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Abstract: In this paper, we reviewtwo approaches that can describe, in a geometrical way, the
kinematics of particles that are affected by Planck-scale departures, named Finsler and Hamilton
geometries. By relying on maps that connect the spaces of velocities and momenta, we discuss the
properties of configuration and phase spaces induced by these two distinct geometries. In particular,
we exemplify this approach by considering the so-called q-de Sitter-inspired modified dispersion
relation as a laboratory for this study. We finalize with some points that we consider as positive and
negative ones of each approach for the description of quantum configuration and phases spaces.
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1. Introduction

Since the original works by Bronstein [1] that demonstrated uncertainty in the localiza-
tion of events when geometrical degrees of freedom are quantized, it has been argued that
attempts to formulate quantum gravity in a differentiable manifold endowed with smooth
geometric quantities would not be an interesting path to follow if one aims to pursue
a fundamental approach to this problem. Attempts in this direction have accumulated
over the years, having prominent representatives such as loop quantum gravity (LQG) [2]
and causal dynamical triangulation [3]. These approaches to quantum gravity predict
or describe several effects that should be manifest at the Planckian regime of length and
energy, such as the discretization of geometry, which requires a language that obviously
departs from the usual Riemannian construction of general relativity. Despite the elegance
of such approaches, with current technology we are far from being able to concretely
address the regime in which such discretization would become evident. Nevertheless, the
notion that spacetime could effectively behave like a medium formed by “atoms of space”
has led to a rich phenomenological approach to quantum gravity, which by encoding
generic departures from relativistic equations, can describe common predictions expected
to be present at an intermediate stage between classical and quantum gravity. Such an
approach is encompassed in the area of quantum gravity phenomenology, which addresses
a myriad of effects beyond the one described in this paragraph, as can be seen in Ref. [4],
and in particular, has found in multimessenger astronomy a fruitful environment to be
explored [5].

Usually, the regime, in which this idea is considered, is the regime, in which the test
particle approximation is valid consisting of the approximation, in which one would have
simultaneously faint gravitational and quantum effects, described by the limits of the
gravitational constant, G → 0, and the reduced Planck’s constant, h̄ → 0, however, with
the Planck energy, EP =

√
c5h̄/G, being finite, with c the speed of light. This deformed

“Minkowski limit”, which presents departures from Minskowski spacetime’s structure
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has been suggested by various quantum gravity proposals, such as the linearization of
the hypersurface deformation algebra inspired by LQG [6–8] and non-commutative ge-
ometry [9–12] (for more details on this Miskowski limit, see Section 3.1.1 of Ref. [4], and
for more references on other theoretical approaches, in which such limit emerges, see
Section 2.2 of Ref. [5]). It is expected that the path between the differentiable Riemannian
description of special (and general) relativity and the complete quantum gravity theory
should pass through an intermediate regime, in which one has departures from the Rieman-
nian character of spacetime but still has geometric features that could describe a bottom-up
phenomenology.

Furthermore, geometry plays an important role in the description of principles that
have guided the developments of relativistic theories; for example, the principle of co-
variance is manifest through the use of tensorial equations of motion, the local relativity
principle is a physical manifestation of having local equations of motion invariant under
the Poincaré group (which is the group of isometries of Minkowski space), the equivalence
principle of general relativity is manifest in the fact that the motion of free particles is
realized through geodesics, and the clock postulate can be expressed by stating that an
observer measures its proper time by the arc-length of its own trajectory.

An important part of quantum gravity phenomenology is devoted to the question of
whether, in the aforementioned Minkowski limit, the Lorentz invariance, and consequently,
the local relativity principle, is preserved or broken due to Planck-scale effects [13]. As
is known, a length/energy scale is not invariant under Lorentz transformations, which
implies that either a quantum gravity scale breaks the equivalence of inertial frames in the
aforementioned Minkowski limit, or the Lorentz or Poincaré group only describes a low
energy/large distance approximation of a deeper transformation between inertial frames.
The former possibility is known as a Lorentz invariance violation (LIV) scenario [14,15],
and the latter is known as doubly (or deformed) special relativity (DSR) [16,17]. As the
geometrization of special relativity, due to Minkowski, paved the way to more fundamental
descriptions of nature, we shall follow a similar path, but of geometrizing DSR.

Geometric descriptions of DSR through non-commutative geometry are known [9–12],
but we revise some continuous, differentiable ways of exploring non-Riemannian degrees
of freedom and the possibilities for preserving the aforementioned principles. This way, we
critically analyze two extensions of Riemannian geometry that are capable of describing
aspects of an emergent “quantum configuration and phase spaces” that preserve the
intuition of those principles: they are Finsler and Hamilton geometries. Finsler geometry
originally is related to the space of events and velocities (for this reason we refer to a
quantum configuration space), and Hamilton geometry originally described the space of
events and momenta (for this reason, we call it a quantum phase space). In this paper, we
revise the phenomenological opportunities that emerge from these approaches and the
interplay between them. We also condensate the utility of each of these geometries and
their limitations in the current scenario.

We should also stress that the approaches described in this review, refer to configura-
tion and phase spaces probed by a single particle. The geometry probed by a multi-particle
system and its interplay with Finsler and Hamilton languages (or even geometries that go
beyond them) should still be further explored, in which, possibly the intuition gained from
the relative locality framework [18] would play a prominent role in this approach.

The paper is organized as follows. Section 2 revisits the origin of the idea of describing
the effective spacetime probed by a particle that propagates through a modified dispersion
relation (MDR) by the proposal of rainbow metrics. Section 3 revisits how this general idea
is realized by the use of Finsler geometry in the tangent bundle, whose dual version in the
cotangent bundle is discussed in Section 4, which is illustarated by considering the curved
non-trivial case of q-de Sitter-inspired Finsler geometry. Section 5 considers the situation of
deriving the geometry of the cotangent bundle, and, in Section 6, its dual tangent bundle
formalization defined by Hamilton geometry is considered, which is illustrated by the q-de
Sitter case. In Section 7, we comparatively discuss these two approaches and highlight
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points that we consider as useful as well as their limitations. Finally, some important
remarks are drawn in Section 8. Throughout the paper, a system of units with c = h̄ = 1 is
used, so that the Planck length is the inverse of the Planck energy:

√
G = ` = E−1

P .

2. Preliminaries on Rainbow Geometries

As described above, over the years, the intuition that spacetime would behave like
material media, where instead of atoms of matter, one would have atoms of spacetime,
has been solidified through some approaches of quantum gravity. Just as occurs in matter,
in which one does not need to know the specific details of the granular structure of a
given medium to study the propagation of particles through it, in spacetime, one can
build phenomenology-inspired ways of modeling how elementary particles interact with
discrete gravitational degrees of freedom while traveling through space, a so-called “in-
vaccuum dispersion”. One could say that the most popular way of doing this is through the
assumption that particles would obey a modified dispersion relation, whose corrections are
given perturbatively by powers of the quantum gravity scale, which we could assume as
being in the order of Planck units. (The dispersion relation furnishes the group velocity of
waves and defines the trajectory that on-shell particles follow from the Hamilton equations.)
Actually, when the interplay between the presence of amplifiers of observables and the
uncertainties of observations allows us to constrain this parameter at a level close to its
Planckian version, we say that we are at Planck-scale sensitivity [4].

Such behavior also happens in meta-materials [19], in which it is possible to describe
the motion of particles through it by geodesics in a given geometry; it also appears in
the motion of a charged particle in a pre-metric formulation of electromagnetism [20], in
the description of seismic waves [21], etc.; for a review, see Ref. [22]. Additionally, one
could wonder if the motion of particles, determined by Planck-scale modified dispersion
relations, could also be described by geodesics of a non-Riemannian geometry. Besides, the
dispersion relation itself is usually determined by the norm of the 4-momentum measured
by a Riemannian metric, which also determines the symmetries observed by measurements
in that spacetime.

This intuition was early realized by the so-called “rainbow geometries” [23], idealized
by João Magueijo and Lee Smolin which aimed to extend the DSR formulation proposed
by them in Ref. [17] to curved spacetimes. In that case, the way found to express local
modified dispersion relations through a norm, consisted in absorbing functions of the
particle’s energy divided by Planck energy, ε = E/EP, such as f (ε) and g(ε), which would
appear in the MDR that follows:

m2 = f 2(ε)E2 − g2(ε)|~p|2 , (1)

(with the three-momentum ~p) into the definition of new spacetime tetrads, ẽ µ

(0) (ε) = f (ε)e µ

(0)

and ẽ µ

(I) (ε) = g(ε)e µ

(I) , such that the MDR reads

m2 = ηAB ẽ µ

(A)
ẽ ν
(B) pµ pν = g̃µν(ε)pµ pν , (2)

where gµν(ε) = ηAB ẽ µ

(A)
ẽ ν
(B) is the rainbow metric, ηAB is the Minkowski metric diag(+−

−−) , Greek letters denote four-dimensional indices and take on the values 0 (time) 1, 2, and
3 (space), low-case Latin letters denote the space indices, and pµ is the 4-momentum. This
description would imply that when an observer uses the motion of a particle with energy E
to probe spacetime, then the line element assigned to that spacetime is the following:

ds2 = g̃µνdxµdxν =
g00

f 2(ε)
(dx0)2 +

gij

g2(ε)
dxidxj + 2

g0i
f (ε)g(ε)

dx0dxi , (3)

where gµν is the metric found from undeformed tetrads. Thus, in a nutshell, one identifies
the rainbow functions, f and g, from a MDR that is usually inspired by fundamental
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theories of quantum gravity or by phenomenological intuition; then, one uses g̃µν as an
input into the classical gravitational field equations. Considering modifications of the
stress-energy tensor due to the rainbow functions, one derives what should be gµν (since f
and g are determined a priori). Usually, this procedure gives that gµν is the Riemannian
metric found from the usual gravitational field equations. Therefore, this approach gives
basically the usual metric components of a given theory, just modified by factors of the
rainbow functions as in Equation (3).

