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Abstract: Casimir–van der Waals forces are important in the self-assembly processes of nanoparticles.
In this paper, using a hybrid approach based on Lifshitz theory of Casimir–van der Waals interactions
and corrections due to the shape of the nanoparticles, it is shown that for non-spherical nanoparticles,
the usual Hamaker approach overestimates the magnitude of the interaction. In particular, the study
considers nanoplates of different thicknesses, nanocubes assembled with their faces parallel to each
other, and tilted nanocubes, where the main interaction is between edges.
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1. Introduction

The self-assembly of nanoparticles has become an attractive area of research since it
can be used to construct materials with novel properties by arranging nanoparticles of
different geometries in arrays that mimic crystalline structures with a given periodicity [1].
Unlike usual crystals with an atom in each site, in self-assembled supracrystals, a nanopar-
ticle is placed in the crystalline sites [2]. The assembly and bonding of the nanoparticles
happen due to a combination of forces and, in many cases, ligands such as strands of
nucleic acids [3]. Several physical properties can be modified in self-assembled systems,
such as the optical response using plasmonic nanoparticles, as well as electrical and thermal
conductivity properties, making self-assembly a practical way for building nanocompos-
ites [4]. The potential use of nanocomposites as biosensors and nano-biomaterials has been
studied [5], as well their therapeutic delivery of drugs at the nanoscale [6].

Self-assembly typically occurs in a solvent, such as water, and the interactions are
described by the DLVO theory, named after Derjaguin, Landau, Verwey, and Overbeek.
The DLVO theory includes the screened electrostatic interaction via the Poisson-Boltzman
equation and the van der Waals interaction, assuming they are additive [7–10]. Depletion
forces, that are attractive, due to the presence of micelles can also be present [11]The van
der Waals force is usually calculated using the Hamaker approach, which assumes a pair-
wise summation [12]. Based on the fluctuation–dissipation theorem and Rytov’s theory of
fluctuating electrodynamics [13], Lifshitz [14,15] developed the theory of generalized van
der Waals forces between macroscopic bodies. The Lifshitz equation for the Casimir–van
der Waals interaction energy can be written as in the Hamaker’s approach; however, now
the Hamaker constant can be explicitly calculated if the dielectric functions of the particles
and the surrounding media are known.

Of interest to the calculations presented in this paper is the equilibrium formation
of colloidal Au nanoprisms. Young et al. synthesized and self-assembled triangular
nanoprisms in a one-dimensional periodic array [16]. The periodicity of these lamellar
superlattices depends on the solution’s temperature and ionic strength. The equilibrium
condition comes from the balance of the attractive van der Waals force, the repulsive elec-
trostatic potential from the solution of the Poisson–Boltzmann equation, and the attractive
depletion force that comes from the formation of micelles, since surfactants are added to
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avoid aggregation. A similar work by Munkhbat et al. [17] designed tunable self-assembled
Casimir microcavities made of parallel Au nano palettes and showed that only the electro-
static and Casimir–van der Waals interactions play a dominant role. Both above-described
systems yield equilibrium periodic structures. The possibility of having optical cavities
with a high-quality factor by combining the repulsive Casimir and buoyancy forces has
also been considered [18]. A suitable choice of the dielectric functions of the plates and the
media between them yields a repulsive force.

Finite-size effects due to the shape of the interacting bodies have been a challenge
to the precise calculation of the Casimir–van der Waals force. Hamaker introduced [12] a
pair-wise summation to calculate the interaction energy between two spheres, resulting in
an expression that includes the energy of interaction multiplied by a factor that depends
on the geometry of the objects. Other geometries have also been considered, such as
the interaction between spheres and shells, as well as shells and walls [19]. Dantchev
and Valchev presented [20] a surface integration approach generalizing the Derjaguin or
proximity theorem approximation for the interaction between a three-dimensional object
and a half-space. In particular, Dantchev and Valchev considered the case of spheres,
cylinders, and the interaction of liposomes and lipid bilayers. The problem of extending
the original theory of Hamaker is well described in an extensive review by Rusanov and
Brodskaya [21], where they present the interaction of many systems of interest in colloidal
science, such as spherical particles, wedges, and cylinders of different lengths.

