er is the resonance
energy above the proton-emission threshold (in MeV), T9 is the temperature in GK. The
resonance strength ω γ (in MeV) depends on the spins of initial Ji and final (resonance) J f
states, the partial proton width Γp for the entrance channel and gamma widths Γγ for the
exit channel:

ωγ =
2J f + 1

2(2Ji + 1)
ΓpΓγ

Γtot
, (36)

with Γtot = Γp + Γγ. The proton decay width depends on the resonance energy via the
proton width, which could be estimated from a single-particle potential model and the
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shell model’s spectroscopic factor. In case of a few resonances, the resonant reaction rate
represents a sum of single-resonance rates (35) over contributing final states.

The non-resonant part of (p, γ), the reaction rate is given by direct capture transitions
to the ground or low-level states of the final nucleus.

A number of radiative proton-capture reaction rates have been evaluated with a good
precision for sd-shell and p f -shell nuclei [155,156], since the shell model provides missing
information on resonance states, proton and electromagnetic widths. The INC formalism is
of particular interest for such problems. First, using theoretical IMME b coefficients, one
can not only provide nuclear masses of proton-rich nuclei [28,91,92], but also determine
positions of unknown resonances in a proton-rich nucleus, if the level scheme of a neutron-
rich mirror nucleus is known experimentally. The necessity to account for isospin-symmetry
breaking to get more accurate results was demonstrated first in Ref. [155] and followed in
numerous studies. A use of theoretical c coefficients may even be more advantageous for
an MT = −1 nuclei if experimental information on MT = 0, 1 exists (see, e.g., [93,157,158].)
The cross-shell p-sd-p f model space is necessary for the description of negative parity
resonances in sd-shell nuclei (see, e.g., Refs. [159,160]).

A particularly interesting result was obtained a few years ago, indicating that the
Thomas–Ehrman effect may significantly change values of theoretical spectroscopic fac-
tors [87]. More attention therefore has to be paid to small values of spectroscopic factors.
This also indicates that results on spectroscopic factors from mirror systems should be
accepted with caution.

6. Conclusions and Perspectives

The nuclear shell model provides a powerful formalism with which to deal with tiny
breaking of isospin symmetry in nuclear states. Currently, the most accurate results are
due to phenomenological treatment of nuclear wave functions and parametrization of the
INC terms of the Hamiltonian. Although more work is required to have a better handle on
large model spaces, extended applications to structure and decay proton-rich nuclei and
nuclei along the N = Z line support experimental investigations. Important applications
of that formalism exist, such as the calculation of isospin-symmetry breaking corrections
for Fermi-matrix elements required to test the symmetries underlying the standard model.
Finally, isospin-symmetry breaking is nowadays taken into account in the evaluation
of thermonuclear reaction rates in proton-rich nuclei, which plays an important role in
astrophysical simulations.

While phenomenological approaches still have to be pursued to assure solid support
to experimental investigations, the eventual goal of nuclear theorists is to develop funda-
mental ab initio frameworks for many-body calculations towards a higher precision level
that will be relevant for the isospin-symmetry breaking domain.
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Abbreviations

The following abbreviations are used in this manuscript
CD charge-dependent
CKM Cabbibo-Kobayashi-Moskawa
CNO carbon-nitrogen-oxygen
CVC conserved vector current
E1, E2 electric-dipole, electric-quadrupole
EFT effective field theory
F Fermi
GT Gamow-Teller
h.c. hermitian congugate
HF Hartree–Fock
IAS isobaric analogue state
IMME isobaric-multiplet mass equation
IMSRG in-medium similarity-renormalization group
INC Isospin-nonconserving
M1 magnetic-dipole
MED mirror energy difference
N3LO next-to-next-to-next-to-leading
NN nucleon–nucleon
rms root mean square
TED triplet energy difference
TMBE two-body matrix element
V–A vector–axial vector
WS Wood-Saxon
USD universal sd shell
χEFT chiral effective field theory
3N three-nucleon
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