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Abstract: The debate about the emptiness of space goes back to the prehistory of science and is
epitomized by the Aristotelian ‘horror vacui’, which can be seen as the precursor of the ether,
whose modern version is the dynamical quantum vacuum. In this paper, we suggest to change a
common view to ‘gaudium vacui’ and discuss how the vacuum fluctuations fix the value of the
permittivity, ε0, and permeability, µ0, by modelling their dynamical response by three-dimensional
harmonic oscillators.
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1. Introduction

When James Clerk Maxwell introduced the displacement current as a property of
empty space and as a source of magnetic field, he struck gold. The result was his famous
set of self-consistent equations, which later even turned out to be Lorentz invariant and
describe electromagnetism with greatest precision.

Maxwell was visualizing the displacement current as part of the ether [1], an all-
pervading medium composed of a subtle substratum. This is a powerful explanatory
concept that goes back to the prehistory of science and helped unify our understanding
of the physical world for centuries [2]. However, the ether was soon abandoned as a
consequence of Albert Einstein’s special theory of relativity, which contradicts an absolute
reference frame, and the vacuum was considered void (nonetheless, Einstein’s relationship
with the ether was complex, and changed over time [3]). However, this move was merely
an elegant paradigm shift rather than a necessity forced by observation.

Electrodynamics was the new theory of electromagnetic fields interacting with the—at
the time—newly discovered elementary particle, the electron. Already then, cumbersome
divergences were looming around the corner and we are struggling with them ever since.
One was the question whether or not the electron has a finite radius, and if it does not, as
hinted by all experiments at higher and higher energies (or, rather, momentum exchange),
then the mass diverges and even the charge of the electron diverges on small enough length
scales [4]. Another such early divergence was discovered by Max Planck [5]. Previously, he
had postulated that the energy had to be quantized in packets of hν per mode to derive
his famous blackbody radiation formula, where h is the Planck constant and ν is the
electromagnetic radiation frequency. However, in 1912, when going to the asymptotic limit
for long wavelengths or high temperatures and match it with the experimental observations,
Planck noticed that there was an additional contribution hν/2 to the energy per mode—this
is the first time the ground state energy of a quantum harmonic oscillator appeared in
the literature.

Later, after Paul Dirac [6] hypothesized the existence of the antielectron, later called
positron, and its subsequent experimental discovery, scientists struggled in vain for years
to formulate a consistent quantum theory of electrodynamics. The breakthrough came
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when Richard Feynman [7] and Julian Schwinger [8] used their approach to first postulate
Maxwell’s equations and then added the interaction with electrons and positrons [9]: mod-
ern quantum electrodynamics (QED) was born. By using the procedure of renormalization,
the divergences were modified to much better behaved logarithmic divergences. More
elementary particles were discovered, including charged ones, and QED is overall highly
successful, but some struggle with divergences remains.

Within the framework of QED, it is understood that the quantum vacuum is not
void. By now, there is ample experimental evidence for the nonzero ground state energies
of quantum fields populating the vacuum, containing the seeds of multiple virtual pro-
cesses [10–12]. Wilczek [13] expresses the fundamental characteristics of space and time
as properties of the ‘grid’, the entity one perceives as empty space. The deepest physical
theories reveal it to be highly structured; indeed, it appears as the primary ingredient of
reality. Several effects manifest themselves when the vacuum is perturbed in specific ways:
vacuum fluctuations lead to shifts in the energy level of atoms [14], changes in the boundary
conditions produce particles [15], and accelerated motion [16] and gravitation [17] can
create thermal radiation. A careful discussion of the nature of these ‘vacuum fluctuations’
can be found in [18], although we think that, perhaps, the ‘vacuum uncertainty’ would be a
better term.

Since this quantum vacuum is not void any more, it is natural to mull over the prospect
of treating it as a medium with electric and magnetic polarizability. This idea can be traced
back as far as Furry and Oppenheimer [19], Weisskopf and Pauli [20,21] (see English
translation in Ref. [22]), Dicke [23], and Heitler [24].

At this point one might wonder about how the linear response of the quantum vacuum,
which one might—but does not have to—relate to a modern Lorentz-invariant ether, is
contained in Maxwell’s [25]. As this linear response is thought to be already included in
Maxwell’s equations and since they were axiomatically postulated, the linear response is
not explicitly considered anymore in QED. Along this line of thinking, Maxwell’s equations
already contain the effect of the bare vacuum and only the so-called off-shell contributions
will still have to be explicitly considered in QED. Details are given below.

