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Abstract: We built a model and proposed a theory about the thermodynamic properties of face-
centered cubic (FCC) binary interstitial alloy’s thin films based on the statistical moment method
and performed numerical calculations for AuSi (gold silicide). First, the statistical moment method
(SMM) calculations for the thermodynamic properties of Au are compared with reported experiments
and calculations that show a good agreement between the calculations in this paper and earlier
studies. Additionally, the SMM calculations for thermodynamic properties of AuSi alloy films are
performed, which show that the thermal expansion coefficient, the specific heat at constant volume,
and the specific heat at constant pressure increases, while the isothermal elastic modulus decreases
with increasing temperature and increasing interstitial atom concentration. Furthermore, when the
number of layers reaches 100, the thermodynamic properties of the film are similar to those of the
bulk material. The achieved theoretical results for AuSi films are novel and can be useful in designing
future experiments.
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1. Introduction

Among recent theoretical approaches regarding the thermodynamic properties of
solid phases, molecular dynamics simulation [1] and density functional theory [2] are
certainly the most effective approaches even though they are somewhat time consuming.
In contrast, for simple non-magnetic metals, a model using an empirical potential may be
effective to determine the thermodynamic parameters. The self-consistent phonon theory
in the reduced second-order [3], self-consistent statistical method [4] and the statistical
moment method (SMM) [5] can be steadily used to derive thermodynamic and transport
properties of a crystal or a film. The SMM is a modern method in quantum statistical
mechanics that considers the anharmonicity effect of lattice vibrations, the correlation effect,
and the effects of pressure, temperature and atomic concentration. The thermodynamic,
elastic, melting and structural phase transition quantities calculated using the SMM have
the form of analytic expressions and are easy for numerical calculations. In many cases,
the results calculated using the SMM agree better with the experimental data than the
results obtained with other methods. The SMM has been applied to study elastic moduli
and elastic constants of FCC interstitial alloy AuCuSi under pressure [6], thermodynamic
and elastic properties of BCC interstitial alloy FeC at zero pressure [7], the nonlinear
deformation of BCC metal Fe and BCC interstitial alloy FeSi [8], jumps of volume, enthalpy
and entropy at the melting point, the thermal conductivity and the thermal diffusivity
for FCC-Au [9], the equilibrium vacancy concentration and thermodynamic quantities of
BCC defective alloys FeCrSi and VWSi under pressure [10], the melting and the Debye

Physics 2023, 5, 59–68. https://doi.org/10.3390/physics5010005 https://www.mdpi.com/journal/physics

https://doi.org/10.3390/physics5010005
https://doi.org/10.3390/physics5010005
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/physics
https://www.mdpi.com
https://orcid.org/0000-0003-4320-1438
https://doi.org/10.3390/physics5010005
https://www.mdpi.com/journal/physics
https://www.mdpi.com/article/10.3390/physics5010005?type=check_update&version=2


Physics 2023, 5 60

temperature for BCC and FCC metals under pressure [11], the elastic deformation and the
velocity of elastic wave for metal Fe and its BCC interstitial alloys [12], the Young modulus
and the stress-strain curve for Fe and FeC [13] and melting behaviors of hcp iron up to
4000 GPa [14]. The SMM has still been applied to study the thermodynamic properties of
metal thin films [15,16]. The average values of the Young’s moduli are 63 GPa for Ag and
57 GPa for Al multilayers [16]. The thermomechanical properties of gold (Ag), silver (Au)
and aluminum (Al) thin films have attracted the attention of researchers recently [17,18].
The mechanical stresses and the coefficients of linear thermal expansion were investigated
by using non-ambient (in-situ) X-ray diffraction measurements [19]. A novel theory was
developed to predict the growth mode of a thin metallic film on an insulating substrate [20].
To further investigate nanoindentation data of film–substrate systems and to learn more
about the mechanical properties of nanometer film–substrate systems, two kinds of films
on different substrate systems have been tested with a systematic variation in film thickness
and substrate characteristics [21]. The coefficient of thermal expansion, biaxial modulus
and stress of some metallic (Ag and Al) thin films were measured using the thermally
induced bending technique [22]. The Young’s modulus of free-standing polycrystalline Al
and Au films with submicron thickness has been studied using a dynamic bulge-testing
technique [23]. Melting temperatures of refractory metals are studied at high pressures [24].

