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Abstract: The retarded van der Waals dispersion potential between two excited chiral molecules was
calculated using an approach, in which electric and magnetic dipole moments are induced in each
particle by fluctuations in the vacuum electromagnetic field. An expectation value of the coupling
of the moments at different centres to the dipolar interaction tensors was taken over excited matter
states and the ground state radiation field, the former yielding excited molecular polarisabilities and
susceptibilities, and the latter field–field spatial correlation functions. The dispersion potential term
proportional to the mixed dipolar polarisability is discriminatory, dependent upon molecular handed-
ness, and contains additional terms due to transitions that de-excite each species as well as the usual
u-integral term over imaginary frequency, which applies to both upward and downward transitions.
Excited state dispersion potentials of a comparable order of magnitude involving paramagnetic and
diamagnetic couplings were also computed. Pros and cons of the method adopted are compared to
other commonly used approaches.

Keywords: dispersion forces; excited states; vacuum fluctuations; molecular chirality; quantum
electrodynamics

1. Introduction

Classic examples of phenomena that are attributed to vacuum fluctuations of the
electromagnetic field [1] include spontaneous emission [2] and the Lamb shift [3,4]. In the
case of inter-particle interactions, a fundamental coupling that arises from the zero-point
energy associated with the ground state of the radiation field is the well-known Casimir-van
der Waals dispersion force between two or more particles [5–8]. For atoms and non-polar
molecules, this is the only interaction contributing to the inter-particle energy shift, and is
responsible for the manifestation of solid and liquid phases of such forms of matter at low
temperature.

The 1
2}ω of energy per mode possessed by the vacuum field, where ω is the circular

frequency, albeit infinite in magnitude since there are an infinite number of oscillatory
modes, is a direct consequence of quantising electromagnetic radiation, and is a quintessen-
tial feature of quantum electrodynamics (QED) theory [9–15], rigorously accounting for the
photon. Here h̄ is the reduced Planck constant. The exchange of such gauge bosons between
electrons, whether free or bound, mediates the interaction between particles of matter. For
instance, the propagation of a single virtual photon, originating due to spontaneous emis-
sion by an excited entity undergoing decay, and whose excitation energy is captured on
absorption of the photon by an acceptor species in close proximity, describes a multitude of
processes involving the migration of energy between various types of chromophoric units,
processes commonly collected under the umbrella term “excitation energy transfer” [16–19].
This is another example of a vacuum field-induced effect since there are no photons prior
to or after the coupling between particles.

By way of contrast, in a perturbative calculation of the dispersion interaction, in which
both species are in the ground electronic state and no photons are present, the energy shift
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is viewed as arising from the exchange of two virtual photons between the pair of atoms
or molecules [12,13]. Additional computational difficulties arise when using perturbation
theory if one or both of the particles are in excited electronic states [20]. These centre
around the proper identification of terms associated with real photon emission and whether
excitation energy is localised or is in fact exchanged between centres in a reversible manner.
Quite a few recent publications have dealt with these aspects in an attempt to arrive at the
correct functional form for the potential [21–26].

Other calculational techniques have been adopted to further understand the nature
of the dispersion force when not all of the interacting particles are in their ground state.
One approach is to evaluate the quantum electrodynamical radiation fields in the neigh-
bourhood of a charged source and then calculate the response of the second particle, via
its polarisability, to the electromagnetic field emanating from the first particle, with appro-
priate expectation values taken over ground and/or excited states of matter, yielding the
pertinent multipolar contribution to the dispersion energy shift [27,28]. An advantage of
employing this physical picture and calculational method is its straightforward extension
to obtain the result for the N-body electric dipole polarisable [29] or N-body arbitrarily
electric multipole polarisable [30] dispersion potentials.

An especially physically intuitive approach to calculate the Casimir–Polder interaction
energy, in that it highlights the key role played by the vacuum electromagnetic field, is to
consider the energy shift as arising from the coupling of electric dipole moments induced
at each atom or molecule by the ground state of the field to the retarded electric dipole–
dipole interaction tensor [31]. Because this last quantity features in the amplitude for
resonance energy transfer, the method may be employed to readily evaluate the additional
contribution to the dispersion potential that is due to real photon emission when one or
both species are electronically excited. This approach will be employed below to calculate
the dispersion energy shift between two excited chiral molecules, and two other potentials
of a similar order of magnitude. For these cases, the usual electric dipole approximation
needs to be relaxed, and higher multipole moment terms such as the magnetic dipole have
to be included in the treatment. This is because optically active molecules possess fewer
or no elements of symmetry relative to achiral compounds and consequently have less
restrictive spectroscopic selection rules apply to them.

One interesting aspect of the dispersion interaction energy between chiral molecules is
that it is discriminatory, depending on the handedness of the interacting pair. The chirality
dependent ground state dispersion potential has been previously evaluated using the
three methods described above, namely, the perturbation and response theories, and the
induced moment method [32–35], with excited state energies only evaluated using response
theory [36]. Recently, perturbation theory has been employed within the framework of
macroscopic QED theory [6] to calculate the dispersion interactions between one or two
chiral molecules in the presence of a chiral plate [37], or when situated in a magnetodielec-
tric medium [38], with novel features emerging as a result of placing bodies in complex
environments such as altering the sign of the dispersion force as the relative separation
distances are varied. The results obtained will enable an assessment to be made of the
feasibility of applying the fluctuating moment method to systems in excited electronic
states that are characterised by multipoles higher than the electric dipole relative to more
conventional approaches. These results will also complement other studies dealing with
interactions amongst enantiomers.