Thus, here, we interpret the response of the bare vacuum as caused in full by the
vacuum polarization, i.e., the on-shell contribution. This contribution, however, diverges
when attempting to determine it in the frame of QED: when calculating the bare vacuum
contribution to Maxwell’s equations using the standard QED procedure we do find a closed
mathematical expression dependent only on the off-shell momentum value at which the
electromagnetic coupling strength diverges.

In an attempt to do a back-of-the-envelope calculation, in this paper, we find a reason-
able way to cope with the divergences. This crude derivation uses a relativistic momentum
cutoff [23], similar to the one used by Bethe [26] to calculate the Lamb shift in hydrogen. It
is surprising how well this works. The numbers come out in the right ballpark.

At face value, Maxwell’s equations in vacuum are about electromagnetic fields and the
coupling strength between fields and charged particles should not be relevant. However,
in the spirit of the discussion above, there is interaction with the vacuum uncertainty,
i.e., with virtual electron–positron pairs, and this determines the values of the vacuum
permittivity, ε0, and permeability, µ0. Thus the coupling strength matters also here. Tra-
ditionally, the QED coupling strength is given by Sommerfeld’s fine structure constant,
α = e2/(4πε0h̄crel), in SI units (International System of Units), with e denoting the electron
charge. In Maxwell’s equations it is somewhat hidden, but it is there [27]. The parameter
crel refers to the limiting speed in special relativity and not necessarily denotes the speed of
light, for the purpose of the derivation here. In this paper, we elaborate on the above ideas
and show that ε0 and µ0 can be estimated from first principles and, thus, also the speed
of light.
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2. A Dielectric Model of Vacuum Polarization

In textbooks of electromagnetism it is often implicitly assumed that ε0 and µ0 are
merely measurement system constants. In this vein, they are not considered as fundamen-
tal physical properties, but rather artifacts of the SI units, which disappear in Gaussian
units. However, this quite simplified viewpoint ignores that, irrespective of the method of
allocating a value to ε0 and µ0, they just translate into the prediction of Maxwell’s equations
that, in free space, electromagnetic waves propagate at the speed of light, which has a
very specific value and is certainly associated with units. It is therefore more transparent
if one includes the susceptibility of the vacuum χvac, so that in the vacuum Maxwell’s
displacement reads as D = ε0χvacE. In the SI system all the dimensions and the numerical
value is put into ε0 such that χvac = 1. In comparison, in the Gaussian system of units,
χvac = 1 is likewise chosen to be ‘one’ and one might say that the modified definition of
the electric field absorbs the properties of the vacuum unit in this case. So, for the vacuum
one has D = χvacE = E and the vacuum response is actually hidden in the Gaussian units.
In what follows, we use SI units only and the vacuum response is given by the product,
ε0χvac. Only the product of the two factors has physical significance and writing this as
two factors was a result of the historical development.

In a dielectric, it is customary to define the electric displacement D and the magnetic
field H as

D(r, t) = ε0E(r, t) + P(r, t) , (1)

H(r, t) =
1

µ0
B(r, t)−M(r, t) ,

where P is the polarization and M the magnetization induced by the external fields with r
and t denoting the position and time, respectively. In the literature, one can find the observa-
tion that D(r, t) and H(r, t) are the sum of two completely different physical quantities [28].
However, the authors do not share this view and interpret ε0E(r, t) and −B(r, t)/µ0 as
the polarization and magnetization of the vacuum, in this sense we are adding similar
quantities. This might appear preposterous in classical electromagnetism, but, as declared
in Section 1, the modern view [29] interprets that particle–antiparticle pairs are continu-
ally being created in a vacuum filled with the vacuum fluctuations. They live for a brief
period of time and then annihilate each other. The lifetime of such a virtual particle pair is
governed by its rest energy through the energy–time uncertainty principle [30,31],

∆E ∆τ & h̄ , (2)

where ∆E is the root-mean-square measure of energy nonconservation and ∆τ the time
interval, during which this nonconservation is sustained. The creation of this virtual pair
requires a surplus energy of at least 2mc2

rel, where m is the mass of each partner (we stress
again that here crel is the limiting speed appearing in Lorentz transformations. After all, in
this paper, we want to calculate ε0 and µ0 based on the properties of the vacuum, and this
results then in a value of the speed of light based only on these properties of the vacuum. If
the result of the crude model here is found to be close to the known value of the speed of
light, this will be an indication of the relevance of the enough simple model).