Furthermore, we are interested in the self-assembly of polymer-grafted metal nanocubes
into arrays of one-dimensional strings with well-defined interparticle orientations and
tunable electromagnetic properties [22]. The nanocubes are assembled in two configura-
tions: one considering the edge–to-edge interactions of the nanocubes, and the second one
considering the face-to-face interactions. Unlike spherical nanoparticles characterized by
one dipolar plasmonic resonance, cubes have several dipolar modes [23].

Since Lifshitz theory provides a more accurate description than the simple Hamaker
approximation, a hybrid approach is preferred. In this paper, the interaction energy between
two parallel surfaces is calculated using Lifshitz theory, adjusting for geometrical effects [24].
Within this approach and using the results of de Rocco and Hoover [25], we evaluate the
Casimir–van der Waals interaction in several systems of interest in self-assembly.

2. Lifshitz Theory and the Hamaker Constant

Lifshitz theory considers two parallel slabs separated by a distance L and a temperature
T. The plates have lateral dimensions that are much larger than L. The dielectric function
of the plates is ε(ω) in a medium with a dielectric function εm(ω). After making the
rotation to imaginary frequencies (ω → iω) and introducing the Matsubara frequencies
ζn = 2πnKBT/h̄, where KB is Boltzmann constant, h̄ is the reduced Planck’s constant, and n
is a natural number, the Casimir–van der Waals energy per unit area is written as [14,15,26]

E(T, L) =
KBT
2π

∞

∑
n=0

′
∞∫

0

dQQ ln[Dp(Q, ζn, L)Ds(Q, ζn, L)]. (1)

The prime in the sum indicates that the n = 0 term has to be multiplied by 1/2.

The wave vector in the gap is K0 = (Q, k0), with the z-component, k0 =
√

εmζ2
n/c2

0 + Q2,
where c0 denotes the speed of light in vacuum. Within the material, the corresponding

z component of the wave vector is k =
√

εζ2
n/c2

0 + Q2. These definitions of the normal
components of the wave vectors are evaluated in the Matsubara frequencies. The function
Dν(Q, ζ, L) is

Dν(Q, ζn, L) = 1− r2
νe−2k0L, (2)

where rν are the reflection coefficients of the plates for either ν = p or ν = s polarization.
For clarity, it is important to notice that the reflection coefficients depend on the frequency
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and parallel component of the wave vector Q through the definitions of k0 and k, defined
above. For a slab of thickness d, one has

rν = ρν
1− e−2δ

1− ρ2
νe−2δ

, (3)

where the phase δ is defined as δ = (d/c0)
√

ζ2
n(ε(iζn)− 1) + c2

0k0, and the Fresnel coeffi-
cients ρν are

ρs =
k0 − k
k0 + k

, (4)

and

ρp =
k− ε(iζn)k0

k + ε(iζn)k0
. (5)

In general, Equation (1) is correct for half-spaces, finite-width plates, layered sys-
tems [27], or nonlocal dielectric functions [28] provided that the appropriate reflection
coefficients are calculated [29]. The only restriction is that Lifshitz theory assumes that the
plate extension is infinite.

The interaction energy given by Equation (1) can be rewritten in the form of the
Hamaker formula. Defining the variable x = 2k0L, the energy per unit area reads:

E(T, L) = −AH(T)
12πL2 , (6)

where the Hamaker constant, AH(T), is

AH(T) = −
3kT

2

∞

∑
n=0

′
∞∫

x0

dxx ln[Dp(x, ζn)Ds(x, ζn)], (7)

and the lower limit of integration is x0 = ζn
√

εmL/c0.
For two equal plates facing each other of surface area S, the total energy is EH(L) = E(L)S.

3. Finite-Size Effects

When dealing with finite-size effects, the energy of interaction between the bodies can
be, in general, written as E(L, T) = AHK(a, b, d), where K(a, b, d) is a geometric correction
that depends on the dimensions of the body indicated by a, b, d. However, AH is calculated
from Equation (7), which, as explained before, is for parallel plates strictly of infinite length
or with dimensions much larger than the separation L. In what follows the following
notation is used: E is the total energy between the bodies, and E is the energy density (see
Equation (6)).

