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Abstract: The paper studies the soft X-ray data of solar flares and found that the distribution functions
of flare fluence are successfully modeled by tapered power law or gamma function distributions
whose power exponent is slightly smaller than 2, indicating that the total energy of the flare popula-
tions is mostly due to a small number of large flares. The largest possible solar flares in 1000 years are
predicted to be around X70 (a peak flux of 70 × 10−4 W m−2) in terms of the GOES (Geostationary
Operational Environmental Satellites) flare class. The paper also studies superflares (more energetic
than solar flares) from solar-type stars and found that their power exponent in the fitting of the
gamma function distribution is around 1.05, which is much flatter than solar flares. The distribution
function of stellar flare energy extrapolated downward does not connect to the distribution function
of solar flare energy.

Keywords: solar physics; solar flares; solar X-rays; coronal heating; space weather; stellar flares;
statistical methods

1. Introduction

Solar flares are the most energetic phenomena among a wide variety of magnetic
activities taking place on the Sun [1,2]. The first flare observation was made by Carrington
in 1859 in white light [3], and the earlier observations were restricted to Hα emission. Later
radio and X-ray observations revealed that flares heat the corona from its normal 1–2 MK
state to 10 MK or beyond. Then, it was found in 1980s that the largest fraction of energy
in flares goes to the kinetic energy of coronal mass ejections (CMEs). The most energetic
flares liberate energies up to 1033 erg [4]. Now it seems established that the energy release
in solar flares is due to magnetic reconnection [5].

The number of flares, f (E)dE, with energies between E and E + dE is distributed
roughly in power law [6,7] with a negative exponent, f (E)~E−α; i.e., smaller flares are more
numerous. This property led Parker [8] to propose that the solar corona might be heated [9]
by energies supplied from numerous small flares, later called nanoflares (in contrast to
another class of theory based on waves [10,11]). Here, the important criterion is whether
the power law index α is larger or smaller than 2 [12]. The total energy brought by all the
flares with energies between E1 and E2 is

W =
∫ E2

E1

E f (E)dE ∼ 1
2− α

(
E2−α

2 − E2−α
1

)
. (1)

If α > 2, then contributions from smaller events (E1→0) determine the total energy
involved in the flare phenomenon. However, for the observed flares of moderate or large
sizes it is generally believed that α < 2 (1.8 or about). Therefore, more contributions to W
come from larger flares. On the large energy end, in terms of space weather it has been
discussed how frequent very large (extreme) events would happen [4]. Recent discovery
of energetic flares (superflares) from solar-type (old and slowly rotating) stars [13,14] has
stimulated interest in solar extreme events.

This study looks into the probability distribution functions of solar X-ray flares. As
numerical measures both X-ray peak flux and X-ray fluence, which is the time integration
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of X-ray flux, are used. The peak X-ray flux may be subject to detector saturation for very
large flares (X17 or larger [15]), but we expect that X-ray fluence data would suffer less
influences because of time integration. The data used here are the soft X-ray observation by
the Geostationary Operational Environmental Satellites (GOES) [16] (Figure 1). In Figure 1,
7.9 × 104 flare events of peak flux above 10−7 W m−2 (1975–2020) and 3.4 × 104 events of
fluence above 5 × 10−5 J m−2 (1997–2020) are plotted.
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at the high energy end they are tapered off exponentially. The power law is a scale-free 
distribution and could be a viable model for phenomena taking place in scales sufficiently 
smaller than the entire system (the Sun in the present case). Solar flares are powered by 
magnetic energy stored in sunspot regions, and since sunspot sizes cannot exceed the Sun 
(or more effectively limited by the depth of the convection zone), a limit is expected on 
the amount of energy released in flares. Therefore, a power-law extension of the distribu-
tion overestimates the frequency of extremely large solar flares. In Section 4, the energy 
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Figure 1. Solar soft X-ray flares detected by the Geostationary Operational Environmental Satellites
(GOES): peak flux (a) and fluence of flares (b) as a function of year.

In a foregoing study [17], the power law indices of α = 2.11 for X-ray peak flux and
α = 2.03 for X-ray fluence were derived. Additionally, it was pointed out that α would be
1.88 if the background intensity is subtracted from the flare data.