Therefore, energy conservation must be violated by ∆E & 2mc2
rel. Equation (2) says

that the violation is not detectable in a period shorter than h̄/(2mc2
rel) (with h̄ the reduced

Planck’s constant), so virtual particles can survive about that long. However, nothing
can move faster than the relativistic speed limit, so the virtual pair must remain within a
distance d = h̄/(2mcrel); that is, a distance of order of the Compton wavelength,

λC =
h̄

mcrel
. (3)
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This also demonstrates that heavy pairs require a larger ∆E and thus their effect is
concentrated at smaller distances. For that reason, let us so far consider only electron–
positron pairs.

In the linear response, one expresses the polarization of matter, Pmat, in terms of the
corresponding matter susceptibility, χmat: Pmat(ω) = ε0χmat(ω)E(ω) (and, similarly, for
the magnetization) with ω the wave angular frequency. Whenever a medium is dispersive,
the linear response is nonlocal in time and integration over past times is required. How-
ever, the linear response is local in the frequency domain. Therefore, in order to account
for dispersion in the simplest way, let us express the linear response in the frequency
domain [32].

As noticed above, in Equation (1), the first term is expected to have an equivalent structure:

Pvac(ω) = ε0χvac(ω)E(ω) . (4)

The vacuum has no resonances and it is homogeneous. The conservation of momentum
prohibits the excitation of a virtual pair to a real pair in free space with a plane wave.
Far away from resonance, the process is allowed because of the quantum uncertainty
of the momentum. In contradistinction, a converging electromagnetic dipole wave may
excite real pairs in the vacuum [33]. So, under normal conditions, χvac has no temporal or
spatial frequency dependence and is considered a constant in classical electromagnetism.
Historically, as emphasized above, it was chosen to be unity and all the property of the
vacuum such as units and numerical value is put into ε0. Therefore, the familiar expression
for D is

D(ω) = ε0χvacE(ω) + ε0χmat(ω)E(ω) = ε0[1 + χmat(ω)]E(ω) . (5)

If the value of ε0 is determined by the structure of the vacuum, it should be possible
to calculate it by examining the (polarizing) interaction of photons introduced into the
vacuum as test particles [18], as sketched in Figure 1. The possibility that a charged pair
can form an atomic bound state (the electron–positron vacuum fluctuation in the lowest
energy level at −2mc2

rel that has zero angular momentum is called parapositronium, which
is a singlet spin state [34,35]), which can, thus, be well approximated by an oscillator, was
discussed by Ruark [36] and further elaborated by Wheeler [37].

B

E

Figure 1. Cartoon view of the particle-antiparticle (denoted by “+” and “−”) pairs continually
created in the vacuum. The arrows indicate the trajectories of the corresponding particles. See text
for more details.

These ideas have recently been readressed [38–41] to calculate ab initio ε0 by using
methods similar to those employed to determine the permittivity in a dielectric. As it is
known [42], when interacting with an electric field, an atom in its ground state interacts
with the electric field as if it were a harmonic oscillator. Here, we adopt the same strategy
to treat the virtual pairs composing the vacuum. This is a reasonable assumption as long
as deviations from the equilibrium under the action of an electric or magnetic field are
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tiny, as they are for the vacuum under normal conditions in a low-energy optics laboratory.
In this situation, one can do a Taylor expansion around the point of equilibrium and
the harmonic response will dominate. The only parameter needed is the charge of the
elementary particles and the effective frequency of the oscillator. The latter is given by the
‘spring constant’, i.e., the energy gap between the ground state of a virtual pair and first
excited level [25,38], where the particles are real. This gap is twice the rest-mass energy,
2mc2

rel, of one of the elementary particles of mass m. No other assumptions are required.
The harmonic oscillator assumption allows one to calculate both the induced electric

dipoles and magnetic dipoles [43], as sketched in the Appendix A. The only two remaining
ambiguities left are (i) whether there are charged elementary particles beyond the ones
accounted for in the standard model and (ii) the volume occupied by a single virtual pair
in the Dirac sea. According to the position variance of the ground state wave function it
should be of the order of the Compton wavelength cubed, but the precise value depends
on how dense these virtual pairs are packed.