For the case of finite-size plates, the geometric factor was derived by De Rocco and
Hoover [25]. For two parallel plates of size a× b and thickness c, the geometric factor is

Kpl(x, a, b) =
1
4

ln
(

x4 + x2a2 + x2b2 + a2b2

x4 + x2a2 + x2b2

)
+

x2 − a2

4ax
tan−1

( a
x

)
+

x2 − b2

4bx
tan−1

(
b
x

)
+

x(a2 + b2)3/2

6a2b2 tan−1
(

x√
a2 + b2

)
+

(
1

6x2 +
1

6a2

)
b
√

x2 + a2 tan−1

(
b√

a2 + x2)

)

+

(
1

6x2 +
1

6b2

)
a
√

x2 + a2 tan−1
(

a√
b2 + x2

)
.

(8)
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The variable x is a dummy variable that represents the position of the body where the
geometric factor is evaluated. The corresponding interaction energy between the plates is

E(L, a, b, c) = −AH

π2 [Kpl(L + 2c)− 2Kpl(L + c) + Kpl(L)]. (9)

The other case of interest is the self-assembly of cubes (see Ref. [22]). Equations (8) and (9)
are correct for two cubes with parallel faces, setting a = b = c. When the cubes are tilted
and the interaction is edge-to-edge, the geometric factor of the interaction ( denoted as Kcb)
is

K(x, d, c)cb =
1
8

ln
(

d2 + x2

c2 + d2 + x2

)
+

1
8

(
x
d
− d

x

)
tan−1

(
d
x

)
+

(c2 + d2)3/2x
12c2d2 tan−1

(
x√

d2 + c2

)
+

c
√

d2 + x2

12

(
1
d2 +

1
x2

)
tan−1

(
c√

d2 + x2

)
+

d(c2 + x2)1/2

12

(
1
c2 +

1
x2

)
tan−1

(
d√

c2 + x2

)
,

(10)

In this case, the separation L is between the edges of the cubes and d = L/
√

2, and the
energy is

E(d, a, b, c) = −AH

π2 (Kcb(d + 2a, d, b, c)− 2Kcb(d + a, d, b, c) + Kcb(d, d, b, c)). (11)

4. Results

To evaluate the finite-size effects, consider that the nanoparticles are made of Au with a
dielectric function given by a Drude model: ε(iζn) = 1 + w2

p/(ζ2
n + ζnγ), where wp = 9 eV

and γ = 0.02 eV. The plates (and cubes) are surrounded by water. The dielectric function of
the water used here is the data reported in Ref. [30] calculated along the rotated frequency
space (ω → iζn).

To understand the effect of finite-size effects, let us compare the energy between the
plates EH and the energy predicted using Equation (9) and Equation (11). As was stated
above, the energy for the plates EH is given by EH = SE = SAH/12πL2. , where S is the
surface of the plates. The value of the Hamaker constant in Refs. [16,17] was calculated
assuming semi-infinite plates, which is rs,p in Equation (2)—the knownFresnel coefficients.
Let us define the ratio Er = E(L; a, b, c)/EH(L). If Er ∼ 1, then finite-size effects are not
significant. Figure 1 shows Er as a function of the separation for the case of parallel plates.
The blue curve represents plates of size a = b = 2000 nm and thickness c = 30 nm, roughly
the size reported in Ref. [17], and the red line corresponds to plates of size a = b = 145 nm
and thickness c = 7.5 nm as in Ref. [16]. In both cases, one can observe that the Casimir–van
der Waals interaction is underestimated when using Equation (6). As L decreases, the value
of Er increases, since L� a, b.
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Figure 1. The energy ratio, Er, for two sizes of square plates of size a = b and thickness c. The lines
correspond to the value a/c as indicated. The sizes correspond to those used in Refs. [16,17]. See text
for details.

For completeness, Figure 2 shows how Er changes with thickness c while the other
dimensions are kept fixed (a = b = 2000 nm).

Figure 2. The variation of Er as a function of the separation, L, of the two plates for different values
of the thickness c of each as indicated, and a = b = 2000 nm. Even for large enough values of c,
the energy ratio is less than unity.