The conclusions here are that although the distributions are roughly of a power law,
at the high energy end they are tapered off exponentially. The power law is a scale-free
distribution and could be a viable model for phenomena taking place in scales sufficiently
smaller than the entire system (the Sun in the present case). Solar flares are powered by
magnetic energy stored in sunspot regions, and since sunspot sizes cannot exceed the
Sun (or more effectively limited by the depth of the convection zone), a limit is expected
on the amount of energy released in flares. Therefore, a power-law extension of the
distribution overestimates the frequency of extremely large solar flares. In Section 4, the
energy distribution function of stellar flares is briefly discussed and compared with the
solar flare case

2. Data and Methods

In this study, X-ray flux observed in the 0.1–0.8 nm band of the GOES X-ray sensors
(1980–2020) is used. The peak flux values are traditionally expressed [18] in terms of A
(10−8 W m−2), B (10−7 W m−2), C (10−6 W m−2), M (10−5 W m−2), and X (10−4 W m−2)
classes. Namely, an M5.5 flare means a flare of peak flux 5.5 × 10−5 W m−2 and an X12
flare has a peak flux of 12 × 10−4 W m−2. The data are available from 1975, but the data
before 1980 had one-digit accuracy (C2, M4, etc.); therefore, the data after 1980 which have
two-digit accuracy (C2.1, M3.9, etc.) are used. The data after 1997 also include the fluence
values (time integration of X-ray flux). In the following analysis flares with peak flux
above M3 or 3 × 10−5 W m−2 (1980–2020, 1720 events) and also flares with fluence above
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1 × 10−2 J m−2 (1997–2020, 1945 events) are picked up (the data are available as described
in the Supplementary Materials). The analysis uses the old operational scale instead of
the new science scale adopted by the National Oceanic and Atmospheric Administration
(NOAA) [15] (operational values = 0.7 × science values). The peak flux data of 2020 and
the background data of 2011–2020 which were in the science database had been converted
to the operational scale.

As previously suggested [17], background subtraction may significantly affect the data
from small events particularly. Here, a simplified approach is adopted by subtracting the
daily background value from the flare peak flux, and the value of the background times
the duration from the fluence data (the duration of a flare can be computed from the flare
start and end times given in the database). The background subtraction was not applied for
1980–1983 April (data not available) and on other days with no background data available,
and when the background exceeds the flare intensity (e.g., when the background was too
high because of a preceding flare).

The complementary cumulative distribution function, CCDF(F), of fluence F defined
as [19]

CCDF(F) = n(fluence ≥ F)/N, (2)

is studied, where N = 1945 is the total number of events under study. The probability
distribution function (PDF) is defined by

PDF(F) = −d(CCDF)
dF

, (3)

but here the flare occurrence rate is used defined by

f (F) = PDF(F)
N

τobs
, (4)

where τobs is the total duration of data (24 years). The dimension of f (F) is 1/(J m−2 day).
Figure 2 shows CCDF(F) (Figure 2a) and f (F) (Figure 2b).
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Figure 2. Complementary cumulative distribution function (a) and occurrence rates (b) of flare
fluence, F. The histogram in plot (b) is built with a bin-size of ∆log10F = 0.2. Short vertical bars
indicate statistical errors of

√
n on the bins with counts n.
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One can likewise define the quantities for X-ray peak flux Fp, with Np = 1720 and
τobs,p = 41 years. The dimension of f (Fp) is 1/(W m−2 day).

Let us fit the observed CCDF by four kinds of models: power law, tapered power law,
gamma function, and Weibull distributions. The power law distribution is defined by [19]

CCDF(F) =
(

F
F0

)−α+1
, PDF(F) =

α− 1
F0

(
F
F0

)−α

, (5)

where α > 1 and F0 (=1 × 10−2 J m−2; F0p = 3 × 10−5 W m−2 for the peak flux data) is the
lower boundary of the fitting. The other three are two-parameter models. The tapered
power law distribution is defined by [20]

CCDF(F) =
(

F
F0

)−α+1
exp

[
−β

F− F0

F0

]
, (6)

where α > 1, β > 0. The gamma function distribution is defined by [20]

PDF(F) =
C
F0

(
F
F0

)−α

exp
[
−β

F− F0

F0

]
, C =

β1−α

F0Γ(1− α, β)
, (7)

where α > 1, β > 0, and Γ is the incomplete gamma function. The CCDF of the gamma
function distribution is given as

CCDF(F) =
Γ(1− α, βF/F0)

Γ(1− α, β)
.