Effective energy-dependent spacetimes have emerged in different approaches to the
description of the quantization of gravitational/geometric degrees of freedom [24–26].
Along this line of research, Magueijo-Smolin’s proposal has been applied in a myriad of
contexts, such as in black hole physics [27,28], cosmology [29], wormholes [30,31], cosmic
strings [32], disformal geometries [33,34], and electrostatic self-interaction of charged par-
ticles [35]. However, despite its range of applicability and utility in furnishing intuition
about extreme scenarios, this approach presents some conceptual and technical limitations
that seem unavoidable, such as the lack of a rigorous mathematical framework in which
this idea is formulated or the imposition of a preferred vielbein in which the particle’s
energy is measured, which seems in contradiction with the local DSR intention of this
proposal. As shown below, the solution to these problems is actually coincident, and the
search for a rigorous mathematical formulation for these ideas will be responsible for giving
a framework, in which proper physical questions can be answered and novel phenomeno-
logical opportunities to born. The main issue here is what is the proper formulation of a
geometry that should not only depend on spacetime points, but also should carry energy
dependence of the particle itself that probes this spacetime. This paper deals with the two
main proposals—Finsler and Hamilton geometries— solving some of the raised problems
and also discusses limitations on their owns.

3. Geometry of the Tangent Bundle: Finsler Geometry

The 1854 Habilitation Dissertation by Bernhard Riemann presents the germ of the idea
behind what would later be called Finsler geometry. In the second part of the dissertation,
it is said (see Ref. [36], p. 35):

“For Space, when the position of points is expressed by rectilinear co-ordinates,
ds =

√
∑(dx)2; Space is therefore, included in this simplest case. The next case

in simplicity includes those manifoldnesses in which the line-element may be
expressed as the fourth root of a quartic differential expression. The investigation
of this more general kind would require no really different principles, but would
take considerable time and throw little new light on the theory of space, especially
as the results cannot be geometrically expressed; I restrict myself, therefore, to
those manifoldnesses in which the line-element is expressed as the square root of
a quadric differential expression”.

The exploration of such more general cases of line elements will be done only 64 years
later, in 1918, in the Ph.D. thesis of Paul Finsler [37], where at least from the metric point of
view, the distance between points is measured by a 1-homogeneous function (homogeneous
with the degree of 1) Such a metric tensor would be defined in the tangent bundle of the base
manifold, since it would depend not only on the manifold points, but also on a direction,
which is a manifestation of the non-Pythagorean nature of this space. Later on, the issue of
non-linear connections was further developed and incorporated as a fundamental structure
for the dynamical description of Finsler spaces (for a historical perspective on Finsler
geometry, we refer the reader to the Preface of Ref. [38] and references therein). The
case of pseudo-Finsler geometries, as an arena for describing spacetime, has been recently
discussed [39,40], where, for instance, different definitions are presented and important
theorems regarding its causal structure among other issues are being derived [41].

In Section 2, a glimpse of the non-Riemannian nature of spacetime was notified emerg-
ing as a manifestation of the quantization of gravitational degrees of freedom. Actually, as
one can anticipate, the non-quadratic, i.e., non-Pythagorean nature of a dispersion relation
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is connected to a possible Finslerian nature of spacetime through an intermediate step that
connects the kinematics of particles in a Hamiltonian to a Lagrangian formulation. Actually,
the MDR corresponds to a Hamiltonian constraint, which physical particles supposedly
obey, the way that the trajectories of free particles, induced by such a deformed Hamilto-
nian, capture the propagation of a particle through a quantized spacetime. For this reason,
the Helmholtz action, associated with such a particle, is naturally given by the functional,

S[x, p, λ] =
∫

dµ(ẋα pα − λ f (H(x, p), m)) , (4)

where the dot denotes differentiation with respect to the parameter µ, pµ is the particle’s mo-
menta, f is a function that is null if the dispersion relation is satisfied, namely, H(x, p) = m,
and λ is a Lagrange multiplier. This is a premetric formulation that is actually defined in
the space T∗M×R, where T∗M is the phase space of analytical mechanics or cotangent
bundle. In order to find an arc-length, and consequently, a geometric structure, one needs
to calculate an equivalent Lagrangian defined in the configuration space or the tangent
bundle TM described by points and velocities (such an observation was firstly presented
in Ref. [42]). The algorithm for doing so is as follows [43]:

1. variation with respect to λ enforces the dispersion relation;
2. variation with respect to pµ yields an equation ẋµ = ẋµ(p, λ), which must be inverted

to obtain pµ(x, ẋ, λ) to eliminate the momenta pµ from the action;
3. using pµ(x, ẋ, λ) in the dispersion relation, one can solve for λ(x, ẋ); and
4. finally, the desired length measure is obtained as S[x] = S[x, p(x, ẋ, λ(x, ẋ)), λ(x, ẋ)]H .

This is a Legendre transformation, whose conditions of existence and capability of
providing a physical framework are discussed in Refs. [44,45]. These formal conditions
are always guaranteed when one considers deformations at the perturbative level. This is
crucial because the following algorithm cannot be applied in practice if it is not possible
to invert the velocity function to find the momenta as a function of the other variables.
In general, this cannot be done, especially for complicated dispersion relations, such as
those that depend on sums of hyperbolic functions [46]. Anyway, since quantum gravity
phenomenology is usually concerned with first order effects, which are those attainable by
experiments nowadays, we shall concentrate on the perturbative level in order to derive
our conclusions.

For example, if this algorithm is applied to a Hamiltonian of the form,

H(x, p) = g(p, p) + εh(x, p) , (5)

where g(p, p) = gab(x)pa pb is an undeformed dispersion relation, h(x, p) is a function of
spacetime points and momenta that depends on the model under consideration, and ε is
the perturbation parameter that is usually a function of the energy scale of the deformation
(such as the Planck or quantum gravity length scale). As shown in Ref. [43], after the
Legendre transformation, the equivalent action takes the form,

S[x] = m
∫

dµ
√

g(ẋ, ẋ)
(

1− ε
h(x, p̄(x, ẋ))

2m2

)
, (6)

where p̄a(x, ẋ) = mẋa/
√

g(ẋ, ẋ). In particular, when h is a polynomial function of momenta
as (the index is shifted: n → n + 2, in comparison with Ref. [43], such that now n
corresponds to the power of Planck length in the MDR),

h(x, p) = hµ1µ2....µn+2(x)pµ1 pµ2 ...pµn+2 , (7)

and ε = `n, one finds an action of the form,

S[x] = m
∫

dµ
√

g(ẋ, ẋ)

(
1− (`m)n hµ1µ2....µn+2(x)ẋµ1 ẋµ2 ...ẋµn+2

2g(ẋ, ẋ)
n+2

2

)
, (8)
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where we lowered the indices of h with the components of g. The connection between
the mechanics of free particle and geometry takes place when the above expression is
identified with the arc-length functional, s[x], of a given geometry, i.e., s[x] = S[x]/m. Such
an identification makes sense if we want to state that the trajectories of free particles are
extremizing curves or geodesics in a given geometry, it is related to the preservation of the
equivalence principle even in this Planck-scale deformed scenario.

In this case, the spacetime in which a particle propagates by a MDR is described by an
arc-length functional that generalizes the one of Riemannian geometry and is given by a
function F(x, ẋ) that is 1-homogeneous in the velocity ẋ, such that the arc-length is indeed
parametrization invariant, as it must be:

s[x] =
∫

F(x, ẋ)dµ . (9)

Actually, this is the kind of scenario envisaged by Riemann in his dissertation, and
explored by Finsler, that emerges here quite naturally. There are some definitions of a
pseudo-Finsler spacetime in the literature, but we rely on that given in Ref. [39] (the
differences in comparison to other definitions are discussed in Ref. [39]). First of all,
we are going to work with a smooth manifold, M, endowed with a real valued positive
function L that takes values on the tangent bundle TM, described by coordinates (x, y),
where {xµ} are spacetime coordinates and {yµ} refer to vector or velocity coordinates.
Actually, we shall need the slit tangent bundle T̃M = TM/{0}, in which we remove
the zero section, and we also need the projection π : TM → M. A conic subbundle is a
submanifold D ⊂ T̃M such that π(D) = M and with the conic property that states that if
(x, y) ∈ D ⇒ (x, λy) ∈ D, ∀λ > 0.