Let us stress that any radiative or collisional damping is absent in the consideration
here as soon as vacuum fluctuations cannot radiate energy or lose energy in collisions
with other quanta, because, after these fluctuations vanish, they would permanently leave
behind energy, violating the principle of energy conservation [40].

The resulting electric dipole moment is then

℘ =
e2h̄2

2m3c4
rel

E . (6)

This is the time averaged value of a virtual dipole moment which comes and goes, but
it is induced by the external field. Consequently, all of these induced dipole moments are
in phase with the external field and add up.

Similarly, here, we use the quantum dynamics to calculate the magnetic moment
induced by a magnetic field. An external magnetic field applied to the vacuum induces
an electric field vortex that accelerates the virtual electron and positron in opposite direc-
tions [25]. This yields (see Appendix A):

m =
e2h̄2

2m3c2
rel

B . (7)

These are the microscopic dipole moments. Next, let us calculate the macroscopic
densities of these dipole moments. We start with the electric case; i.e., the polarization of
the vacuum as a dielectric. As mentioned above, the volume occupied by each of these
virtual dipoles should be of the order of λ3

C. As a result, the dipole moment density turns
out to be

P =
℘

λ3
C

λ3
C

V
=

e2

2h̄crel

λ3
C

V
E . (8)

The term dividing the Compton wavelength cubed and the volume is of order unity,
but no a precise value can be obtained, so, we keep showing this term. The quantity multi-
plying the field amplitude E plays the role of an effective vacuum permittivity. Interestingly,
since the mass drops out, different types of elementary particles having the same electric
charge contribute equally to the vacuum polarizability irrespective of their mass. Therefore,
one can write:

ε0 =
1

2h̄crel
∑
s

q2
s

λ3
C,s

Vs
, (9)

where the sum is over all elementary particles with charge qs. Summing over all known
elementary particles in the Standard Model and assuming the volume is the Compton
wavelength (of particle type s) cubed yields a value for ε0 which is 2.4 times lower. Consid-
ering the simplicity of the approach, it is surprising how close this rough estimate comes to
the experimental value of ε0. Alternatively, we can use the result to determine the volume
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per virtual particle pair, yielding V ' 0.41λ3
C. Note, that here we furthermore assumed that

the ratio between the Compton wavelength cubed and the volume per pair is the same for
all different types of elementary particles, which seems reasonable.

One may ask whether the zero-point energy actually allows heavier particles to domi-
nate [44]. It has been suggested [45] that instead of a single type of particle pairs involved,
there is a Gaussian distribution of probabilities of the vacuum energy fluctuations, and
consequently a whole range of particle pairs are actually produced, with the center of mass
averaged to anywhere in between.

Next, let us estimate the vacuum magnetization. The calculation is straightforward
and the final result reads (see Appendix A):

1
µ0

=
crel
2h̄ ∑

s

q2
s

λ3
C,s

Vs
, (10)

The vacuum polarization, ε0E, is thus accompanied by vacuum magnetization,−B/µ0,
and the vacuum is paramagnetic. It is remarkable that in this crude model, the product µ0ε0
is indeed exactly equal to the inverse square of the limiting speed of Lorentz transformation,
crel, as required by Lorentz covariance. Let us notice that this result is independent of
the exact value of the volume per pair and of how many types of elementary particles
contribute to the summation over charges in Equations (9) and (10), underlining the general
role, played by the speed of light in physics, far beyond the field of optics.

3. Vacuum Polarization in QED

The virtual pairs discussed qualitatively in Section 2, can be well depicted in terms
of the time-honored Feynman diagrams. Figure 2 is such a representation of vacuum
polarization in the one-loop approximation. In the following we derive an expression for
χvac using the standard technique of QED (those interested in the final result without the
derivation, can go straight to Equation (21)).

Figure 2. Vacuum polarization in the one-loop approximation. The wavy lines represent an electro-
magnetic field (γ), while a vertex represents the interaction of the field with the fermions (electron–
positron pair, e−e+), represented by the loop.The arrows notify the momentum being opposite for
particle (electron) and antiparticle (positron). The resulting polarization is maximal for a free electro-
magnetic field, for which the angular frequency, ω = |k|c, with k the wave vector and c denoting the
speed of light.