The tapered power law and gamma function distributions have been used in geo-
physics in representing the distributions of earthquake magnitudes [21], in contrast to the
power law distribution which is called the Gutenberg–Richter relation in seismology [22,23].

The Weibull distribution is defined by

CCDF(F) = exp

[
−β

(
F
F0

)k
+ β

]
, (8)

where k > 0, β > 0. The Weibull distribution was first introduced to evaluate the failure
rates of industrial products [24].

The parameters can be determined by using the maximum likelihood method, namely
by maximizing the log-likelihood (LLH) defined by

LLH = ∑N
i=1 ln PDF(Fi). (9)

Specific forms of the maximum-likelihood solutions can be found in the literature for
power law [19], tapered power law [25], gamma function [20], and Weibull [26] distributions.
The goodness of fit can be evaluated by the Kolmogorov–Smirnov (K-S) test [27], which
uses the maximum difference between the observed and theoretical CCDFs. Whether
one model is superior to the others can be estimated by Akaike’s Information Criterion
(AIC) [28] given by

AIC = −2·LLH + 2K, (10)

where K is the number of parameters used for fitting (K = 1 for power law; K = 2 for the
other three models). By introducing more parameters, the fitting will improve, and one may
obtain a larger LLH, but meaningful improvement requires that AIC decreases sufficiently
(reduction in AIC of about 9–11 [29]). A similar analysis was conducted by the author on
the area distribution of sunspots [30].
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Statistical errors in the determined parameter values can be estimated by generating
many statistical distributions from the same parameter values and by seeing the distribu-
tions of the fitted parameter values (parametric bootstrap method [31]).

3. Results

Tables 1 and 2 summarize the fitting results for X-ray fluence and peak flux, respec-
tively. The errors given in Tables 1 and 2 are the one-sigma (one-standard-deviation) errors
thus derived.

Table 1. Derived parameters for X-ray fluence distributions (F0 = 1 × 10−2 J m−2, N = 1945). See text
for details.

Model α β ∆AIC
√

N × KS K-S p-Value

Power law 2.015 ± 0.023 11.6 0.69 0.72
Tapered power law 1.973 ± 0.021 0.00948 ± 0.0031 0.00 0.47 0.98

Gamma function 1.949 ± 0.032 0.00448 ± 0.0020 1.10 0.57 0.90
Weibull k = 0.0648 ± 0.0242 14.7 ± 5.9 7.20 0.69 0.73

Table 2. Derived parameters for X-ray peak flux distributions (F0p = 3 × 10−5 W m−2, N = 1720). See
text for details.

Model α β ∆AIC
√

N × KS K-S p-Value

Power law 2.162 ± 0.028 15.7 0.89 0.41
Tapered power law 2.077 ± 0.032 0.026 ± 0.007 0.00 0.40 0.99

Gamma function 2.040 ± 0.045 0.014 ± 0.005 1.48 0.44 0.99
Weibull k = 0.104 ± 0.030 10.2 ± 3.3 7.00 0.57 0.90

∆AIC is the difference in AIC from the smallest AIC value (indicating the most
likely model) among all the models, and models with ∆AIC & 9–11 are poorly supported
compared to the ∆AIC = 0 model. Therefore, we can conclude that the power law model,
shown in Figure 3, is not favorable compared to the other two-parameter models.
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A model can be rejected by the K-S test by examining its measure,
√

N × KS, where KS
is the maximum difference between the observed and model CCDFs. The probability that
the observed

√
N ×KS value or larger is obtained (the “KS p-value” in Tables 1 and 2) is

given analytically as the Kolmogorov–Smirnov function which has only a weak dependence
on
√

N regardless of the models assumed [32]. If the value of
√

N F0× KS is large and the
corresponding KS p-value is small, one can conclude that the model is rejected. However, it
is found here that the KS measures are generally small, and the p-values are not so small
even for the power-law models. This happens because the K-S test is not sensitive to
misfitting at the tail of the distributions. If F0 value is reduced, the fitting degrades and
eventually all the models tend to be rejected by the K-S test. The ambiguities in setting the
lower bound F0 of the probability distribution function are discussed in Section 4.