In a nutshell, a Finsler spacetime is a triple (M,D, L), where L : D → R is a smooth
function satisfying the conditions:

1. positive 2-homogeneity: L(x, αy) = α2L(x, y), ∀α > 0;
2. at any (x, y) ∈ D and in any chart of T̃M, the following Hessian (metric) is non-

degenerate:

gµν(x, y) =
1
2

∂2

∂yµ∂yν
L(x, y) ; (10)

3. the metric gµν has a Lorentzian signature.

The function L is actually the square of the Finsler function, L(x, y) = F2(x, y), and
from it the Finsler arc-length is defined as given in Equation (9). Condition 1 above
guarantees that Equation (9) does not depend on the parametrization used to describe the
curve and that using Euler’s theorem for homogeneous functions, this expression can be
cast as

s[x] =
∫ √

gµν(x, ẋ)ẋµ ẋνdµ . (11)

From a coordinate transformation,

x̃µ = x̃µ(x) , (12)

ỹµ =
∂x̃µ

∂xν
yν , (13)

the functions gµν transform according to

g̃µν(x̃, ỹ) =
∂xα

∂x̃µ

∂xβ

∂x̃ν
gαβ(x, y) . (14)
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Due the property (14), gµν is referred here as the components of a distinguished tensor
field (or d-tensor field) on the manifold T̃M, which follows the notation adopted in Ref. [47].
The extremization of the arc-lenght functional (9) gives the following geodesic equation,

d2xµ

dµ2 + 2Gµ(x, ẋ) = 2
dF
dµ

∂F
∂ẋµ , (15)

where Gµ = Gµ(x, ẋ) are the spray coefficients [48] and are given in terms of the Christoffel
symbols, γα

µν, of the metric gµν:

Gα(x, ẋ) =
1
2

γα
µν(x, ẋ)ẋµ ẋν , (16)

γα
µν(x, ẋ) =

1
2

gαβ

(
∂gµβ

∂xν
+

∂gνβ

∂xµ −
∂gµν

∂xβ

)
. (17)

If we choose the arc-length parametrization, i.e., the one in which F = 1, we have a
sourceless geodesic equation. This expression means that the trajectories generated by a
MDR of the form H(x, ẋ) = m2 are, actually, geodesics of a Finsler metric. The presence
of spray coefficients allows us to construct another quite a useful quantity, the so-called
Cartan non-linear connection, given by (in this paper, we interchange the notation ẋ ↔ y
freely)

Nµ
ν(x, y) =

∂

∂yν
Gµ(x, y) , (18)

that transforms according to

Ñµ
ν =

∂x̃µ

∂xα

∂xβ

∂x̃ν
Nα

β −
∂2 x̃µ

∂xα∂xβ

∂xβ

∂x̃ν
yα . (19)

The introduction of this quantity allows us to introduce a useful basis of the tangent
space of the tangent bundle at each point. In fact, since according to the coordinate
transformation (12) and (13), the usual coordinate basis transforms as

∂

∂x̃µ =
∂xν

∂x̃µ

∂

∂xν
+

∂2xν

∂x̃µ∂x̃α

∂x̃α

∂xβ
yβ ∂

∂yν
, (20)

∂

∂ỹµ =
∂yν

∂ỹµ

∂

∂yν
. (21)

In addition, a non-linear connection allows us to define the following frame:

δ

δxµ = δµ =
∂

∂xµ − Nν
µ

∂

∂yν
, (22)

∂̇µ =
∂

∂yµ . (23)

Due to the transformation properties of the non-linear connection, this basis trans-
forms as

δ̃µ =
∂xν

∂x̃µ δν , (24)

˜̇∂µ =
∂xν

∂x̃µ ∂̇ν . (25)

This means that one is able to split the tangent space of the tangent bundle into hor-
izontal, HTM = span{δµ}, and vertical, VTM = span{∂̇µ}, spaces, such that TT̃M =
HTM ⊕ VTM in each point (x, y). Similarly, the same reasoning applies to the cotan-
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gent space; i.e., we split T∗T̃M = H∗TM⊕ V∗TM spanned as H∗TM = span{dxµ} and
V∗TM = span{δyµ}, where

δyµ = dyµ + Nµ
νdxν , (26)

which transforms as

dx̃µ =
∂x̃µ

∂xν
dxν , (27)

δỹµ =
∂x̃µ

∂xν
δyν . (28)

Such a decomposition of the tangent and cotangent vector spaces implies that a vector
X and a 1-form ω with horizontal and vertical terms can read as

X = Xµδµ + Ẋµ∂̇µ = XH + XV , (29)

ω = ωµdxµ + ω̇µδyµ = ωH + ωV . (30)

Endowed with this basis, the metric G(x, y) of the configuration space is described by
the so-called Sasaki-Matsumoto lift of the metric gµν:

G(x, y) = gµν(x, y)dxµ ⊗ dxν + gµν(x, y)δyµ ⊗ δyν . (31)

Definition 1. A tensor field T of type (m + n, p + q) on the manifold T̃M is called a distinguished
tensor field (or d-tensor field) if it has the property

T
(

1
ω, . . . ,

m
ω,

1
τ, . . . ,

n
τ, X

1
, . . . , X

p
, Y

1
, . . . , Y

q

)
= T

(
1
ωH , . . . ,

m
ωH ,

1
τV , . . . ,

n
τV , X

1
H , . . . , X

p
H , Y

1
V , . . . , Y

q
V
)

. (32)

This definition implies that one can write a d-tensor T in the preferred frame as

T = Tµ1 ...µmν1 ...νn
α1 ...αp β1 ...βq

δ

δxµ1
⊗ · · · ⊗ δ

δxµm
⊗ ∂

∂yν1
⊗ · · · ⊗ ∂

∂yνn

⊗ dxα1 ⊗ · · · ⊗ dxαp ⊗ δyβ1 ⊗ · · · ⊗ δyβq , (33)

and that it transforms according to the rule,

T̃µ1 ...µmν1 ...νn
α1 ...αp β1 ...βq (34)

=
∂x̃µ1

∂xε1
. . .

∂x̃µm

∂xεm

∂x̃ν1

∂xλ1
. . .

∂x̃νn

∂xλn

∂xγ1

∂x̃α1
. . .

∂xγp

∂x̃αp

∂xρ1

∂x̃β1
. . .

∂xρq

∂x̃βq
Tε1 ...εnλ1 ...λm

γ1 ...γpρ1 ...ρq .

An example of d-tensor field is the metric whose components are given by Equation (14).

3.1. N-Linear Connection

Given a linear connection, D, on the manifold T̃M, if it preserves the parallelism of
the horizontal and vertical spaces, i.e., if it can be written as

Dδν
δµ = Lα

µνδα , Dδν
∂̇α = Lµ

αν∂̇µ , (35)

D∂̇ν
δµ = Cα

µνδα , D∂̇ν
∂̇µ = Cα

µν∂̇α , (36)
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then is called an N-linear connection. Let us consider a coordinate change; thus, the
coefficients (35) and (36) transform as

L̃α
µν =

∂x̃α

∂xβ

∂xλ

∂x̃µ

∂xε

∂x̃ν
Lβ

λε +
∂2xβ

∂x̃µ∂x̃ν

∂x̃α

∂xβ
, (37)

C̃α
µν =

∂x̃α

∂xβ

∂xλ

∂x̃µ

∂xε

∂x̃ν
Cβ

λε . (38)

Endowed with these coefficients, the derivative of a d-tensor can be decomposed into a
horizontal and a vertical parts, such that one can apply the covariant derivative of a tensor
T of type (m + n, p + q) in the direction of a vector X as a direction of a vector X as

DXT = DXH T + DXV T

=
(

Tµ1 ...µmν1 ...νn
α1 ...αp β1 ...βq |εXε + Tµ1 ...µmν1 ...νn

α1 ...αp β1 ...βq ||εẊε
) δ

δxµ1
⊗ · · · ⊗ δ

δxµm

⊗ ∂

∂yν1
⊗ ...⊗ ∂

∂yνn
⊗ dxα1 ⊗ · · · ⊗ dxαp ⊗ δyβ1 ⊗ · · · ⊗ δyβq , (39)

where

Tµ1...µmν1...νn
α1...αp β1...βq |ε (40)

=
δ

δxε
Tµ1...µmν1...νn

α1...αp β1...βq + Lµ1
γεTγ...µmν1...νn

α1...αp β1...βq + ...− Lγ
α1εTµ1...µmν1...νn

γ...αp β1...βq ,

Tµ1...µmν1...νn
α1...αp β1...βq ||ε (41)

=
∂

∂yε
Tµ1...µmν1...νn

α1...αp β1...βq + Cµ1
γεTγ...µmν1...νn

α1...αp β1...βq + ...− Cγ
α1εTµ1...µmν1...νn

γ...αp β1...βq ,

and the property that the covariant derivative is linear in the direction X is used. The
triple DΓ(N, L, C) describes the parallel transport and decomposition of the tangent and
cotangent spaces of the tangent bundle into horizontal and vertical spaces. At this point,
we need to comment on some remarkable N-linear connections that are considered in
the literature.