The paper is organised as follows. A brief overview of the induced moment method
applicable to chiral molecules is presented in Section 2. The calculation of the excited
state dispersion potential between two chiral molecules is detailed in Section 3. An energy
shift of a similar order of magnitude is then obtained in Section 4, that between an electric
dipole polarisable molecule and a paramagnetically susceptible one. The diamagnetic
counterpart to this last contribution, also of an identical order of magnitude to the two
previous potentials, is evaluated in Section 5. A brief summary is given in Section 6.



Physics 2023, 5 249

2. Moments Induced in a Chiral Molecule by Electromagnetic Radiation

Consider a chiral molecule, ξ, located at the position
→
Rξ . Lacking an improper axis

of rotation, such species may belong to one of the following molecular point groups: C1,
Cn, Dn, T, and O, with n ≥ 2. In the first point group listed, spectroscopic selection rules
permit transitions to all orders of multipole moment distributions between electronic states.
Often, it is sufficient to invoke the dipole approximation to describe chiral molecules
since the vector dot product of an electric dipole moment (

→
µ ) and a magnetic dipole

moment (
→
m) vector yields a pseudoscalar quantity, which changes sign when substituting

one enantiomer by its mirror-image structure. In what follows, only these two multipole

moments are retained and the electric quadrupole moment,
→
→
Q, is neglected. Although

→
→
Q is

of a comparable order of magnitude to
→
m, with both a factor of the fine structure constant

smaller than
→
µ , mixed electric dipole-quadrupole dependent contributions to the dispersion

interaction vanish for freely tumbling systems, and are not considered henceforth.
Thus, within the dipolar approximation, the electric and magnetic dipole moments

induced in a chiral molecule by electromagnetic radiation of mode
→
k , λ, where

→
k is the

wave vector and λ is the index of polarisation of the propagating radiation fields, are:

µind
i (ξ;

→
k , λ) = ε−1

0 αij(ξ; k)d⊥j (
→
k , λ;

→
Rξ) + Gij(ξ; k)bj(

→
k , λ;

→
Rξ), (1)

and
mind

j (ξ;
→
k , λ) = ε−1

0 Gij(ξ; k)d⊥i (
→
k , λ;

→
Rξ) + χij(ξ; k)bi(

→
k , λ;

→
Rξ), (2)

where the Latin letter subscripts denote Cartesian tensor components in the space-fixed
frame of reference, and the Einstein summation rule is in effect for indices that repeat. Here,
ε0 denotes the permittivity of free space. In the relations (1) and (2), αij(ξ; k) is the dynamic
electric dipole polarisability tensor, Gij(ξ; k) is the mixed electric-magnetic dipole analogue,
and χij(ξ; k) is the magnetic dipole polarisability tensor or the paramagnetic susceptibility
tensor. Their explicit forms are given by

αij(ξ; k) = ∑
t

{
µst

i (ξ)µ
ts
j (ξ)

Ets − }ck
+

µst
j (ξ)µ

ts
i (ξ)

Ets + }ck

}
, (3)

Gij(ξ; k) = ∑
t

{
µst

i (ξ)m
ts
j (ξ)

Ets − }ck
+

mst
j (ξ)µ

ts
i (ξ)

Ets + }ck

}
, (4)

and

χij(ξ; k) = ∑
t

{
mst

i (ξ)m
ts
j (ξ)

Ets − }ck
+

mst
j (ξ)m

ts
i (ξ)

Ets + }ck

}
, (5)

where µst
i (ξ) =< s|µi(ξ)|t > and mst

i (ξ) =< s|mi(ξ)|t > are the transition electric and
magnetic dipole moment matrix elements between electronic states |s> and |t>, with
energies Es and Et, respectively, and Ets = Et − Es symbolizing the energy differences
between these states. Here c stands for the speed of light.

For a specific mode
→
k , λ, the second quantised microscopic Maxwell field operators

appearing in Equations (1) and (2) are the familiar Fourier series mode expansions for the

transverse electric displacement field,
→
d
⊥
(
→
r ), and the magnetic field,

→
b (
→
r ),

→
d
⊥
(
→
k , λ;

→
r ) = i

(
}ckε0

2V

)1/2
[
→
e
(λ)

(
→
k )a(λ)(

→
k )ei

→
k ·→r −→e

(λ)
(
→
k )a†(λ)(

→
k )e−i

→
k ·→r ], (6)

and
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→
b (
→
k , λ;

→
r ) = i

(
}k

2ε0cV

)1/2
[
→
b
(λ)

(
→
k )a(λ)(

→
k )ei

→
k ·→r −

→
b
(λ)

(
→
k )a†(λ)(

→
k )e−i

→
k ·→r ]. (7)

These radiation fields are linear functions of the bosonic annihilation and creation
operators for a

→
k , λ-mode photon, a(λ)(

→
k ) and a†(λ)(

→
k ), respectively, with

→
e
(λ)

(
→
k ) and

→
b
(λ)