The size-dependences of the melting point, Debye temperature, thermal expansion
coefficient (TEC) and specific heat of nanostructured materials have been modeled free
of adjustable parameters. The melting point and Debye temperature decrease while the
thermal expansion coefficient and specific heat increase when the grain size decreases [25].
A new analytical method for temperature- and size-dependent TEC of transition metallic
nanostructures has been established [26]. As an important property for reflecting the bind-
ing forces between atoms, the Debye temperature of nanocrystals can be tuned according to
size, dimensionality and composition. In order to understand how these factors influence
the Debye temperature, a new nanothermodynamic model without any adjustable parame-
ters is established here by considering the surface stress and bond number simultaneously.
The Debye temperature decreases with a decrease in size if the dimensionality is given,
while the size effect on nanowires is stronger than that on thin films and weaker than
that on nanoparticles. It is also found that the Debye temperature of nanoalloys decreases
with the increase in the component with smaller cohesive energy for the same size and
dimensionality. The validity of the model is proved by the good consistency between the
model predictions and experimental and computer simulation results [27].

Au and gold silicide (AuSi) have many applications in superconducting wire technol-
ogy [28]. AuSi is commercially available and used in bearing assembly, ballast, casting, step
welding and radiation shielding. In the current study, we modelled a face-centered cubic
(FCC) binary interstitial alloy’s thin film and developed the thermodynamic theory of this
thin film based on the SMM [6–16,29,30]. Here, first, the theoretical results of the Au film
are numerically calculated, and are compared with reported calculations and experiments
to confirm the precision of the calculation model developed in this paper. Then, the model
is applied to the AuSi alloy film to discover new properties caused by the Si concentration.

2. Methods, Results and Discussion
2.1. Model and Calculation Method

Consider a free thin film of FCC interstitial alloy AB. Assume this film has n* layers
with the thickness d. The thin film consists of two outer layers, two next outer layers and
n*-4 inner layers. Let Nol, Nnol and Nil be the number of atoms in the outer layer, the next
outer layer and the inner layer of this thin film, respectively [6].

For the layer l (this layer is the inner layer or the next outer layer), the displacement
of the atom X (X = A, A1, A2, B, where A is the atom in the pure metal A, A1 is the main
metal atom A at the body center of the cubic unit cell, A2 is the main metal atom A at the
vertices of the cubic unit cell and B is the interstitial atom at the face center of the cubic unit
cell) at pressure P and temperature T from the equilibrium position has the form [6,29]:
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where θ = kBoT, kBo is the Boltzmann constant, T is the absolute temperature,
yl

X ≡ yl
X(P, T), kl

X is the harmonic crystal parameter of the atom X in the layer l and
γl

X is the anharmonic crystal parameter of the atom X in the layer l. Parameters kl
X and γl

X
are determined at pressure P and temperature T = 0 K from the nearest neighbor distance
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following equation of state [30]:
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For the outer layer, the displacement of the atom X is equal to [6,30]
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where kol
X , γol

X , xol
X are determined in the same way as above [30].

The nearest neighbor distances between two atoms r1X(P, T) in the layer m (this
layer is the inner layer, the next outer layer or the outer layer) are determined by using the
methods described in Refs. [6,30]:
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The mean nearest neighbor distance, rml
1A(P, T), between two atoms A in the layer m of

the FCC interstitial alloy AB is determined by using the methods of Refs. [6,30]:
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Nml is the concentration of atoms X in the layer m, Nml
X is the number of atoms X in

the layer m, and Nml is the number of atoms in the layer m.
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The Helmholtz free energy for the layer l of FCC binary interstitial alloy’s thin film
approximately has the form [6]:
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In Equation (6), Uml
0X = Nml

2 uml
0X , ψml

X is the Helmholtz free energy of an atom X in the
layer m and Sml

c is the configurational entropy of the alloy in the layer m.
At low temperatures, the vibrations of the atoms around the lattice point nodes are

harmonic. Then, the Helmholtz free energies for the layer m of the alloy film have the
form [6],
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Assume the thin film consists of N atoms with n* layers and the number of atoms per
layer is equal to Nml , then N = n∗Nml and [16]

n∗ =
N

Nml . (8)

The number of atoms in the inner layer, the next outer layer and the outer layer of the
thin film, respectively, is determined by [16]

Nil = (n∗ − 4)Nml =
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Nml = N − 4Nml , (9)

Nnol = 2Nml = N − (n∗ − 2)Nml ,
Nol = 2Nml = N − (n∗ − 2)Nml .

(10)

The Helmholtz free energy of the thin film is given by [16]

Ψ = Ψil + Ψnol + Ψol − TSc = Nilψil + Nnolψnol + Nolψol − TSc
=
(

N − 2Nnol − 2Nol)ψil + 2Nnolψnol + 2Nolψol − TSc,
(11)

where N = Nil + Nnol + Nol is the total atomic number of the film, Sc is the configurational
entropy of the film and ψil, ψnol, ψol are the Helmholtz free energies of an atom in the inner
layer, the next outer layer and the outer layer of the film, respectively.