The first connection is the metrical Cartan connection, CΓ(Nµ
ν, Lα

µν, Cα
µν). In this

case, Nµ
ν is given by the canonical Cartan non-linear connection, defined by the spray

coefficients (18). The coefficients Lα
µν and Cα

µν are given, respectively, by

Lα
µν =

1
2

gαβ

(
δgµβ

δxν
+

δgνβ

δxµ −
δgµν

δxβ

)
, (42)

Cα
µν =

1
2

gαβ

(
δgµβ

δyν
+

δgνβ

δyµ −
δgµν

δyβ

)
. (43)

This connection is metrical (i.e., without non-metricity tensors) considering both
horizontal and vertical covariant derivatives of the Finsler metric.

Besides, the Berwald connection is given by the triple BΓ(Nµ
ν, ∂Nα

µ/∂yν, 0) and
presents horizontal and vertical non-metricities. The Chern–Rund connection, RΓ(Nµ

ν, Lα
µν, 0),

is horizontally metrical, but represents vertical non-metricity. Additionally, the Hashiguchi
connection, HΓ(Nµ

ν, ∂Nα
µ/∂yν, Cα

µν), represents horizontal non-metricity, but it is verti-
cally metrical. In these expressions, N is the canonical Cartan non-linear connection (18), L
is given by Equation (42), and C is given by Equation (43).

3.2. Symmetries

Geometrical language naturally realizes the concept of symmetry of physical equations.
General relativity given in terms of Riemannian geometry encompasses the invariance
under general coordinate transformations, and the isometries of the Minkowski space
describe the Poincaré transformations (actually, one can further apply this technique
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for maximally symmetric spaces, including de Sitter and anti-de Sitter ones). Finsler
geometry, as we have been using, allows us to go beyond this scope and to define deformed
Lorentz/Poincaré transformations that present Planck scale corrections even in the presence
of a local modified dispersion relation. One can see how this will naturally emerge, since
the invariance of the arc-length (9) is compatible with the invariance of the action in the
Hamiltonian formulation (4), from which such an arc-length was derived. This idea was
firstly noticed in Ref. [42] and later explicitly explored in Refs. [49,50]. The master equation
for this purpose is the one that follows from the invariance of the Finslerian interval ds2,
as done in Appendix A of Ref. [49]. From this invariance, the Finslerian killing equation
for the killing vector was found, with components ξα, which should be solved in order to
derive the deformed symmetries in the DSR context,

ξα∂αgµν + gαν∂µξα + gµα∂νξα + yα∂αξβ∂̇βgµν = 0 . (44)

3.3. Finsler–q-de Sitter (Tangent Bundle Case)

As an example that presents a non-trivial non-linear connection, we shall consider
the case of a Finsler geometry inspired by the so-called q-de Sitter deformed relativity.
This case has been previously studied in the literature, e.g., in Refs. [50–53], and can
be described by an algebra that deforms the one of Poincaré in a way that gives the de
Sitter symmetry when a quantum gravity parameter goes to zero, and on the other hand,
gives the so-called κ-Poincaré algebra (that deforms the Poincaré one by an energy scale
parameter, supposedly the Planck energy) when the de Sitter curvature parameter goes to
zero. Therefore, it corresponds to an authentic realization of a deformed relativity scenario,
even in the presence of what can be interpreted as spacetime curvature. In this Subsection,
we initially consider results that were originally presented in Ref. [52] in 1 + 1 dimensions.

The MDR related to this algebra (in a given basis) can be perturbed to first order in the
Planck length and de Sitter curvature parameters ` and H, respectively, as

H(x, p) = p2
0 − p2

1(1 + `p0)(1− 2Hx0) . (45)

By using the action given by Equation (4) and the algorithm that follows it, the
following Finsler function can be obtained:

F(x, ẋ) =
√
(ẋ0)2 − (1− 2Hx0)(ẋ1)2 + `

m
2

(1− 2Hx0)ẋ0(ẋ1)2

(ẋ0)2 − (1− 2Hx0)(ẋ1)2 , (46)

from which the Finsler metric can be found from Equation (10):

gF
µν(x, ẋ) =

 1 + 3a4m`ẋ0(ẋ1)4

2[(ẋ0)2−a2(ẋ1)2]5/2
m`a4(ẋ1)3[a2(ẋ1)2−4(ẋ0)2]

2[(ẋ0)2−a2(ẋ1)2]5/2

m`a4(ẋ1)3[a2(ẋ1)2−4(ẋ0)2]
2[(ẋ0)2−a2(ẋ1)2]5/2 −a2 + m`a2(ẋ0)3[2(ẋ0)2+a2(ẋ1)2]

2[(ẋ0)2−a2(ẋ1)2]5/2

 , (47)

where a = a(t) = eHt = 1 + Ht +O(H2) (in this paper, the terms that grow with higher
orders of H and ` are discarded). The geodesic equation is found from the extremization of
the Finsler arc-length defined by F, from which Christoffel symbols and spray coefficients
can be calculated. Actually, the γα

µν(x, ẋ) are given, for an arbitrary parametrization, by the
set of Equations (44) of Ref. [52], from which the spray coefficients are given by

G0(x, ẋ) =
1
8

a2H(ẋ1)2

[
4− `mẋ0

[(ẋ0)2 − a2(ẋ1)2]
7/2

(
−28a6(ẋ1)6 + 12a2(ẋ0)4(ẋ1)2

+a2
(

17a2 + 28
)
(ẋ0)2(ẋ1)4 + 16(ẋ0)6

)]
, (48)

G1(x, ẋ) = Hẋ0 ẋ1 + `

[
a2Hm(ẋ1)3(a6(ẋ1)6 − 6a4(ẋ0)2(ẋ1)4 + 3a2(ẋ0)4(ẋ1)2 − 28(ẋ0)6)

4((ẋ0)2 − a2(ẋ1)2)
7/2

]
. (49)
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As can be seen, these coefficients are 2-homogeneous in the velocities, as expected.
The Cartan non-linear connection coefficients read:

N0
0(x, ẋ) =

H`m(ẋ1)4(−28(ẋ1)6 − 33(ẋ1)4(ẋ0)2 + 240(ẋ1)2(ẋ0)4 + 136(ẋ0)6)
8((ẋ0)2 − (ẋ1)2)

9/2 , (50)

N0
1(x, ẋ) =Hẋ1 − H`mẋ1 ẋ0

8((ẋ0)2 − (ẋ1)2)
9/2

(
28(ẋ1)8 − 179(ẋ1)6(ẋ0)2 + 306(ẋ1)4(ẋ0)4

+128(ẋ1)2(ẋ0)6 + 32(ẋ0)8
)

,

N1
0(x, ẋ) =Hẋ1 +

H`m(ẋ1)3 ẋ0(5(ẋ1)6 + 18(ẋ1)4(ẋ0)2 + 159(ẋ1)2(ẋ0)4 + 28(ẋ0)6)
4((ẋ0)2 − (ẋ1)2)

9/2 , (51)

N1
1(x, ẋ) =Hẋ0 −

H`m(ẋ1)2(2(ẋ1)8 − 9(ẋ1)6(ẋ0)2 + 36(ẋ1)4(ẋ0)4 + 97(ẋ1)2(ẋ0)6 + 84(ẋ0)8)
4((ẋ0)2 − (ẋ1)2)

9/2 , (52)

where the worldlines are autoparallel curves of this non-linear connection. Let us note that
some terms of the connection are only present due to the coupling between the spacetime
curvature parameter, H, and the one that gives a non-trivial velocity space, `. Some
curvature-triggered effects in quantum gravity have been recently analyzed [54].

Endowed with these coefficients, the preferred frames that induce the horizontal and
vertical decomposition can be immediately found, in addition the N-linear connection
coefficients Lα

µν and Cα
µν, as discussed in Section 2. Till now, only kinematical properties

were discussed, but the choice of the given connection should be given either by physical
conditions imposed on the dynamics of the spacetime or by possible effective gravitational
field equations for a quantum configuration space.