3.1. Tapered Power Law and Gamma Function Distributions

These two models (Figure 4a,b) show similar performance in terms of ∆AIC. The
power-law indices α for the fluence are 1.973 for the tapered power law model and 1.949
for the gamma function model. Considering one-sigma errors one can still say that the
values of α are less than 2, namely the total energy of all the flare populations is contributed
primarily from large events. The values of α for the peak flux are 2.077 for the tapered
power law model and 2.040 for the gamma function model, larger than 2. These values
generally agree with the results of Ref. [17].
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(1 × 10−2 J m−2) of data used for fitting.

3.2. Weibull Distribution

In terms of ∆AIC, the Weibull distribution (Figure 4c) cannot be dismissed but is
supported only marginally (30 times less likely than the ∆AIC = 0 model).

If the distribution is extended to F << F0, the Weibull PDF approaches a power law
with exponent 1 − k. Therefore, the fluence PDF behaves like F−(1−k) = F−0.935, which is
significantly flatter than the tapered power law and gamma function distributions. This is
another reason why the Weibull distribution is not favored compared to the tapered power
law and gamma function distributions.

3.3. Comparison with Published Results

Similar analyses have been made by Veronig et al. [17] using the power law model
and by Gopalswamy [33] using the Weibull function model. Figure 5 compares the present
results with these publications. The tapered power law and gamma function distributions
derived here show similar behaviors. The power-law distributions derived in Ref. [17]
roughly follow the data histograms found here but deviates from the data at the higher
end of the data. The Weibull distributions (both here and in Ref. [33]) become flatter at the
smaller ends and decay less at the higher ends.
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Figure 5. This analysis results compared to earlier findings [17,33] of the flare occurrence rates
(PDFs) for fluence (a) and peak flux (b). The thick black histograms are the observed PDFs. Red,
olive, and teal curves indicate, respectively, tapered power law, gamma function, and Weibull
distributions fitted to the data. Purple and green curves are power law [17] and Weibull [33] fits,
respectively. The vertical dashed lines indicate the lower boundary in the data used for fitting, namely
1 × 10−2 J m−2 for fluence and M3 (3 × 10−5 W m−2) for peak flux, respectively. Veronig et al.’s [17]
parameters of power-law fits are: N = 8400, τobs = 4 years, α = 2.03, and F0 = 2 × 10−3 J m−2 (for
flare fluence), and Np = 49,409, τobs,p = 25 years, F0p = 2 × 10−6 W m−2, and α = 2.11 (for flare peak
flux). Gopalswamy’s [33] parameters of Weibull distribution fit are: Np = 55,285, τobs,p = 48 years,
F0p = 9.1 × 10−7 W m−2, k = 0.167, and β = 3.77. See text for details.

In the next Section, only the gamma function distributions are considered. The Weibull
distributions are less favorable as described before. The tapered power-law PDFs are made
of a mixture of two power-law exponents α and α − 1, and this sometimes may lead to
undesirable features [30].

3.4. Prediction of Extreme Events

Based on the found fit to the flare fluence data in terms of the gamma function
distribution, let us estimate the expected rates of large flares. The total soft X-ray energy
emitted, EX, is given in terms of the X-ray flare fluence, F, as

EX = 2π × (1 au)2 × F × 107. (11)

Here, F is in J m−2, EX is in erg, and 1 astronomical unit (au) = 1.5 × 1011 m. From this, Erad,
the total radiated energy all over the electromagnetic spectrum (contributed mostly from
ultra-violet (UV)) in erg, is estimated as [34]

Erad = 1.03 × 109 × EX
0.766. (12)
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The flare total (kinetic plus radiative) energy is approximately 4 times this quantity [34,35].
Finally, the quantities derived from the flare fluence data can be translated into the flare
peak flux, Fp (J m−2), approximately by