(
→
k ) as the complex unit electric and magnetic polarisation vectors, and V is the

quantisation volume of the box.
The leading contribution to the interaction energy, ∆E, between two molecules, A and

B, arises from the coupling of the induced electric dipole moments at each centre. Keeping
only the first term of Equation (1),

∆E = ∑
→
k ,λ

µind
i (A;

→
k , λ)µind

j (B;
→
k , λ)ReVij(k,

→
R), (8)

where the sum is executed over all radiation field modes, the inter-nuclear displacement,

R = |
→
RB −

→
RA|, and Vij(k,

→
R) is the retarded electric dipole–dipole tensor that couples the

two induced dipoles. It is given by the familiar expression [12,13]

Vij(k,
→
R) =

1
4πε0R3 [(δij − 3R̂iR̂j)(1− ikR)− (δij − R̂iR̂j)k2R2]eikR, (9)

where δij is the Kronecker delta.
Power and Thirunamachandran showed [31] how Equation (8) led to the Casimir–

Polder potential between two ground state atoms or molecules as well as to the energy
shift when one of the pair is in an excited electronic state. In this paper, their method is
extended to chiral molecules and other magnetic systems.

3. Dispersion Potential between Two Excited Chiral Molecules

Let us start with employing the fluctuating moment method to calculate the dispersion
interaction energy between two optically active molecules. Species A is initially in the
excited electronic state |p> and may undergo upward or downward virtual transitions
to level |n>, with B undergoing similar transitions from |r> ← |q>. In addition to
the coupling between two induced electric dipoles as given in Equation (8), there is an
analogous term involving the coupling of two magnetic dipoles, which also interact via
the retarded interaction tensor (9). Furthermore, an electric dipole induced at one site may
interact with an induced magnetic dipole of the second particle. This time coupling occurs
through the interaction tensor [12,13]

Uij(k,
→
R) = − ik

4πε0c
εijk∇k

eikR

R
=

1
4πε0cR3 εijkR̂k[ikR + k2R2]eikR, (10)

where εijk is the Levi–Civita tensor. Hence, the energy shift may be expressed as

∆E = ∑
→
k ,λ

{[µind
i (A)µind

j (B) + c−2mind
i (A)mind

j (B)]ReVij(k,
→
R)

+[µind
i (A)mind

j (B) + mind
i (A)µind

j (B)]ImUij(k,
→
R)}.

(11)

Equation (11) is the starting point in the evaluation of energy shifts dependent upon
magnetic dipole coupling including chiral molecules to leading order. For terms propor-
tional to the handedness of the two molecules, manifested by the mixed electric-magnetic
dipole polarisability (4), substituting for the second term of Equation (1) and the first term
of Equation (2), yields:
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∆E = ∑
→
k ,λ

{[Gik(A; k)Gjl(B; k)bk(
→
k , λ;

→
RA)bl(

→
k , λ;

→
RB)

+ε−2
0 c−2Gki(A; k)Gl j(B; k)d⊥k (

→
k , λ;

→
RA)d⊥l (

→
k , λ;

→
RB)]ReVij(k,

→
R)

+ε−1
0 [Gik(A; k)Gl j(B; k)bk(

→
k , λ;

→
RA)d⊥l (

→
k , λ;

→
RB)

+Gki(A; k)Gjl(B; k)d⊥k (
→
k , λ;

→
RA)bl(

→
k , λ;

→
RB)]ImUij(k,

→
R)}.

(12)

To evaluate the dispersion potential between two electronically excited chiral molecules,
with the electromagnetic field in the vacuum state, the expectation value of Equation (12)

is taken over the state |pA, qB; 0(
→
k , λ) >. The molecular factors yielded excited state

mixed electric-magnetic dipole polarisabilities of the form given by Equation (4). From
Equation (12), it can be seen that for the radiation field part, four separate field-field spatial
correlation functions need to be evaluated over the ground state of the electromagnetic
field. These are straightforwardly obtained from the Maxwell field operators (6) and (7),

and have earlier been given [39] for an N-photon state of the radiation field, |N(
→
k , λ) >, in

the calculation of the modification of the ground state dispersion force between two chiral
molecules due to an intense radiation field. For the vacuum electromagnetic field, these
correlation functions are:

< 0(
→
k , λ)|d⊥k (

→
RA)d⊥l (

→
RB)|0(

→
k , λ) >=

(
}ckε0

2V

)
e(λ)k (

→
k )e(λ)l (

→
k )e−i

→
k ·
→
R , (13)

< 0(
→
k , λ)|bk(

→
RA)bl(

→
RB)|0(

→
k , λ) >=

(
}k

2ε0cV

)
b(λ)k (

→
k )b

(λ)
l (

→
k )e−i

→
k ·
→
R , (14)

< 0(
→
k , λ)|d⊥k (

→
RA)bl(

→
RB)|0(

→
k , λ) >=

(
}k
2V

)
e(λ)k (

→
k )b

(λ)
l (

→
k )e−i

→
k ·
→
R , (15)

< 0(
→
k , λ)|bk(

→
RA)d⊥l (

→
RB)|0(

→
k , λ) >=

(
}k
2V

)
b(λ)k (

→
k )e(λ)l (

→
k )e−i

→
k ·
→
R . (16)