To finalize this Section, let us discuss the symmetries of the spacetime. A deep
analysis of the killing vectors of the H → 0 limit of this Finsler framework was carried
out in Ref. [51]. Even in that simplified scenario, the equations are quite lengthy which we
omit here. However, some properties should be mentioned. Firstly, the transformations
generated by the killing vectors seem to not exactly preserve the line element, but contribute
with a term that is given by a total derivative in the action parameter; therefore, the
kinematical results of these two line elements coincide. Secondly, the results found are
compatible with the κ-Poincaré scenario that inspired this approach. From the Finsler
perspective, it is possible to derive more general results, but they reduces to those of
the bicrossproduct basis of κ-Poincaré by an appropriate choice of free functions and
parameters. The third point is that a finite version of transformations that preserve the κ-
Poincaré dispersion relation was recently made in Ref. [55] through an alternative approach,
which does not rely on the killing vectors but is determined by the Finsler function and the
definition of momentum (explored in Section 4 below); however, a complete integration
of the finite isometry and a comparison between these approaches is still missing in the
literature. To finalize, the case of H 6= 0 was investigated in Ref. [50], but in conformal
coordinates (which are not the ones that are considered in this application), and was not
done in so much detail as the flat case, but a generator of the corresponding curved boost
transformation was made explicit in Equation (25) of Ref. [50].

4. The Cotangent Bundle Version of Finsler Geometry

As was discussed in Ref. [42], by mapping the velocity of the particle to its momentum,
it is possible to find the version of the Finsler metric defined in the cotangent bundle or
phase space. Already from the definition of the 4-momentum,

pµ = m
∂F
∂yµ , (53)
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when it is possible to invert this expression to find y = y(p), one can substitute this result
in the Finsler metric as hF

µν(x, p) = gF
µν(x, y(p)). This metric is defined on the slit cotangent

bundle, T̃∗M = T∗M/{0}, where we also remove the zero section in each spacetime point
for the same technical reasons as discussed in Section 3 above. Since the quantities are
now defined in the cotangent bundle, we need to also address some issues that were raised
in Section 3 concerning the tangent bundle. This Section’s notation is applied according
to Ref. [47]. For instance, under a change of coordinates, the spacetime and momentum
variables transformed according to

x̃µ = x̃µ(x) , (54)

p̃µ =
∂xν

∂x̃µ pν , (55)

which means that the frame (∂/∂xµ, ∂/∂pν) transforms as

∂

∂x̃µ =
∂xν

∂x̃µ

∂

∂xν
+

∂pν

∂x̃µ

∂

∂pν
, (56)

∂

∂ p̃µ
=

∂x̃µ

∂xν

∂

∂pν
. (57)

On the other hand, the natural coframe (dxµ, dpν) changes as

dx̃µ =
∂x̃µ

∂xν
dxν , (58)

dp̃µ =
∂xν

∂x̃µ dpν +
∂2xν

∂x̃µ∂x̃λ
pνdx̃λ . (59)

Simlarly to that in Section 3, the presence of a nonlinear connection, Oµν, allows one
to split the cotangent bundle into a horizontal and a vertical subbundle. Inspired by the
consideration of the Hamilton case considered in Ref. [56] (discussed below), we propose
the following dual non-linear connection (constructed in Appendix A):

Oµν(x, p) = −m
[

Nα
µ
(gαν − pα pν/m2)

F
− ∂µ∂̇νF

]∣∣∣∣∣
(x,y(p))

, (60)

where p = p(y) is the kinematical map defined by Equation (53). By construction, these
symbols have the transformation properties of a nonlinear connection,

Õµν =
∂xλ

∂x̃µ

∂xε

∂x̃ν
Oλε +

∂2xβ

∂x̃µ∂x̃ν
pβ . (61)

Endowed with a nonlinear connection Oµν, one can decompose the tangent bundle
of the cotangent bundle by the Whitney sum in each point TuT̃∗M = Ou ⊕Vu, ∀u ∈ T̃∗M.
The subbundle Ou is called horizontal space and is spanned by the frame,

δ

δxµ = δµ =
∂

∂xµ + Oµν
∂

∂pν
, (62)

and the subbundle Vu is called vertical space and is spanned by the frame in each point of
T̃∗M:

∂̄µ =
∂

∂pµ
, (63)
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such that TuT̃∗M = span{δµ, ∂̄ν}. The transformation properties of the nonlinear connec-
tion are implied in the following rule for transforming this basis:

δ

δx̃µ = δ̃µ =
∂xν

∂x̃µ

δ

δxν
=

∂xν

∂x̃µ δν , (64)

∂

∂ p̃µ
= ˜̄∂µ =

∂x̃µ

∂xν

∂

∂pν
=

∂x̃µ

∂xν
∂̄ν . (65)

Equivalently, with the nonlinear connection, we can decompose the cotangent space
T∗u T̃∗M = span{dxµ, δpν}, where

δpµ = dpµ −Oνµdxν . (66)

Therefore, the dual basis transforms as

dx̃µ =
∂x̃µ

∂xν
dxν , (67)

δ p̃µ =
∂xν

∂x̃µ δpν . (68)

Similarly to what has been done for the tangent bundle case, such a decomposition
allows us to express a vector and a 1-form via horizontal and vertical components, where
now, the vertical component is considered along momenta instead of velocities,

X = Xµδµ + X̄µ∂̄µ = XH + XV , (69)

ω = ωµdxµ + ω̄µδpµ = ωH + ωV . (70)

Besides, the metric H(x, p) of the configuration space is defined as follows. Given a
metric hµν(x, p), and the nonlinear connection Oµν(x, p), the quantum phase space presents
metrical properties given by the tensor,

H(x, p) = hµν(x, p)dxµ ⊗ dxν + hµν(x, p)δpµ ⊗ δpν . (71)

We refer to the tensor H as the N-lift to T̃∗M of the metric hµν. The map between y
and p cannot be done, in general, involving quantities that are parametrization-dependent
because p itself is parametrization-invariant, whereas y is not. That is why one can only
assume y(p) for the definition of the metric hF

µν.
Endowed with these quantities, one can just extend the definition of d-tensors 1 to the

cotangent case, in which one only needs to consider the use of the nonlinear connection
Oµν and the adapted basis defined in this Section.

The above implies that a d-tensor T of type (m + q, n + p) can be rewritten in the
preferred basis as

T = Tµ1...µm
ν1...νnα1...αp

β1...βq
δ

δxµ1
⊗ ...⊗ δ

δxµm
⊗ ∂

∂pν1

⊗ ...⊗ ∂

∂pνn

⊗ dxα1 ⊗ ...⊗ dxαp ⊗ δpβ1 ⊗ ...⊗ δpβq , (72)

whose components transform according to usual linear transformation rules, as the one of
Equation (34).
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4.1. N-Linear Connection

Equivalently, the notion of differentiation can be defined in the cotangent bundle
through the N-linear connection D, which has the following coefficients in the frame
(δµ, ∂̄ν) (see Theorem 4.9.1 in Ref. [47]):

Dδν
δµ = Hα

µνδα , Dδν
∂̄µ = −Hµ

αν∂̄α , (73)

D∂̄ν δµ = Cαν
µ δα , D∂̄ν ∂̄µ = −Cµν

α ∂̄α . (74)

Otherwise, in the frame (dxµ, δpν) one has (see Proposition 4.9.1 in Ref. [47])

Dδν
dxµ = −Hµ

ανdxα , Dδν
δpµ = Hα

µνδpα , (75)

D∂̄ν dxµ = −Cµν
α dxα , D∂̄ν δpµ = Cαν

µ δpα . (76)

Considering a N-linear connection D with set of coefficients, DΓ(N) = (Hα
µν, Cα

µν), one
can add to it a nonlinear connection, Nµν, that is in general independent of the coefficients
of D, such that the new set is DΓ = (Nµν, Hα

µν, Cα
µν). For this reason, the derivative of

a d-tensor in the cotangent bundle presents similar usual rules for dealing with up and
down indices:

Tµ1...µm
ν1...νnα1...αp

β1...βq
|ε (77)

=
δ

δxε
Tµ1...µm

ν1...νnα1...αp
β1...βq + Hµ1

γεTγ...µm
ν1...νnα1...αp

β1...βq + ...− Hγ
ν1εTµ1...µm

γ...νnα1...αp
β1...βq ,

Tµ1...µm
ν1...νnα1...αp

β1...βq ||ε (78)

=
∂

∂pε
Tµ1...µm

ν1...νnα1...αp
β1...βq + Cµ1ε

γ Tγ...µm
ν1...νnα1...αp

β1...βq + ...− Cγε
ν1 Tµ1...µm

γ...νnα1...αp
β1...βq .

Let us note that from the kinematical map relating velocities and momenta, the
coefficients Hα

µν(x, y(p)) and Cα
µν(x, y(p)) can be found as been parametrization-invariant.