Fp ≈ 7.93 × 10−4 × F0.945, (13)

which is the relation derived from our data.
Using these relations, the probability distribution function obtained here for soft X-ray

fluence is translated to flare peak flux and total flare energy as shown in Tables 3 and 4.
Table 3 gives, for a specified value of flare fluence, the approximate peak flux, energy, and
interval of flares exceeding the specified fluence. Table 4 gives, for a specified interval of
a flare, the flare fluence, peak flux, and energy. The numbers are based on the gamma
function distribution of α = 1.949, β = 0.00448. The second numbers after a slash are derived
by assuming one-sigma errors (α = 1.949 + 0.021, β = 0.00448 − 0.0010 because the errors
are correlated).

Table 3. Predicted flare intervals as a function of X-ray fluence values (gamma function distribution,
α = 1.949 ± 0.032, β = 0.00448 ± 0.0020). The second numbers after a slash are derived by assuming
one-sigma errors (α = 1.949 + 0.032, β = 0.00448 − 0.0020). See text for details.

X-ray Fluence
(J m−2)

Approx.
GOES Flux

Total Energy
(erg)

Interval
(Years)

1.0 × 10−2 M1.0 1.5 × 1031 1.3 × 10−2/1.3 × 10−2

1.0 × 10−1 M9.0 8.8 × 1031 1.4 × 10−1/1.4 × 10−1

1.0 × 100 X7 5.1 × 1032 3.0 × 100/2.3 × 100

2.0 × 100 X15 8.7 × 1032 1.2 × 101/7.3 × 100

5.0 × 100 X36 1.8 × 1033 1.8 × 102/5.6 × 101

6.3 × 100 X45 † 2.1 × 1033 4.6 × 102/1.1 × 102

† Carrington event (1859 Sept.1) [34].

Table 4. Predicted flare sizes as a function of flare intervals (gamma function distribution,
α = 1.949 ± 0.032, β = 0.00448 ± 0.0020). The second numbers after a slash are derived by assuming
one-sigma errors (α = 1.949 + 0.032, β = 0.00448 − 0.0020). See text for details.

X-ray Fluence
(J m−2)

Approx.
GOES Flux Total Energy (erg) Interval

(Years)

6.5 × 100/9.9 × 100 X46/X69 2.2 × 1033/3.0 × 1033 1.0 × 103

1.0 × 101/1.6 × 101 X70/X108 3.0 × 1033/4.3 × 1033 1.0 × 104

1.4 × 101/2.3 × 101 X95/X152 3.8 × 1033/5.6 × 1033 1.0 × 105

1.8 × 101/3.0 × 101 X122/X197 4.7 × 1033/6.9 × 1033 1.0 × 106

2.7 × 101/4.6 × 101 X177/X293 6.3 × 1033/9.5 × 1033 1.0 × 108

3.4 × 101/5.9 × 101 X224/X374 7.7 × 1033/1.2 × 1034 4.6 × 109

From Table 3, the Carrington event in 1 September 1859, which is estimated to be an
X45 flare [34], may take place every 460 years, or every 110 years within one-sigma errors
in α and β. From Table 4, the largest flare in 1000 years would be X46, or X69 (or X70 as a
round number) for one-sigma errors. Even for the age of the solar system (4.6 × 109 years),
the largest flare we experience would be X224, or X374 for one-sigma errors.

4. Discussion

Recent discovery of energetic flares (called superflares) on solar-type stars observed
with the Kepler satellite [36] (whose main targets are exoplanets, by high-precision photom-
etry to detect the brightness decrease due to the transit of planets) has attracted attention in
relation to extreme events that might happen on our Sun [13,14,37,38]. Those stellar flares
are observed in the visible light; in the case of solar flares the emission in the visible light is
detected only from intense flares (called “white-light flares”) [1].
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As an application of the analysis methods described in this paper, the energy dis-
tribution functions of stellar flares were studied. By using the most recent database on
superflares from solar-type stars (G-type main-sequence stars with effective temperature
of 5600−6000 K and rotation period longer than 20 days) which carefully removed con-
taminations from binaries or evolved stars [39], the results for CCDF and PDF have been
obtained as shown in Figures 6a and 6b, respectively. The data contain 2341 flares from
265 stars observed over 4 years. Both power law (blue) and gamma function (olive) model
fits are shown. Here, the assumption is that the observed distribution function may mimic
a hypothetical distribution function of flares from a single Sun-like star observed over
4 × 265 = 1060 years.
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line indicates the lower boundary (3 × 1034 erg) of the data used for fitting.