Let symbol a denotes the mean nearest neighbor distance between two atoms, b the
average thickness of the two respective layers, and ac the average lattice constant of the
thin film.

Then, for FCC thin films [16]:

b =
a√
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The thickness is related to the number of layers [16]:
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The isothermal compressibility and elastic modulus of the FCC interstitial alloy AB’s
thin film are [6,16,29], respectively:
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The thermal expansion coefficient of the FCC interstitial alloy AB’s thin film has the
form as reported in Refs. [6,16,29]:
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Here dol is the thickness of the outer layers, dnol is the thickness of the next outer layers
and d is the thickness of a thin film.

The energy of the FCC interstitial alloy AB’s thin film reads [6,16,29]:
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The specific heat at constant volume of the FCC interstitial alloy AB’s thin film has the
following form [6,16,29]:
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In Equations (17) and (18), Zml
X ≡

xml
X

sinhxml
X

. The specific heat at constant pressure of the

FCC interstitial alloy AB’s thin film reads [6,16,29]:

CPAB = CVAB +
9TVABα2
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. (19)

2.2. Numerical Results and Discussion for Alloy AuSi

For evaluating the interaction of Au-Au and Si-Si in the alloy AuSi, the Mie-Lennard-
Jones potential [31],

ϕ(r) =
D

n−m

[
m
( r0

r

)n
− n

( r0

r

)m]
, (20)

was used, where D is the depth of the potential well corresponding to the equilibrium
distance r0, while m and n are determined empirically. The obtained parameters D, r0, m, n
are given in Table 1. Considering the interactions for Au-Si, the following approximation
was used:

ϕAu−Si ≈
1
2
(ϕAu−Au + ϕSi−Si). (21)

Table 1. The parameters D, r0, m, n [32] for the Mie-Lennard-Jones potential (20).

Interaction m n D (10−16 erg) r0 (10−10 m)

Au-Au [33] 1.96 15.56 10,227.78 2.8751
Si-Si [28] 6.0 12.0 45,128.24 2.295

The influence of temperature and layer number on the nearest neighbor distance, a,
isothermal elastic modulus, BT, thermal expansion coefficient, αT, specific heat at constant
volume, CV, and specific heat at constant pressure, CP, for Au at P = 0 were calculated using
the SMM, and the reported calculations [33–37] are given in Table 2.

According to Table 2, the SMM calculations for isothermal elastic modulus, thermal
expansion coefficient, specific heat at constant volume and specific heat at constant pressure
of Au at P = 0 in the range of temperature from 100 to 800 K are in good agreement with
the data of reported experiments [38] and calculations [33–37]. When the number of
layers increases, the thickness of the film, the mean nearest neighbor distance, the thermal
expansion coefficient and the specific heats at constant volume and at constant pressure
increase, while the isothermal elastic modulus decreases. The obtained SMM calculations
are consistent with the results obtained in Ref. [25], wherein the nanoparticle size increases
with the decrease in the coefficient of thermal expansion and specific heat. When the
nanoparticle size changes, the cohesive energy and the mean nearest neighbor distance
change, and therefore, the thermal expansion coefficient and the specific heat also change.
This is consistent with the results from Ref. [26].

The influence of silicon concentration, temperature and layer number on the mean
nearest neighbor distance, a, isothermal elastic modulus, BT, thermal expansion coefficient,
αT, specific heat at constant volume, CV, and specific heat at constant pressure, CP, for AuSi
at P = 0 were calculated using the SMM and are given in Table 3.

According to Tables 2 and 3, the nearest neighbor distance of the thin film depends
strongly on the thickness and temperature. The nearest neighbor distance of the thin film
increases as the film becomes thicker and increases sharply as the temperature rises. The
temperature-dependence of the nearest neighbor distance is because the atoms vibrate
more strongly and the nearest neighbor distance increases when the temperature increases.

As the temperature increases, the kinetic energy of the atoms increases and the anhar-
monicity of lattice vibrations is larger, making the mean nearest neighbor distance between
two atoms in the alloy, the thermal expansion coefficient, the specific heat at constant vol-
ume and the specific heat at constant pressure increase while the isothermal elastic modulus
decreases. As the interstitial atom concentration increases, the lattice expands, the mean
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nearest neighbor distance between two atoms in the alloy, the thermal expansion coefficient,
the specific heat at constant volume and the specific heat at constant pressure increase
while the isothermal elastic modulus decreases. As the number of layers increases until
about 100 layers (about 35 nm thickness), the thermal expansion coefficient, the specific
heat at constant volume, the specific heat at constant pressure and the isothermal elastic
modulus of the thin film approach the values of the bulk material.