4.2. Finsler–q-de Sitter (Cotangent Bundle Case)

Here, we again consider the q-de Sitter-inspired case. Then, using the Finsler function
(46), the momentum is given by Equation: (53)

p0 =
mẋ0√

(ẋ0)2 − a2(ẋ1)2
− `

m2a2(ẋ1)2(a2(ẋ1)2 + (ẋ0)2)

2[(ẋ0)2 − a2(ẋ1)2)]2
, (79)

p1 = − ma2 ẋ1√
(ẋ0)2 − a2(ẋ1)2

+ `
m2a2(ẋ0)3 ẋ1

((ẋ0)2 − a2(ẋ1)2))2 , (80)

which furnishes a helpful expression that is throughout this Section and is a common trick
when trying to find momentum-dependent quantities from the Finsler approach:

mẋ0√
(ẋ0)2 − a2(ẋ1)2

= p0 + `
a−2(p1)

2(a−2(p1)
2 + (p0)

2)

2m2 , (81)

maẋ1√
(ẋ0)2 − a2(ẋ1)2

= −a−1 p1

(
1 + `

(p0)
3

m2

)
. (82)

The above expressions allow us to express the Finsler metric through its momentum
dependence:

gF
µν(x, ẋ(p)) = hF

µν(x, p) =

 1 + 3`p0(p1)
4

m4 − `a(p1)
3[(p1)

2−4(p0)
2]

2m4

− `a(p1)
3[(p1)

2−4(p0)
2]

2m4 −a2 + `a2(p0)
3[2(p0)

2+(p1)
2]

m4

 , (83)
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which can be called a “Finsler-rainbow metric”.
One can also find the induced non-linear connection in the cotangent bundle through

the definition (60) to read as

O00(x, p) =− H`(p1)
2

8m10

[
4(p0)

10 + 44(p0)
8(p1)

2 + 190(p0)
6(p1)

4 − 196(p0)
4(p1)

6

+31(p0)
2(p1)

8 + 32(p1)
10
]

, (84)

O01(x, p) =Hp1 −
`Hp0 p1

8m10

[
−4m8(p0)

2 + 8(p0)
10 + 32(p0)

8(p1)
2 + 206(p0)

6(p1)
4

−212(p0)
4(p1)

6 + 43(p0)
2(p1)

8 + 28(p1)
10
]

, (85)

O10(x, p) =Hp1 −
H`p0 p1

8m10

(
−4m8(p0)

2 + 4(p0)
10 + 140(p0)

8(p1)
2 + 2(p0)

6(p1)
4

−106(p0)
4(p1)

6 + 61(p0)
2(p1)

8 + 4(p1)
10
)

, (86)

O11(x, p) =Hp0 +
H`

8m10

(
4(p0)

2(p1)
2
(

m8 + 3(p1)
8
)
+ 8m8(p1)

4 − 8(p0)
12 − 124(p0)

10(p1)
2

−30(p0)
8(p1)

4 + 138(p0)
6(p1)

6 − 89(p0)
4(p1)

8 − 4(p1)
12
)

. (87)

From these expressions, one can construct the decomposition of the tangent and
cotangent spaces of the cotangent bundle into horizontal and vertical parts, accordingly.

5. Geometry of the Cotangent Bundle: Hamilton Geometry

Besides the Finsler geometry, another interesting proposal for building a natural
geometry for propagation of particles that probe a modified dispersion relation consists
of the so-called Hamilton geometry. In this case, different from the Finsler geometry, we
start with a geometric structure defined in the cotangent bundle (the definitions used in
this metric follow that in the book [47] and in papers [56–59]).

A Hamilton space is a pair, (M, H(x, p)), where M is a smooth manifold and H :
T∗M → R is a continuous function on the cotangent bundle that satisfies the following
properties:

1. H is smooth on the manifold T̃∗M;
2. the Hamilton metric, hH , with components,

hµν
H (x, p) =

1
2

∂

∂pµ

∂

∂pν
H(x, p) , (88)

is nondegenerate.

Since one does not have an arc-length functional, worldlines as extremizing curves
are an absent concept in this approach. Instead, the equations of motion of a particle that
obeys a given Hamiltonian are given by the Hamilton equations of motion:

ẋµ =
∂H
∂pµ

, (89)

ṗµ = − ∂H
∂ẋµ . (90)

Since this is just another metric structure defined in the cotangent bundle, the same
results regarding the tools for coordinate transformations given by Equation (54) are
applicable here. As the case of Hamiltonian mechanics, the definition of Poisson brackets is
useful enough for our purposes. For two real valued functions F(x, p) and G(x, p), their
Poisson brackets are given in [56] (the geometry of the cotangent bundle with deformed
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Hamiltonian can also be described with the language of symplectic geometry, which is
reviewed in Ref. [60]):

{F(x, p), G(x, p)} = ∂µF∂̄µG− ∂µG∂̄µF . (91)

As above, in order to divide the tangent and cotangent spaces of the cotangent bundle
into horizontal and vertical spaces, a non-linear connection is necessary, and the canonical
choice is given in Theorem 5.5.1 of Ref. [47] and Definition 2 of Ref. [56] as

Oµν(x, p) =
1
4
({hH

µν, H}+ hH
µα∂ν∂̄α H + hH

να∂µ∂̄αH) , (92)

where hH
µν is the inverse of the metric hµν

H . This non-linear connection allows us to use

the basis δµ = ∂µ + Oµν∂̄ν and ∂̄µ as a special basis of T(x,p)T̃∗M, and to use the basis dxµ

and δpµ = dpµ −Oνµdxν as a special basis of T∗(x,p)T̃
∗M, which transforms according to

Equations (64), (65) and (67), (68).
Endowed with these coefficients, following Theorem 5.6.1 of Ref. [47], there exists a

unique N-linear connection DΓ(O) = (Hα
µν, Cµν

α ) such that:

1. Oµν is the canonical non-linear connection;
2. the metric hµν

H is h-covariant constant (no horizontal non-metricity):

Dδα
hµν

H = 0 ; (93)

3. the metric hµν
H is v-covariant constant (no vertical non-metricity):

D∂̄αhµν
H = 0 ; (94)

4. DΓ(N) is horizontally torsion free:

Tα
µν = Hα

µν − Hα
νµ = 0 ; (95)

5. DΓ(N) is vertically torsion free:

S µν
α = Cµν

α − Cνµ
α = 0 ; (96)

6. the triple (Oµν, Hα
µν, Cµν

α ) has coefficients given by

Oµν(x, p) =
1
4
({hH

µν, H}+ hH
µα∂ν∂̄α H + hH

να∂µ∂̄α H) , (97)

Hµν
α =

1
2

hαβ
H (δµhH

βν + δνhH
βµ − δβhH

µν) , (98)

Cµν
α = −1

2
hH

αβ∂̄µhβν
H . (99)

This is called a Cartan N-linear covariant derivative. Equivalently, the notion of
d-tensors and their derivatives discussed in Section 4.1 are applicable.

5.1. Symmetries

Hamilton geometry also allows one to encompass a DSR language, as was the case
for Finsler geometry discussed in Section 3.2. However, its realization does not come
from the invariance of an interval ds2, since one does not have it, but from the invariance
of the Hamiltonian function H(x, p). The approach, which we highlight here, was done
starting from Definition 4 of Section II-D of Ref. [56]. In a Hamilton space (M, H) with
manifold M, and Hamiltonian H, let X = ξµ∂µ be a vector field in the basis manifold M
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and XC = ξµ∂µ − pν∂µξν∂̄µ be the so-called complete lift of X to T̃∗M. A symmetry of the
Hamiltonian is a transformation generated by XC, whose components satisfy

XC(H)ξµ∂µH − pν∂µξν∂̄µH = 0 . (100)

If one derivates this expression twice with respect to momenta, one gets the follow-
ing result:

0 =
1
2

∂̄µ∂̄νXC(H) = ξα∂αhµν
H − hµα

H ∂αξν − hνα
H ∂αξµ − pβ∂αξβ∂̄αhµν

H . (101)

This is just the generalization of the killing equation to a general Hamilton space.
In general, if hH does not depend on momenta, then it reduces to the standard Rieman-
nian case. Besides, from the expression of the Poisson brackets (91), it can verified that
such symmetries give rise to conserved charges ξµ pµ; i.e., that Poisson commutes with
the Hamiltonian:

{ξµ pµ, H} = 0. (102)

These are the charges that, at an algebraic level, can generate translations, boosts, and
rotations, for instance.

5.2. Hamilton–q-de Sitter (Cotangent Bundle Case)

As an example, we rely on the results presented in Ref. [56], which are as well
inspired by the q-de Sitter Hamiltonian (45). In this case, the Hamilton metric, defined by
Equation (88), reads:

hµν
H (x, p) =

(
1 −`p1(1 + 2Hx0)

−`p1(1 + 2Hx0) −(1 + 2Hx0)(1 + `p0)

)
, (103)

which, as can be seen, acquires a shape much simpler than the rainbow-Finsler one (83)
due to the much direct way in which it is calculated.

The non-linear connection can be read from Equation (92) and can be cast in a matrix
form due to its simplicity:

Oµν(x, p) =
(

H`p2
1 Hp1

Hp1 Hp0(1− `p0)

)
. (104)

As expected, it coincides with the case (84) in the Riemannian case, i.e., when ` = 0.
The Hamilton equations of motion can be found from Equation (89) and read:

ẋ0 − 2p0 + `p2
1(1 + 2Hx0) = 0 , (105)

ẋ1 + 2p1(1 + Hx0) + 2`p0 p1(1 + 2Hx0) = 0 , (106)

ṗ0 − 2Hp2
1 − 2H`p0 p2

1 = 0 , (107)

ṗ1 = 0 . (108)

The autoparallel (horizontal) curves of the non-linear connection satisfy (see Equation (8.2)
in Ref. [47])

ṗµ −Oνµ ẋν = 0 , (109)

and, as can be seen from Equation (104) for Oµν, the worldlines, defined from the Hamilton
equations of motion, are not autoparallels of the non-linear connection.