The value of ∆AIC of the power law model is about 90 compared to the gamma
function distribution, so that the power law is unfavorable compared to the gamma function
distribution. The power-law model gives a K-S measure

√
N × KS = 4.2 and its p-value

is infinitesimally small. The gamma function model gives the parameter values α = 1.05,
β = 0.16. The p-value from the K-S test is 0.39 and not so high, indicating room for better
model of distribution functions.

Combining the results shown in Figure 6 with those from Figure 4b, after converting
flare fluence to radiated energy in the latter, Figure 7 is obtained. The F0 value of the GOES
flare fluence, F0 = 1 × 10−2 J m−2, is translated to the radiated energy of 3.8 × 1030 erg. It
can be well seen that the PDF of solar flares does not connect to the stellar flare PDF but
decays at an energy of approximately 1033.5 erg. Likewise, the PDF of stellar flares has a
flatter distribution and does not connect to the PDF of solar flares. Although solar and
stellar flares are both believed to be powered by magnetic energy (most likely by magnetic
reconnection) of spotted regions, the distributions of the size and magnetic field strength
in starspots would not be the same as in sunspots and may have a wider variety, because
of different internal structures and rotation periods. Stellar flares may have a variety of
power-exponent values, and the present results of α = 1.95 for solar flares and α = 1.05
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for stellar flares are just two examples and there might be a continuous distribution of α
between 1 and 2.
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These results depend on the assumed values of the lower boundary of data for fitting.
Ref. [19] proposes that the value of the lower boundary may also be selected by minimizing
the K-S metric, but it seems that no consensus has been obtained yet [40,41]. In cases
studied here, the turning down of the distributions toward smaller flares is due to the
detection limits; small solar flares are not recognized as flares when the background level
rises in the activity maximum period of the Sun’s eleven-year activity cycle. In the case
of stellar flares, weak flares in more distant stars may be missed. On the other hand, if
the boundary is set to a very large value, we will be left with only a small number of
samples. The present approach is to find a compromise so that the samples are well above
the detection limit and still a large number of samples is retained. It is desirable that more
subjective methods are developed. It may also be useful to analyze data on flares from
individual stars rather than using a composite data of many stars as used in this study.

5. Conclusions

From the analysis of soft X-ray data of the GOES satellites, in this paper, it is found
that the distribution functions of solar flare fluence are successfully modeled by tapered
power law or gamma function distributions whose power exponent is slightly smaller than
2, indicating that the total energy of the flare populations is mostly contributed from a small
number of large flares. The tapering off of the distribution is statistically significant and the
power law fit is rejected. The largest possible flares in 1000 years are predicted to be around
X46, or X69 for one-sigma errors in the derived parameters. The upper limits of X224 (X374
for one-sigma errors) are derived even by considering the lifetime of the solar system.



Physics 2023, 5 22

Similar treatment was applied to flares from solar-type stars. They were fitted by
a gamma function distribution (the power law is rejected), but their power exponent is
around 1.05, which is smaller than the solar flare case (around 1.95). Therefore, the stellar
flare data analyzed here do not connect to the energy distribution function of solar flares. It
would be interesting to see how the distribution functions differ among solar-type stars
with different effective temperatures and rotation periods.

Supplementary Materials: The data sets used in the present analysis are available at http://
solarwww.mtk.nao.ac.jp/sakurai/tar/goesfluence_datalist.zip (accessed on 10 December 2022),
http://solarwww.mtk.nao.ac.jp/sakurai/tar/goesflux_datalist.zip (accessed on 10 December 2022),
for the flare fluence above 5 × 10−5 J m−2 (1997–2020) and peak flux above 1 × 10−7 W m−2

(1980–2020), respectively.
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