Table 2. Dependence of the nearest neighbor distance, a, isothermal elastic modulus, BT, thermal
expansion coefficient, αT, specific heat at constant volume, CV, and specific heat at constant pressure,
CP, for Au at P = 0 on the temperature, T, and number of layers calculated here using the statistical
moments method (SMM) and compared with the corresponding values calculated (CAL) from
Refs. [33–37] and the experimental (EXPT) data [38].

Quantity
Number of Layers

T (K)
100 200 300 400 500 600 700 800

a
( ◦

A
) 10 3.146 3.152 3.159 3.166 3.173 3.180 3.189 3.197

15 3.033 3.039 3.045 3.052 3.058 3.065 3.073 3.080
30 2.929 2.934 2.940 2.946 2.952 2.958 2.965 2.972
50 2.889 2.894 2.900 2.905 2.911 2.917 2.924 2.930

100 2.860 2.865 2.870 2.876 2.881 2.887 2.894 2.900
Bulk 2.834 2.839 2.844 2.847 2.855 2.861 2.867 2.873

BT(
1011Pa−1

)
10 1.334 1.270 1.207 1.145 1.084 1.024 0.963 0.902
15 1.419 1.353 1.288 1.224 1.161 1.099 1.037 0.975
30 1.506 1.438 1.371 1.306 1.241 1.178 1.115 1.052
50 1.541 1.473 1.405 1.339 1.274 1.210 1.146 1.083

100 1.568 1.499 1.431 1.365 1.299 1.234 1.171 1.107
Bulk 1.593 1.523 1.455 1.388 1.322 1.257 1.192 1.129

CAL [33] Bulk 1.710 1.666 1.623 1.586 1.549 1.515 1.485 1.458
CAL [34] Bulk 1.696 1.658 1.612 1.575 1.526 - - -

αT(
10−5K−1

)
10 1.557 1.797 1.913 2.015 2.120 2.235 2.365 2.521
15 1.515 1.749 1.859 1.955 2.052 2.157 2.275 2.411
30 1.474 1.702 1.806 1.895 1.984 2.079 2.184 2.301
50 1.457 1.682 1.784 1.871 1.957 2.048 2.147 2.257

100 1.445 1.668 1.768 1.852 1.936 2.025 2.120 2.224
Bulk 1.433 1.655 1.754 1.836 1.918 2.004 2.095 2.195

CAL [37] Bulk 1.442 1.636 1.696 1.774 1.854 1.915 1.975 2.036
CAL [34] Bulk 1.270 1.428 1.536 1.655 1.773 1.940 2.137 2.423
CAL [35] Bulk 1.359 1.704 1.842 - - - - -
EXPT [38] Bulk 1.15 1.34 1.41 1.45 1.50 1.54 1.59 1.65

CV
(cal/(mol·K))

10 5.231 5.797 5.919 5.972 6.007 6.035 6.061 6.089
15 5.217 5.793 5.916 5.969 6.003 6.031 6.056 6.082
30 5.202 5.788 5.913 5.966 6.000 6.027 6.051 6.075
50 5.196 5.786 5.912 5.965 5.999 6.025 6.049 6.072

100 5.191 5.784 5.911 5.964 5.998 6.024 6.047 6.070
Bulk 5.187 5.783 5.910 5.964 5.997 6.023 6.046 6.068

CP
(cal/(mol·K))

10 5.324 6.033 6.302 6.513 6.721 6.940 7.183 7.464
15 5.300 6.006 6.262 6.457 8.115 6.842 7.056 7.298
30 5.277 5.981 6.226 6.406 6.576 6.752 6.940 7.148
50 5.268 5.971 6.212 6.387 6.551 6.719 6.897 7.092

100 5.262 5.964 6.202 6.373 6.532 6.694 6.866 7.051
Bulk 5.256 5.958 6.193 6.361 6.516 6.673 6.838 7.015

CAL [33] Bulk 5.542 5.994 6.112 6.277 6.371 6.464 6.558 6.604
CAL [36] Bulk 5.136 5.875 5.873 6.301 6.419 6.560 6.677 6.771
EXPT [38] Bulk 5.12 5.84 6.07 6.18 6.28 6.40 6.52 6.65
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Table 3. Dependence of the mean nearest neighbor distance, a, isothermal elastic modulus, BT,
thermal expansion coefficient, αT, specific heat at constant volume, CV, and specific heat at constant
pressure, CP, on the silicon concentration, cSi, temperature, T, and number of layers for AuSi at P = 0
calculated using the SMM.