3.1. Contribution from Upward and Downward Transitions

For ease of presentation, contributions from both upward and downward transitions
that have identical functional form were distinguished from contributions that solely arise
from downward transitions. We considered the former type of term first. Examining the
first term of Equation (12), substituting Equation (14) produces

∑
→
k ,λ

(
}k

2ε0cV

)
Gik(A; k)Gjl(B; k)b(λ)k (

→
k )b

(λ)
l (k)e−i

→
k ·
→
R ReVij(k,

→
R). (17)

It is worth pointing out that the radiation field part is similar to that featured in
the evaluation of the Casimir–Polder potential [31], with magnetic rather than electric
polarisation vectors appearing in Equation (17). To proceed further, the sum over photon
modes must be performed. For the polarization index sum, the following identities may be
employed:

∑
λ

e(λ)i (
→
k )e(λ)j (

→
k ) = ∑

λ

b(λ)i (
→
k )b

(λ)
j (
→
k ) = δij − k̂i k̂ j, (18)

while the wave vector sum is converted to an integral via

1
V ∑

→
k

→ 1

(2π)3

∫
d3
→
k . (19)

In spherical polar coordinates, d3
→
k = k2dkdΩ, with dΩ an element of the solid angle.

Thus, Equation (17) reads:
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}
16π3ε0c

∫
dkdΩk3Gik(A; k)Gjl(B; k)(δkl − k̂k k̂l)e−i

→
k ·
→
R ReVij(k,

→
R). (20)

The angular average is carried out using

1
4π

∫
dΩ(δij − k̂i k̂ j)e±i

→
k ·
→
R = (δij − R̂iR̂j)

sin kR
kR

+ (δij − 3R̂iR̂j)

(
cos kR
k2R2 −

sin kR
k3R3

)
. (21)

After substituting ReVij(k,
→
R)(9), Equation (20) reads:

}
16π3ε2

0c3

∞∫
0

dkk3Gik(A; k)Gjl(B; k)
[(

δkl − R̂kR̂l
) sin kR

kR
+
(
δkl − 3R̂kR̂l

)(cos kR
k2R2 −

sin kR
k3R3

)]
×
[(

δij − 3R̂iR̂j
)
(cos kR + kR sin kR)−

(
δij − R̂iR̂j

)
k2R2 cos kR

]
,

(22)

which holds for A and B in fixed mutual orientation. The isotropic contribution to the
potential may be obtained by applying the result for the random orientational averaging of
the tensor Equation (4) [40]

< Gij(ξ; k) >=
1
3

δijδλµGλµ(ξ; k) = δijG(ξ; k), (23)

where
1
3

δλµGλµ(ξ; k) = G(ξ; k) is the isotropic polarisability, and Greek letter subscripts
denote the Cartesian tensor components in the body-fixed frame of reference. Contracting
the geometric factors in Equation (22) gives:

− }
16π3ε2

0cR2

∞∫
0

dkk4G(A; k)G(B; k)
{

sin 2kR
(

1− 5
k2R2 +

3
k4R4

)
+ cos 2kR

(
2

kR
− 6

k3R3

)}
= − }

16π3ε2
0R2

∞∫
0

dkk4G(A; k)G(B; k) Im
[

1 +
2i
kR
− 5

k2R2 −
6i

k3R3 +
3

k4R4

]
e2ikR.

(24)

Finally, transforming to the complex variable k = iu, taking the integral into the complex
plane by rotating the line of integration by π/2, yields:

− }
16π3ε2

0cR2

∞∫
0

duu4e−2uRG(A; iu)G(B; iu)
[

1 +
2

uR
+

5
u2R2 +

6
u3R3 +

3
u4R4

]
. (25)

where G(ξ; iu) is the isotropic dynamic mixed electric-magnetic dipole polarisability eval-
uated at the imaginary frequency, ω = icu. The second term of Equation (12) produces a
contribution identical to Equation (25), which therefore doubles up.

Considering the third term of Equation (12), substituting Equation (16) gives:

∑
→
k ,λ

(
}k

2ε0V

)
Gik(A; k)Gl j(B; k)b(λ)k (

→
k )e(λ)l (k)e−i

→
k ·
→
R ImUij(k,

→
R). (26)

Use is now made of the polarisation sum,

∑
λ

e(λ)i (
→
k )b

(λ)
j (
→
k ) = εijk k̂k, (27)

along with the continuum approximation to the wave vector sum (19). The required angular
integration is given by

1
4π

∫
k̂ke±i

→
k ·
→
R dΩ = ∓i

(
cos kR

kR
− sin kR

k2R2

)
R̂k, (28)

so that Equation (26) becomes, after inserting ImUij(k,
→
R) from Equation (10):
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− i}
16π3ε2

0cR3
εijmεklnR̂mR̂n

∞∫
0

dkk3Gik(A; k)Gl j(B; k)
[

cos kR
kR

− sin kR
k2R2

]
[kR cos kR + k2R2 sin kR]. (29)

Performing a tumbling average using Equation (23) and contracting tensors, Equation (29)
becomes:

− i}
16π3ε2

0cR2

∞∫
0

dkk4G(A; k)G(B; k)
{

sin 2kR +
2

kR
cos 2kR− 1

k2R2 sin 2kR
}

= − i}
16π3ε2

0cR2

∞∫
0

dkk4G(A; k)G(B; k)Im
[

1 +
2i
kR
− 1

k2R2

]
e2ikR.