The symmetries have also been analyzed in Ref. [56], where it has been noticed that
the conserved charges that generate translations and the boost coincide with the results
from Ref. [51] that do not rely on the geometrical approach used in this paper.
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6. The Tangent-Bundle Version of Hamilton Geometry

Endowed with Hamilton equations of motion (89), one has a map between the mo-
menta and velocities from ẋµ = yµ = ∂H/∂pµ. When it is possible to invert this map to find
pµ = pµ(y) (as done in Appendix B of Ref. [58]), one derives an interesting map between
the cotangent and tangent space version of Hamilton geometry. Indeed, using this map, a
Hamilton metric defined in the tangent bundle reads:

gµν
H (x, y) .

= hµν
H (x, p(y)) . (110)

The dual non-linear connection in this case has been discussed in Appendix C of Ref. [56],
and is given by

N(x, y)µ
ν = 2O(x, p(y))ναhαµ

H (x, p(y))− (∂ν∂̄µH)|p=p(y) . (111)

Its main property is the preservation of the horizontal tangent spaces of the cotangent
and tangent bundle connected through the kinematical map yµ = ∂H/∂pµ.

With this map, it is possible to define the dual non-linear and N-linear connections,
now defined in the tangent bundle. It should be stressed that although this gives geometri-
cal quantities defined in the tangent bundle, this does not represent a Finsler geometry, since
there is no arc-length functional and the Hamilton metric is not, in general, 0-homogeneous
to start with.

Hamilton-κ-Poincaré (Tangent Bundle Case)

The kinematical map that allows us to describe y = y(p) is found by inverting the
relation yµ = ∂H/∂pµ for the q-de Sitter Hamiltonian, given by

p0 =
y0

2
+ `

(y1)2

8
, (112)

p1 = −y1

2
+ H

x0y1

2
+ `

y0y1

4
. (113)

The metric in the tangent bundle reads:

gµν
H (x, y) =

(
1 `(Hx0y1 + y1)/2

`(Hx0y1 + y1)/2 −(1 + 2Hx0)(1 + `y0/2)

)
. (114)

The dual non-linear connection reads

Nµ
ν(x, y) =

(
−H`(y1)2/2 `hy0y1 + hy1

Hy1 −hy0 − 3`h(y1)2/4

)
. (115)

In Section 7 below, some key points of each approach are discussed while comparing
the descriptions of configuration and phase spaces.

7. Advantages and Difficulties of Each Formalism

The approaches considered—Finsler and Hamilton spaces—present the points that
can be considered positive or negative. In this Section, we highlight some of those points
which look to be most important from theoretical and phenomenological points of view.

7.1. Finsler Geometry

Let us emphasize that here not a complete list of positive or negative points is given, and,
certainly, the points listed represent just our view on the subject under scrutiny and some
points we are classifying in one way or another can be seen by others completely differently.



Physics 2023, 5 108

7.1.1. Advantages

Preservation of the equivalence principle. Due to the presence of an arc-length func-
tional, the extremizing geodesics of the Finsler function are the same worldlines of the
Hamiltonian, from which the arc-length was derived. This means that, in the Finslerian lan-
guage, the equivalence principle is satisfied, as soon as the worldlines are trajectories of free
particles in this spacetime. There is a fundamental difference in comparison to the special
or general relativity formulation, since these trajectories are now mass-dependent, since
the Finsler function and the metric carry the mass of the particle due to Planck-scale effects.
Intriguingly, although the metric does not present a massless limit (which is discussed
below), it is possible to find trajectories of massless particles, which are compatible with
the Hamiltonian formulation, by taking the limit m→ 0 in the geodesic Equation [49,50].
This finding leads to some effects due to modifications of the trajectories of particles. For
instance, one of the most explored avenues of quantum gravity phenomenology (maybe
competing with threshold effects) is the time delay until particles with different energies
might arrive at a detector after a (almost) simultaneous emission [61,62] (for reviews,
see [4,5]). This kind of experimental investigation is not exhausted, and novelties have
arrived in the analysis of sets of gamma-ray bursts and candidate neutrinos emitted from
them in the multimessenger astronomy approach [63,64].

Preservation of the relativity principle. This formalism allows one to derive and
solve the killing equation, which furnishes infinitesimal symmetry transformations of the
metric. It has been shown in Ref. [49] that generators of these transformations can be
constructed and identified with the transformations that are generally depicted in the
doubly special relativity. The latter implies, in a preservation of the relativity principle, that
inertial frames should assign the same MDR to a given particle which, in its turn, implies
that the deformation scale of quantum gravity is observer-independent, i.e., two observers
would not assign different values, in the same system of units, to the quantum gravity scale.
This preservation has important phenomenological consequences, such as the point that the
threshold constraints on the quantum gravity parameter do not apply in the DSR scenario.
The reason is that, accompanied by the deformation of the Lorentz (Poincaré) symmetries,
comes a deformation of the composition law of momenta of particles (for instance p and q),
such that the nature of interaction vertices to not get modified when transforming from
one frame to another:

Λ(p⊕ q) = Λ(p)⊕Λ(q) , (116)

where Λ is a deformed Lorentz transformation induced by the killing vectors and ⊕
represents a modified composition of components of the involved momenta (this covariance
condition usually needs a back-reaction on the boost parameter, but we do not dwell on that
here; for more details, see [55,65] and references therein). Threshold constraints, such as the
one placed in Ref. [66], assumes that the composition of momenta is undeformed, although
the dispersion relation is modified in a Lorentz invariance violation (LIV) scenario. When
this is the case, processes that are forbidden in special relativity, such as the decay of the
photon into an electron–positron pair, becomes kinematicaly allowed for a given threshold
energy. The no observation of such decays allows one to place constraints on the quantum
gravity parameter. When the dispersion relation is modified as well, what happens is
that generally these kinds of processes remain forbidden or modifications in the threshold
energies are so minute that they are unobservable for a quantum gravity parameter in the
order of the Planck energy [55]. This is an important feature of “deforming” instead of
“violating” the Lorentz symmetry.

Preservation of the clock postulate. The availability of an arc-length functional leads
to a possibility to analyze the consequences of having the proper time of a given particle
given by it. If this is the case, then the worldlines or geodesics are just paths that extremize
the proper time an observer measures in spacetime, similar to that in special relativity.
One of the consequences of this feature consists of the possibility of connecting the time
elapsed in the comoving frame of a particle during its lifetime (which is its lifetime at
rest) and the coordinate time, which is the one that is assigned to this phenomenon in
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the laboratory coordinates. Using this expression, one can investigate the relativistic time
dilation (responsible for the “twin paradox”) or the so-called first clock effect (for further
details on the first and also on the second clock effect, which can appear in theories with
a non-metricity tensor, see Ref. [67]), in which, for instance, the lifetime of a particle is
dilated in comparison to the one assigned in the laboratory. Due to Finslerian corrections,
the lifetime of a particle in the laboratory would receive Planckian corrections, which,
actually, is a novel avenue of phenomenological investigation that is being currently carried
out [43,55] through the search for signatures in particle accelerators and cosmic rays.

7.1.2. Difficulties

Absence of massless rainbow Finsler metric. The Finsler approach had emerged as
an opportunity to describe in a consistent way the intuition that the quantum spacetime
probed by a high-energy particle would present some energy-momentum (of the particle
itself) corrections, which is justified by different approaches to quantum gravity [24,25].
Since then, proposals of rainbow metrics have considered a smooth transition from massive
to massless cases, not only from the point of view of the trajectories, but from the metric
itself. This is not the case for the Finsler approach presented here. Although the trajectories
and symmetries are defined for both massive and massless cases by considering the m→ 0
limit, the rainbow metric of Finsler geometry, given by Equation (83), is certainly not
defined for massless particles. The reason for this is the point that when passing from the
Hamiltonian to the Lagrangian formalism, we defined an arc-length functional, which is
not a legitimate action functional for massless particles. In other words, a crucial step for
deriving the Finsler function is the handling of the Lagrange multiplier λ of action (4),
which can only be solved if the particle is massive, as can be found in Refs. [43,49,50,53]. A
possibility that has been explored consisted of not solving the equation for λ and defining
a metric that depends on λ and on velocities from a Polyakov-like action for free particles
(instead of the Nambu–Goto one given by the arc-length), which turned out to be out of
the Finsler geometry scope [50,53]. However, this possibility has not been further explored
beyond preliminary investigations. The issue of the absence of a massless rainbow-Finsler
metric could be circumvented by proposing a different kind of geometry, which from the
very beginning started from the momenta formulation, like the other possibility described
in this paper, namely the Hamilton geometry.