At a fixed separation L, the dependence of Er with the thickness, c, increases linearly
for small values of c and levels off asymptotically to the value expected for half-spaces.
Keeping the area of the plates constant and at two arbitrary separations of L = 50 nm and
L = 100 nm, Figure 3 shows the variation with the thickness. Thus, one can quantify the
correction needed for Equation (6).
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Figure 3. For two fixed separations between the plates, L = 50 nm and L = 100 nm, the ratio Er

increases with increasing the value of the thickness c, leveling-off asymptotically to the value expected
for half-spaces. The dimensions of the plate are a = b = 2000 nm.

The interaction energy Er for cubes is presented in Figure 4. The face–face and edge–
edge interactions are considered with edge lengths of a = b = c = 80 nm as reported in
Ref. [22]. The face–face interaction is just a particular case of parallel plates with a = b = c,
and the behavior is the same. As L decreases, the ratio a/L increases, and Er increases.
For all separations L, since Er < 1, one can see that using Equation (6) overestimates the
interaction. The ratio Er is calculated using Equation (11) for the edge–edge interaction.
The behavior of Er is different from the other cases. For the tilted cubes, the behavior is
different, and the interaction increases with increasing separation until it reaches a maxima.
To further understand this behavior, Er is plotted Figure 5 for the edge–edge interaction for
cubes of different sizes. The behavior of the curves is the same for different sizes except
that, depending on the size of the cube, there are different values of the maxima,but it
occurs when the separation between the edges is the same as the size of the cube L = c. It
should also be noted that the maximum value attained by Er is independent of the size of
the cube. Whether this is an artifact of the Hamaker approach or due to the singularity of
having the interaction between two edges is an issue that needs further exploration.

L

 a

L

Figure 4. Energy ratio, Er between two cubes facing each other and for two tilted cubes, as a function
of the separation L. The nanocubes have dimensions a = b = c = 80 nm.
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Figure 5. Energy ratio, Er, between two tilted nanocubes of different sizes. The sizes considered are
20 nm (blue line), 80 nm (red line), and 150 nm (orange line). The maximum in each curve happens
when the separation equals the size of the cube.

5. Discussion

The results presented in this study assumed that the surrounding medium was water.
No effect of electrolytes that screen the van der Waals interaction [31,32] was considered.
The screening will change the magnitude of the interaction energy. The dielectric func-
tion of the nanoparticle is assumed to be that of bulk Au. In the case of small metallic
nanoparticles, the damping has to be corrected to consider the change in the electronmean-
free path. For silver, this correction implies a change in the Hamaker constant of 138%
nanoparticles [33].

In the case of plates and nanoparticles, there is another effect that has not been
considered: spatial dispersion or nonlocal effects. For plates whose thickness is less than
the electron mean-free path, or with nanoparticles with an average size smaller than the
mean-free path, the dependence of the dielectric function with the wave vector has to
be taken into account. As shown in Ref. [34], introducing spatial dispersion affects the
Hamaker constant’s value at short separations. The difference in the Hamaker constant
between the local and nonlocal cases can be as large as two orders of magnitude. Nonlocal
effects become relevant when the size of the bodies is of the order of magnitude of the
skin depth. For Au (depending on the frequency), the skin depth is ∼40 nm. Thus,
the nanoplates used for self-assembly in the literature [16,17] fall in the range of thickness
where spatial dispersion has to be taken into account.

6. Conclusions

The ability to synthesize nanoparticles of different shapes and use them in self-
assembly requires understanding all the interactions, particularly the Casimir–van der
Waals interaction. The simplified approach not taking into account the shape overestimates
the force. The use of Equations (6) and (7) is not the only procedure available in the lit-
erature for estimating the Casimir–van der Waals interaction. Numerical simulations for
arbitrary 3D objects have been reported earlier [35] but require more computer-intensive
calculations. The procedure presented in this paper can be considered a first approach to
estimating the influence of the geometry for the case of nanoplates and nanocubes. The in-
teraction energy obtained, considering finite-size effects, is smaller than that predicted by
the conventional Hamaker approach. Geometric effects and other considerations, such
as spatial dispersion, should provide a better prediction of the Casimir–van der Waals
interaction for an accurate design of self-assembled structures.
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