(30)

Substituting the complex variable k = iu and rotating the line of integration as above
yields:

}
16π3ε2

0cR2

∞∫
0

duu4e−2uRG(A; iu)G(B; iu)
[

1 +
2

uR
+

1
u2R2

]
. (31)

Recognising that the fourth term of Equation (12) produces an identical contribution to
Equation (31), the u-integral contribution to the excited state dispersion potential between
two chiral (c) molecules is given by twice the sum of Equations (25) and (31),

∆Eu
c−c = −

}
8π3ε2

0cR2

∞∫
0

duu4e−2uRG(A; iu)G(B; iu)
[

4
u2R2 +

6
u3R3 +

3
u4R4

]
, (32)

which is applicable to both upward and downward transitions in A and B since there are
no limitations on the intermediate state sums over levels |n> and |r> in the excited state
polarisabilities, G(ξ; iu), ξ = A, B.

3.2. Additional Contribution from Downward Transitions

Let us now examine the terms contributing to the energy shift due to the emission
of a real photon from the excited electronic states of A and B. These are in addition to the
upward transitions captured in the u-integral term (32). The total contribution arising from
de-excitation in each molecule can be written as

∆ERES = ∆EA−RES + ∆EB−RES. (33)

The starting expressions for each of the two terms are easily obtained from Equation (12).
For species A, one has:

∆EA−RES = ∑
→
k ,λ

{[Gik(A; k)Gjl(B; k)bk(
→
RA)bl(

→
RB)

+ε−2
0 c−2Gki(A; k)Gl j(B; k)d⊥k (

→
RA)d⊥l (

→
RB)]VRES

ij (kpn,
→
R)

+ε−1
0 [Gik(A; k)Gl j(B; k)bk(

→
RA)d⊥l (

→
RB)

+Gki(A; k)Gjl(B; k)d⊥k (
→
RA)bl(

→
RB)]URES

ij (kpn,
→
R)},

(34)

where VRES
ij (kpn,

→
R) and URES

ij (kpn,
→
R) are the resonant contributions of the coupling ten-

sors (9) and (10), respectively, evaluated at the wave vector of the downward transition
occurring in A, kpn = ωpn/c. An expression similar to Equation (34) may be written for

∆EB−RES with VRES
ij (kqr,

→
R) and URES

ij (kqr,
→
R) appearing instead, reflecting de-excitation

in B at the resonant frequency ωqr = ckqr for the transition |r> ← |q>. Similar to the
evaluation of the u-integral term, an expectation value was taken over Equation (33) with

the state |pA, qB; 0(
→
k , λ) >. Use was made of the vacuum field–field spatial correlation

functions (13)–(16) for the radiation field part. For species A and B, excited state molecular



Physics 2023, 5 254

polarisabilities Gij(ξ; k) featured. Examining the first term of Equation (34), and following
similar steps that led to Equation (20), yields:

1
8π3ε0c2 ∑

n

∫
dkdΩk4 µ

pn
i (A)mnp

k (A)

k2
np − k2 Gjl(B; k)(δkl − k̂k k̂l)e−i

→
k ·
→
R VRES

ij (kpn,
→
R), (35)

after substituting Gik(A; k) (4). Instead of Equation (21), it is convenient to use the following
form for the integration over the solid angle dΩ:

1
4π

∫
dΩ(δij − k̂i k̂ j)e±i

→
k ·
→
R =

1
2ik3 (−∇

2δij +∇i∇j)
1
R
(eikR − e−ikR). (36)

Equation (35) then becomes, after carrying out the integral over k,

1
4πε0c2 ∑

n
Ep>En

µ
pn
i (A)mnp

k (A)Gjl(B; kpn)(−∇2δkl +∇k∇l)
e−ikpnR

R
VRES

ij (kpn,
→
R)

= − 1
16π2ε2

0c2 ∑
n

Ep>En

µ
pn
i (A)mnp

k (A)Gjl(B; kpn)[(−∇2δij +∇i∇j)
eikpnR

R
][(−∇2δkl +∇k∇l)

e−ikpnR

R
],

(37)

where in the last line, VRES
ij (kpn,

→
R) (9) is inserted. Interestingly, B responds through its

polarisability, Gjl(B; kpn), to the excitation energy of the downward transition in A at the
frequency ωpn = ckpn. The energy shift term (37) applies for A and B in fixed relative orien-
tation and the sum is restricted to states for which Epn > 0. Performing an orientational
average, absorbing the constant 1/3 into each molecular factor, and contracting, produces

− 1
8π2ε2

0c2R6 ∑
n

Ep>En

[
→
µ

pn
(A)·mnp(A)]G(B; kpn)[3 + k2

pnR2 + k4
pnR4]. (38)

Let us now evaluate the fourth term of Equation (34), this time with the help of
Equation (15), which yields

1
8π3ε0c

εklm ∑
n

∫
dkdΩk4 µ

pn
k (A)mnp

i (A)

k2
np − k2 Gjl(B; k)k̂me−i

→
k ·
→
RURES

ij (kpn,
→
R). (39)