QED typically starts with a Lorentz-invariant Lagrangian density that can be written as

LQED = LMaxwell + LDirac + Lint . (11)

Here, LMaxwell represents the free electromagnetic field, LDirac describes the fermions
and the interaction term reads:

Lint = −jµ Aµ , (12)

where jµ is the external current and Aµ = (Φ, A) is the electromagnetic four-potential
with Φ the scalar and A the vector potentials. The Greek letters denote four-dimensional
components and take the values 0 (time), 1, 2, and 3 (space). From this Lagrangian
density, the wave equations for the fields describing photons and fermions are then derived.



Physics 2023, 5 185

These fields are quantized to permit the creation and annihilation of particles. Charge,
linear momentum, and angular momentum are conserved, so annihilation of a photon is
accompanied by creation of a particle-antiparticle pair, as illustrated in Figure 2.

An important point for the goal of this study is that the current induced in the vacuum
by the four-potential, Aµ, due to virtual pairs can be expressed as [46]

jµ
vac(k) = c2

relε0χe(k2)k2 Aµ(k) , (13)

where the Lorentz gauge is used here to simplify the equations.
Note that here, the reciprocal k-space is used. The linear response is represented by

the (electron–positron) vacuum susceptibility, χe(k2). Since this response must be Lorentz
invariant, it has to be a function of k2 = ω2/c2

rel − k2. The condition k2 = 0, describing a
freely propagating photon, is referred to as on-shellness in QED: a real on-shell photon
verifies then ω2 = k2c2

rel. However, in collisions and other situations where one has
nonpropagating fields, such as evanescent waves or near fields, k2 will typically not be
zero. The electron–positron contribution to χvac in free space will be χe.

In position space, still in the Lorentz gauge, Equation (13) becomes

jµvac = µ0

(
− 1

c2
rel

∂2

∂t2 +∇2

)
Aµ . (14)

If, now, one substitutes the fields, E = −∂A/∂t−∇Φ and B = ∇×A, and takes into ac-
count that, for the vacuum, D = ε0E and B = µ0H, one obtains the gauge invariant equation,

jvac =
∂D
∂t
−∇×H . (15)

Since it is generally true that in a dielectric, j = ∂P/∂t + ∇ ×M, the jvac can be
immediately interpreted as the vacuum current of a medium with polarization D = ε0E and
magnetization H = B/µ0, as was noted above. In Equation (15), the vacuum magnetization
current is equal d but is opposite to the polarization current, therefore leading to jvac = 0.

By making use of the standard technique of Feynmann diagrams, one can show that,
at lowest perturbative order, the susceptibility can be expressed as follows [47]:

χe(k2, Λ) = 8πα
∫ 1

0
ds s(1− s)

∫ Λ d3 p
(2π)3

[
p2 + (mcrel/h̄)2 + s(1− s)k2

]−3/2
, (16)

where α = e2/(4πε0h̄crel) is the fine structure constant. The integral over the three-
momentum p, represents the contribution of a photon of wave vector k exciting an electron
with momentum p + sk and a positron with momentum −p + (1 − s)k. This process
conserves the three-momentum p, but not the energy. As discussed above, individual pairs
with quite high |p| do not contribute much because they are too ephemeral to polarize
much. However, there are so many states with large momentum that their net contribu-
tion diverges: the cutoff, Λ, is introduced just to avoid that problem. If one integrates
Equation (16) over momenta and expands the result in powers of 1/Λ, one obtains:

χe(k2, Λ) =
4α

π

∫ 1

0
ds s(1− s)

[
ln
(

2h̄Λ
mcrel

)
− 1

2
ln

(
1 + s(1− s)

h̄2k2

m2c2
rel

)]
. (17)

One can see that the susceptibility (17) diverges logarithmically in the Λ→ ∞ limit.
This leads to a result that seems to be physically unreasonable: the photon mass is infi-
nite [48], and the contribution of the virtual electron–positron pairs to the vacuum po-
larization diverges. However, on the other hand, this diverging vacuum susceptibility
makes sense because of the screening of a point charge in a dielectric [46]. The observable,
or effective charge, positioned in the vacuum is given by e2

eff = e2
bare/χvac(k2, Λ). Two

arguments can be made to look at the term “squared elementary charge divided by the
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susceptibility”: first, this is the combination in which the quantities appear in the formula
for α, and second, what counts is the interaction energy, which is a probe charge e times the
potential, eΦ(r), resulting in the same combination.