Quantity
Number of Layers

T (K) 100 300 500 800 100 300 500 800

cSi = 1% cSi = 3%

aAB

(
o
A
) 10 3.153 3.165 3.178 3.200 3.168 3.178 3.189 3.206

15 3.041 3.052 3.064 3.084 3.055 3.064 3.074 3.090
30 2.936 2.946 2.957 2.975 2.950 2.958 2.967 2.982
50 2.896 2.906 2.916 2.934 2.909 2.918 2.926 2.940

100 2.866 2.876 2.887 2.903 2.880 2.888 2.897 2.910
Bulk 2.841 2.850 2.860 2.877 2.854 2.862 2.870 2.884

BTAB(
1011Pa−1

)
10 2.373 2.198 2.028 1.776 4.439 4.178 3.923 3.545
15 2.521 2.340 2.165 1.906 4.713 4.442 4.177 3.787
30 2.673 2.487 2.306 2.041 4.995 4.714 4.439 4.037
50 2.736 2.547 2.363 2.096 5.110 4.825 4.546 4.139

100 2.783 2.592 2.407 2.138 5.198 4.909 4.628 4.217
Bulk 2.826 2.633 2.447 2.176 5.277 4.986 4.702 4.288

αTAB(
10−5K−1

)
10 0.821 1.048 1.139 1.280 0.382 0.552 0.600 0.658
15 0.800 1.022 1.108 1.239 0.373 0.539 0.585 0.641
30 0.779 0.996 1.077 1.197 0.363 0.526 0.571 0.623
50 0.770 0.985 1.065 1.181 0.359 0.521 0.565 0.616

100 0.764 0.977 1.056 1.169 0.356 0.517 0.561 0.611
Bulk 0.758 0.970 1.048 1.157 0.354 0.514 0.557 0.606

CVAB
(cal/(mol·K))

10 4.886 5.849 5.975 6.064 4.195 5.709 5.910 6.015
15 4.870 5.845 5.971 6.058 4.177 5.704 5.907 6.011
30 4.854 5.841 5.968 6.052 4.158 5.699 5.904 6.006
50 4.848 5.840 5.967 6.050 4.151 5.696 5.902 6.004

100 4.843 5.839 5.966 6.048 4.146 5.695 5.901 6.003
Bulk 4.838 5.838 5.965 6.046 4.141 5.693 5.900 6.002

CPAB
(cal/(mol·K))

10 4.932 6.060 6.362 6.764 4.214 5.822 6.120 6.387
15 4.912 6.037 6.322 6.687 4.194 5.806 6.098 6.347
30 4.892 6.015 6.285 6.617 4.174 5.792 6.077 6.311
50 4.884 6.007 6.272 6.591 4.166 5.786 6.069 6.298

100 4.878 6.001 6.262 6.572 4.160 5.782 6.064 6.288
Bulk 4.873 5.996 6.253 6.555 4.155 5.778 6.059 6.279

For bulk Au at the near melting temperature, the atomic volumes calculated using
the SMM in the current study and that in a reported study are 17.29 × 10−30 m3 and
17.88 × 10−30 m3 [39], respectively. Clearly, these calculations are consistent, confirming
the reliability of our calculation. For bulk Au at T = 300 K and P = 0, the nearest neighbor
distance calculated using the SMM in the current study is 2.8454 × 10−10 m, and this result
is in good agreement with the experimental data (2.8838 × 10−10 m) reported in Ref. [40].

3. Conclusions

Based on the model and the thermodynamic theory for FCC binary interstitial alloy’s
thin films built using the SMM, we performed numerical calculations for AuSi films in
the temperature range from 100 to 800 K, considering the variation of interstitial atom
concentration from zero to 3% and the change of number of layers from 10 to 200. When
the interstitial atom concentration is zero, the thermodynamic quantities of the interstitial
alloy’s thin film become those of the main-metal thin film. The thermal expansion coeffi-
cient, the specific heat at constant volume and the specific heat at constant pressure increase
while the isothermal elastic modulus decreases with increasing temperature and increasing
interstitial atom concentration. As the number of layers increases up to 100 layers (about
35 nm thickness), thermodynamic quantities of the thin film approach those values of
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the bulk material. The SMM calculations of the nearest neighbor distance, the thermal
expansion coefficient, the specific heat at constant volume and the specific heat at constant
pressure for Au in the form of bulk materials are in good agreement with the results of re-
ported experiments and calculations. The obtained numerical results without comparative
data are new and represent a useful reference for designing future experiments.
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