Employing an alternative form for the angular average (28),

1
4π

∫
dΩk̂ke±i

→
k ·
→
R = ∓ 1

2k2∇k
1
R
(eikR − e−ikR), (40)

and performing the k-integration, Equation (39) becomes:

− i
4πε0c ∑

n
Ep>En

µ
pn
k (A)mnp

i (A)Gjl(B; kpn)kpnεklm∇m
e−ikpnR

R
URES

ij (kpn,
→
R)

= − 1

(4πε0c)2 ∑
n

Ep>En

µ
pn
k (A)mnp

i (A)Gjl(B; kpn)k2
pnεijnεklm∇m

e−ikpnR

R
∇n

eikpnR

R
,

(41)

where in the last line URES
ij (kpn,

→
R) is substituted. After random averaging, accounting for

the factor (1/3)2 that arises, Equation (41) becomes:

− 1
8π2ε2

0c2R6 ∑
n

Ep>En

[
→
µ

pn
(A)·→m

np
(A)]G(B; kpn)[k2

pnR2 + k4
pnR4]. (42)
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Noting that the second and third terms of Equation (34) produce contributions identical
to Equations (38) and (42), respectively, adding these two terms and doubling, results in
the additional contribution arising from downward transitions having the form,

∆EA−RES
c−c = − 1

4π2ε2
0c2R6 ∑

n
Ep>En

[
→
µ

pn
(A)·→m

np
(A)]G(B; kpn)[3 + 2k2

pnR2 + 2k4
pnR4]. (43)

From Equation (43), the additional contribution arising from downward transitions in
excited B, the second term of Equation (33), can be written down immediately as

∆EB−RES
c−c = − 1

4π2ε2
0c2R6 ∑

r
Eq>Er

G(A; kqr)[
→
µ

qr
(B)·→m

rq
(B)][3 + 2k2

qrR2 + 2k4
qrR4], (44)

where now species A responds via its excited state polarisability, G(A; kqr), to the decay
occurring due to the emission in B at the frequency ωqr = ckqr. Just like the u-integral
(32), the two terms of ∆ERES are discriminatory, dependent upon the chirality of A and
B, changing sign when a mirror-image counterpart replaces one enantiomer. The two
contributions (43) and (44), are added to Equation (32) to give the total dispersion potential
between two excited chiral molecules, namely,

∆Ec−c = ∆Eu
c−c + ∆EA−RES

c−c + ∆EB−RES
c−c . (45)

The result of Equation (45) agrees with an earlier evaluation using response theory [36].

4. Dispersion Energy Shift between an Electric Dipole Polarisable Molecule and a
Paramagnetically Susceptible One

For the leading order, chirality in a molecule is characterised by the presence of electric
and magnetic dipole moments. A contribution to the dispersion potential of an identical
order of magnitude to that between two chiral molecules considered in the previous section
is that between an electric dipole polarisable molecule and a magnetic dipole susceptible
one. Both of these interaction energies contain a total of two electric and two magnetic
dipole moments across the two sites. On letting A be an excited electrically polarisable
species and B an excited paramagnetically susceptible entity, the relevant induced dipoles
from Equations (1) and (2) to be used in the method deployed arise from the first term of
Equation (1) and the second term of Equation (2), which couple to the interaction tensor
(10), producing an energy shift:

∆E = ∑
→
k ,λ

µind
i (A;

→
k , λ)mind

j (B;
→
k , λ)ImUij(k,

→
R)

= ∑
→
k ,λ

ε−1
0 αik(A; k)χjl(B; k)d⊥k (

→
k , λ;

→
RA)bl(

→
k , λ;

→
RB)ImUij(k,

→
R).

(46)

Taking the expectation value of Equation (46) over the state |pA, qB; 0(
→
k , λ) >, and

making use of the field-field correlation function (15), one obtains:

∆E = ∑
→
k ,λ

(
}k

2ε0V

)
αik(A; k)χjl(B; k)e(λ)k (

→
k )b

(λ)
l (

→
k )e−i

→
k ·
→
R ImUij(k,

→
R). (47)

Performing the polarisation sum using Equation (27), converting the
→
k -sum to an

integral using Equation (19), and carrying out the angular integral using Equation (28), one
arrives at
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∆E =
i}

4π2ε0
εklmR̂m

∞∫
0

dkk3αik(A; k)χjl(B; k)
[

cos kR
kR

− sin kR
k2R2

]
ImUij(k,

→
R)

=
i}

16π3ε2
0cR3

εijnεklmR̂mR̂n
∞∫
0

dkk3αik(A; k)χjl(B; k)
[

cos kR
kR

− sin kR
k2R2

]
[kR cos kR + k2R2 sin kR],

(48)

by inserting Equation (10) for ImUij(k,
→
R). This result holds for a pair of anisotropic

molecules. To obtain the isotropic potential, we make use of the orientational averages for
the second rank tensors,

< Xij(ξ; k) >=
1
3

δijδλµXλµ(ξ; k) = δijX(ξ; k), (49)

for X(ξ; k) = α(ξ; k) or χ(ξ; k). Contracting the tensors and simplification using trigono-
metric identities relating single and double angle arguments yields:

∆E =
i}

16π3ε2
0R2

∞∫
0

dkk4α(A; k)χ(B; k)
{

sin 2kR +
2

kR
cos 2kR− 1

k2R2 sin 2kR
}

=
i}

16π3ε2
0cR2

∞∫
0

dkk4α(A; k)χ(B; k) Im
[

1 +
2i
kR
− 1

k2R2

]
e2ikR

. (50)

Rotating the integral from the real to the imaginary axis and substituting the complex
variable k = iu, Equation (50) results in the u-integral contribution to the dispersion potential
between an excited electric dipole polarisable molecule and an excited magnetic dipole
susceptible molecule being given by

∆Eu
e−m =

}
16π3ε2

0cR2

∞∫
0

duu4e−2uRα(A; iu)χ(B; iu)
[

1 +
2

uR
+

1
u2R2

]
, (51)

where α(A; iu) and χ(B; iu) are the excited state polarisabilities evaluated at the imaginary
frequency ω = icu and is straightforwardly obtained from expressions (3) and (5), respec-
tively. The result (51) is identical in form to the expression obtained previously for the
ground state interaction energy using perturbation and response theories [34,41,42], and is
likewise repulsive.

The resonant terms are evaluated from

∆ERES
e−m = ∆EA−RES

e−m + ∆EB−RES
e−m

= ∑
→
k ,λ

ε−1
0 αik(A; k)χjl(B; k)d⊥k (

→
k , λ;

→
RA)bl(

→
k , λ;

→
RB)[URES

ij (kpn,
→
R) + URES

ij (kqr,
→
R)] . (52)

The evaluation of Equation (52) in a manner similar to the chiral–chiral example, using
Equation (40) for the angular average, leads to the isotropic contributions,

∆ERES
e−m = − 1

8π2ε2
0c2R6 ∑

n
Ep>En

|→µ
pn
(A)|2χ(B; kpn)[k2

pnR2 + k4
pnR4]

− 1
8π2ε2

0c2R6 ∑
r

Eq>Er

|→m
qr
(B)|2α(A; kqr)[k2

qrR2 + k4
qrR4],

(53)

neither of which, like the u-integral, are discriminatory. The two terms in Equation (53)
apply only to downward transitions from the excited state. Each susceptibility responds to
the emission frequency of the other particle, with the energy shift exhibiting inverse square
dependent far-zone behaviour. The total excited state dispersion potential between electric
and magnetic dipole polarisable systems is given by the sum of Equations (51) and (53),

∆Ee−m = ∆Eu
e−m + ∆ERES

e−m, (54)
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agreeing with an earlier study [36].

5. Contribution from Diamagnetic Coupling

In Section 4, the paramagnetic contribution to the excited state dispersion interaction
between an electric dipole polarisable molecule and a magnetic dipole susceptible molecule
was studied. No account, however, was taken of the diamagnetic coupling term, which
produces a contribution of identical order of magnitude to both the potentials evaluated
thus far. This contribution is now considered. As previously stated, particle A is let
to be an excited electric dipole polarisable species. However, here, B is selected to be
an excited diamagnetic molecule. In the multipolar coupling scheme of non-relativistic
QED [12–15,43,44], the diamagnetic coupling term of particle ξ is

Hd(ξ) =
e2

8m ∑
a
{(→q a(ξ)−

→
Rξ)×

→
b (
→
Rξ)}

2
, (55)

where
→
q a(ξ) is the position of electron a relative to the centre of molecule ξ,

→
Rξ . For an

isotropic diamagnetic source located at the origin, Equation (55) reduces to
e2

12m ∑
a

q2
a(ξ)

→
b

2
(0).

Therefore, in the presence of a magnetic field, the induced electronic coordinate of molecule
B is given by

qind
j (B) = χd

jl(B; 0)bl(0), (56)

where the isotropic frequency independent excited state diamagnetic susceptibility is
defined as

χd(ξ; 0) = − e2

12m ∑
a
< q2

a(ξ) >
qq, (57)

where the excited state matrix element of q2
a(ξ) over the state |q> is < q| < q2

a(ξ) >
|q >=< q2

a(ξ) >qq. The induced electric dipole moment arising from the first term of
Equation (1) and Equation (56) couple, yielding an energy shift,

∆E = ∑
→
k ,λ

µind
i (A;

→
k , λ)qind

j (B)ImUij(k,
→
R)

= ∑
→
k ,λ

ε−1
0 αik(A; k)χd

jl(B; 0)d⊥k (
→
k , λ;

→
RA)bl(

→
k , λ;

→
RB)ImUij(k,

→
R).