Definition only through perturbations. The Finsler geometry was considered in this
paper in this context at most perturbatively around the quantum-gravity-length scale
(or inverse of energy scale), which may be considered as a negative point if one aims to
make it at a more fundamental or theoretical level. Nevertheless, from the pragmatic
perspective of phenomenology, since such effects, if they exist, are minute, then the per-
turbative approach is enough for proposing new effects that could serve as avenues of
experimental investigation.

The handling of finite symmetries. Another issue that can be problematic is the
handling of finite symmetries in the Finsler context. Up to today, the connection between
Finsler geometry and quantum gravity phenomenology has not faced the issue of integrat-
ing the symmetries and finding finite versions of deformed Lorentz transformations. Some
initial investigations were carried out in Ref. [55] from the momentum space perspective,
but further issues are being currently faced by some authors of the present paper.

7.2. Hamilton Geometry

The descriptions of the points here is rather short, without discussion of some universal
points already described above, so those universal points can be addressed there when that
is the case.
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7.2.1. Advantages

Presence of a massless rainbow Hamilton metric. Differently from the Finsler case,
the Hamilton geometry does not need an arc-length functional; instead, it only needs a
given Hamiltonian, from which the metric, non-linear connection, and symmetries are
derived. This means that from the very beginning, the massless limit of geometrical
quantities exists.

Does not require perturbative methods. Another positive point about the Hamilton
geometry is the finding that one can handle with the exact form of the proposed Hamil-
tonian, and it does not need to consider perturbations around a certain scale. Instead,
independently of the form of the (smooth) dispersion relation that arises from de facto
approaches to quantum gravity, the geometry can be handled, as has been considered, e.g.,
in Refs. [57,58].

Preservation of the relativity principle and the handling of symmetries. Due to the
proximity of this approach to the way that the DSR formalism generally handles with Planck
scale corrections, i.e., from the point of view of momentum space and Hamilton equations,
the handling of symmetries is facilitated in this approach. For instance, it is straightforward
to find the conserved charges from the killing vectors, which generate finite transformations
that are momenta-dependent without tedious terms in the denominator of the equations
when one is working in velocity space, as Finsler geometry is initially formulated (or
without mass terms in the denominator in the Finsler version of the phase space).

Generalization to curved spacetimes. This approach is considered in more curved
space cases, beyond the q-de Sitter exemplified in this paper; for instance, its spherically
symmetric and cosmological versions were explored giving rise to interesting phenomeno-
logical opportunities, from the point of view of time delays and gravitational redshift,
among others (for some applications of Hamilton geometry in this context, see [59] and
references therein).

7.2.2. Difficulties

Non-geodesic trajectory. An issue that may be considered problematic is the point
that the worldlines of particles, given by the Hamilton equations, are not geodesics of the
non-linear connection that means that there exists a force term in the geodesic equation,
which is in contrast with the Finsler case. This is a property of the Hamilton geometry, as
has been shown in Ref. [56], and is not specific to the q-de Sitter case analyzed here.

Absence of the arc-length. The Hamilton geometry does not dwell with an arc-length
functional that means that the only geodesics present are those of the non-linear or of the
N-linear connections and there are no extremizing ones. The absence of a function that
allows one to measure distances in spacetime can be seen as a difficulty of this geometry;
if the distances cannot be calculated, one could wonder what such a metric means. Even
if the norm of a tangent vector can be integrated, this integral would not be, in general,
parametrization-independent, which is also a drawback of this tentative. Besides, the
absence of an arc-length limits the phenomenology of the preservation of the clock postulate
that was discussed in the Finsler case.

8. Final Remarks

We revised two proposals that have been considered as candidates for describing
the quantum configuration and phase spaces probed by particles whose kinematics are
modified by a length scale identified as the quantum gravity scale.

Finsler geometry starts from a configuration space framework that presents applica-
tions on its own in biology, thermodynamics, and modified gravity; and it finds a natural
environment in quantum gravity phenomenology due to its power to describe a scenario in
which important principles that guided physics in the XXth century, such as the relativity
principle, are preserved even at a Planckian regime. Besides its traditional description in
terms of the couple spacetime and velocity space (configuration space), we also explored its
development in terms of the induced couple spacetime and momentum space (phase space),
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which is actually more appropriate for a pure quantum description than the configuration
space. Some points that we consider positive and negative and which are consequences of
the requirements for using the Finsler language, the derivation of an arc-length functional
defined in the slit tangent bundle, are discussed in Section 7.

The second case of the present study is the Hamilton geometry, whose properties
are derived directly from the Hamiltonian itself, without the need to go through the def-
inition of an arc-length. Actually, in general, the Hamilton metric does not even define
a curve-parametrization-invariant length measure which brings some limitations to phe-
nomenological investigations of this subject in quantum gravity. On the other hand, this
issue circumvents some intrinsic difficulties of Finsler geometry, which were also discussed
in Section 7.

The goal of this paper was to review some topics of these two important geometries
by using kinematical descriptions of particles whose behavior might present departures
from special relativity results due to the effective quantum gravity influence. We also
aimed to bring some points that we consider as under-explored perspectives on the subject
by explicitly presenting some geometric quantities that are dual to those, in which those
quantities were originally presented, such as the dual metrics and non-linear connections
(whose Finslerian one was proposed in this paper, by inspiration of definitions in the
Hamilton geometry literature) of Finsler and Hamilton geometries in the cotangent and
tangent bundles, respectively.

At least two global points could be considered insufficiently explored or unexplored
in this subject. One is the geometry probed by an (non-)interacting multi-particle system.
Some challenges of this problem can be found, for instance, in Ref. [68], but the relations
between the approaches there described and Finsler/Hamilton geometries remains unclear.
Another point that remains unexplored consists of the dynamics of the configuration/phase
space in a way that is compatible with quantum gravity phenomenology-inspired ap-
proaches. For instance, one could wonder if there exists a gravitational field theory defined
in Finsler or Hamilton spaces that has q-de Sitter or other proposals as solutions, and how
matter would interact in this scenario. The exploration of this topic might shed light on the
one regarding a multi-particle system. These are more challenges that might be subjects of
the future research in this area and which may help to build a bridge between quantum
and modified gravities.
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Abbreviations

The following abbreviations are used in this manuscript:

DSR Doubly/Deformed Special Relativity,
LQG Loop Quantum Gravity,
LIV Lorentz Invariance Violation,
MDR Modified Dispersion Relation

Appendix A. Dual Finsler Nonlinear Connection

The momenta of a particle in Finsler geometry, given by the following expression,

pµ = m
∂F
∂yµ ≡ m∂̇µF , (A1)

defines a kinematical map between velocity and momenta variables at each given point in
the base manifold M. We refer to such a map as

[ : T̃M→ T̃∗M (A2)

(x, y) 7→ [(x, y) = (x, m∂̇F(x, y)) = (x, p(x, y)) . (A3)

Inspired by the construction of Ref. [56], the condition that a nonlinear connection in
the tangent bundle is dual to one in the cotangent bundle by a kinematical map, [, is that
such an application maps the tangent space of the tangent bundle onto the tangent space of
the cotangent bundle. This means that the differential of such a map maps the preferred
basis of one tangent space, δµ = ∂µ − Nν

µ∂̇ν, onto the other, d [(δµ) = δ′µ = ∂µ −Oµν∂̇ν.
This means that the action of this differential on a vector X = Xµ∂µ + Ẋµ∂̇µ is given by

d [(x,y) : T(x,y)T̃M→ T[(x,y)T̃∗M , (A4)

X = Xµ∂µ + Ẋµ∂̇µ 7→ d [(x,y)(X) = Xµd [(x,y)(∂µ) + Ẋµd [(x,y)(∂̇µ) (A5)

= Xµ(∂µ + m∂µ∂̇νF∂̄ν) + mẊµ∂̇µ∂̇νF∂̄ν . (A6)

By acting on the basis vectors δµ = ∂µ − Nν
µ∂̇ν, one finds:

d [(x,y)(δµ) = d [(x,y)(δµ)− Nν
µd [(x,y)(∂̇ν) = ∂µ + m∂µ∂̇νF∂̄ν −mNν

µ∂̇ν∂̇αF∂̄α . (A7)

In order to simplify this expression, the relation 2gνα = ∂̇ν∂̇αF2 = ∂̇ν(2F∂̇αF) is used
that leads to

∂̇ν∂̇αF =
gνα − pν pα/m2

F
. (A8)

From this expression, one finds that

d [(x,y)(δµ) = ∂µ −m
[

Nα
µ
(gαν − pα pν/m2)

F
− ∂µ∂̇νF

]
∂̄ν = ∂µ + Oµν∂̄ν , (A9)

which leads to the dual nonlinear connection,

Oµν(x, p) = −m
[

Nα
µ
(gαν − pα pν/m2)

F
− ∂µ∂̇νF

]∣∣∣∣∣
(x,y(p))

. (A10)
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