(58)

Next, the expectation value of Equation (58) was taken over the state |pA, qB; 0(
→
k , λ) >,

giving the p-th and q-th excited state electric dipole polarisability and diamagnetic sus-
ceptibility, respectively, and the electric-magnetic field–field spatial correlation function
(15):

∆E = ∑
→
k ,λ

(
}k

2ε0V

)
αik(A; k)χd

jl(B; 0)e(λ)k (
→
k )b

(λ)
l (

→
k )e−i

→
k ·
→
R ImUij(k,

→
R), (59)

after omitting the molecular state labels. The remainder of the calculation follows that
given in Section 4 when evaluating the paramagnetic contribution to the dispersion energy.
For A and B in fixed relative orientation,

∆E =
i}

16π3ε2
0cR3

εijnεklmR̂mR̂n

∞∫
0

dkk3αik(A; k)χd
jl(B; 0)

[
cos kR

kR
− sin kR

k2R2

]
[kR cos kR + k2R2 sin kR]. (60)

Utilising the result for the rotationally averaged diamagnetic susceptibility, < χd
jl(B; 0) >=

δjlχ
d(B; 0), the isotropic diamagnetic contribution to the dispersion potential is

∆Eu
e−d =

}
16π3ε2

0cR2

∞∫
0

duu4e−2uRα(A; iu)χd(B; 0)
[

1 +
2

uR
+

1
u2R2

]
, (61)



Physics 2023, 5 258

when expressed in terms of the complex variable k = iu.
Combining the diamagnetic u-integral term (61) with the corresponding paramagnetic

term (51), gives:

∆Eu
p+d =

}
16π3ε2

0cR2

∞∫
0

duu4e−2uRα(A; iu)χm(B; iu)
[

1 +
2

uR
+

1
u2R2

]
, (62)

where the magnetic susceptibility tensor, χm, is a sum of paramagnetic (p) and diamagnetic
(d) components, recalling that the latter is frequency independent,

χm(B; iu) = χp(B; iu) + χd(B; 0), (63)

with the isotropic paramagnetic susceptibility given by

χp(B; iu) =
2
3 ∑

r

|→m
qr
(B)|2Erq

E2
rq + (}cu)2 , (64)

and with the diamagnetic susceptibility χd(B; 0) given by (57). A functional form similar to
Equation (62) was obtained using perturbation and response theories for the ground state
dispersion potential [13,34,41,45].

For the additional contributions to the u-integral term arising solely from de-excitation,
diamagnetic B does not respond to the downward transitions in A, |n>← |p>, so that
from the first term of Equation (53),

∆EA−RES
e−d = − 1

8π2ε2
0c2R6 ∑

n
Ep>En

|→µ
pn
(A)|2χd(B; 0)[k2

pnR2 + k4
pnR4]. (65)

Particle A, on the other hand, responds to the downward transitions occurring in
B, |r>← |q>, modifying the second term of Equation (53) to give for diamagnetic B the
contribution,

∆EB−RES
e−d = − e2

48π2ε2
0c2mR6 ∑

r
Eq>Er

< |qqr(B)|2 > α(A; kqr)[k2
qrR2 + k4

qrR4], (66)

with
∆ERES

e−d = ∆EA−RES
e−d + ∆EB−RES

e−d , (67)

a sum of Equations (65) and (66). Hence, the total dispersion potential between an excited
electric dipole polarisable molecule and an excited diamagnetic one is given by

∆Ee−d = ∆Eu
e−d + ∆ERES

e−d (68)

with ∆Eu
e−d given by Equation (61).

6. Summary

Within a quantum field framework, retarded van der Waals dispersion potentials be-
tween atoms or molecules in the ground state are commonly evaluated using diagrammatic
time-dependent perturbation theory. This method, however, gives rise to computational
difficulties when one or both of the pair are electronically excited, since resonant terms have
to be accounted for. An alternative treatment of this problem involved employing response
theory, in which each particle responds, through its electric or magnetic susceptibility, to the
source Maxwell fields of the other entity. However, this method requires first calculating the
second quantised electric and magnetic radiation fields in the vicinity of a source multipole
moment before the energy shift can be evaluated, with the additional burden that fields
second order in the moments are needed at the very least [27,34,46].
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To overcome some of these problems, in this paper, the excited state dispersion poten-
tial between optically active molecules is examined from a different physical point of view,
one that was previously considered for the calculation of the Casimir–Polder potential.
Fluctuations in the vacuum electromagnetic field induce multipole moments in atoms or
molecules, which in turn couple through pertinent retarded interaction tensors. Expectation
values are taken over excited matter states and the ground state of the radiation field. The
latter yielded known expressions for the field–field spatial correlation functions and serve
to highlight the prominent role played by the electromagnetic vacuum when calculating
dispersion forces.

For two excited chiral molecules characterised by electric and magnetic dipole mo-
ments, all three terms contributing to the dispersion interaction energy—the familiar
u-integral term involving excited state mixed electric-magnetic dipole polarisabilities of
each particle, and two extra contributions arising from downward only transitions in each
species—are found to be discriminatory, depending on the handedness of molecules A and
B. Two other dispersion potentials involving magnetic interactions that were of a similar
order of magnitude to the chiral–chiral energy shift are also computed. These included
the potential between an electric dipole polarisable molecule and a second that is either
paramagnetically or diamagnetically susceptible. Neither energy shift contribution changes
sign on interchanging enantiomers, with the second coupling term being independent of
frequency, but which may be combined with the paramagnetic part to produce an overall
magnetically susceptible contribution, as found earlier for the ground state [34,38,42].

Interest in dispersion energies between chiral molecules lies in their discriminatory
behaviour as well as in outlining the role played by magnetic and diamagnetic coupling.
It complements other research areas that involve optically active species such as chiral
light–matter interactions, analytical based methods for achieving enantiomer excess and
separation, and the synthesis of chiral compounds and drugs in organic chemistry and the
pharmaceutical industry [35–38].
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