In a way, for k close to zero, the infinitely large bare charge, ebare, of the electron and
the infinitely large vacuum susceptibility cancel each other and yield a finite effective
charge [47]. However, dividing infinities is somehow cumbersome [4]. Alternatively, one
can start with the so-called ‘regularized’ susceptibility and an observable screened charge
‘e’. In the following, the regularized quantities are indicated by a caret: e2

eff = e2/χ̂vac(k2).
Far away from the point charge, for k2 = 0, the regularized susceptibility has the finite
observable value ‘e’, and as one moves towards the point charge the susceptibility will
approach zero, recovering the infinitely large bare charge. However, in the region of interest
one deals with finite values only. The difference between the two approaches is where
one hinges the k2-dependence. In the first approach, one hinges the k2-dependence at the
bare charge, but this makes difficult to carry out any calculation. Therefore, Gottfried and
Weisskopf [4] assumed a very large but not infinitely large charge and a very small but
not zero diameter of the charge distribution. The disadvantage is that as the calculation
moves to an even larger charge and a correspondingly smaller diameter, the resulting
susceptibility, χe(k2), changes drastically in the region far away from the bare charge in
order for the increase of the charge at the origin to be compensated. On the other hand,
when one hinges calculations to a region in space far enough away from the bare charge,
then one deals with finite numbers and functions, and nothing has to be readjusted further
away from the bare charge as the bare charge is approaching. So, here, we prefer the
second approach.

The standard procedure of dealing with such a divergence is to use the experimentally
observed value of the susceptibility at k2 = 0 and use Equation (17) to calculate the k2-
dependence by subtracting two diverging terms to obtain a finite value. Thus, one expresses
the susceptibility relative to its regularized on-shell value, χ̂e(0), i.e., the value determined
experimentally,

χ̂e(k2) ≡ χ̂e(0) + lim
Λ→∞

[χe(k2, Λ)− χe(0, Λ)] (18)

= χ̂e(0)−
2α

π

∫ 1

0
ds s(1− s) ln

[
1 + s(1− s)

h̄2k2

m2c2
rel

]
,

as the relevant quantity. This is an archetypal example of a regularization of the theory.
The remaining integral can be readily performed, leading to a cumbersome analyt-

ical expression [49,50]. However, in the interesting limit h̄2∣∣k2
∣∣ � m2

sc2
rel, Equation (18)

simplifies to

χ̂e(k2) = χ̂e(0)−
α

3π
ln

(
h̄2k2

Am2c2
rel

)
, (19)

where A = exp(5/3).
As in a standard dielectric, the linear response of the electron–positron vacuum is

given by P̂e = ε0χ̂e(k2)E. That is, in reciprocal k-space:

D(k) = ε0(k2)E(k) , H(k) = c2
relε0(k2)B(k) . (20)

This is quite similar to the classical electromagnetism, where D = ε0E and H = B/µ0,
but now ε0(k2) = ε0 χ̂e(k2) ≤ ε0 and 1/µ0(k2) = 1/[µ0χ̂e(k2)]. Given the α in the numera-
tor, Equation (19) is a statement about the product ε0χ̂e(k2), not about the separate factors.

Electrons and positrons are not the only types of charged particles. To obtain the
susceptibility contributed by other kinds of spin-1/2 particles, one just needs to replace
m in the previous expressions and to adjust for the electric charge, q, hidden in α, in case
q2 6= e2. Charged particles with spin zero also entail replacing the factor of s(1− s) in the
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integral (17) by (1− 2s2)/8 [47]. Summing up over all elementary particle types yields the
permittivity of the vacuum: ε0 = ε0 ∑s χ̂s(0) and χ̂vac(0) = ∑s χ̂s(0) = 1.

In the matter-field coupling constant, α, here, we hold e constant and incorporate the k-
dependence into ε0(k2). Since ε0(k2)−1 contains all powers of e2, it incorporates summation
over all numbers of pairs. When restricted to an energy scale Emax, the sum is over all
fermions of mass less than Emax/c2

rel [51–53]. Considering e2
eff = e2/(1 + χ̂e(k2)− χ̂e(0)) is

in most ways equivalent to running of the square of effective charge in conventional QED,
but the physical interpretation is different.

To obtain χ̂vac(k2), one has to sum up over all particles, all of them contribute to the
constant value at k = 0, summing up to 1, but for small k the running is dominated by
the electron–positron vacuum because they have the largest Compton wavelength. So, in
the limit of small k, one has: χ̂vac(k2) = 1 + χ̂e(k2)− χ̂e(0). In a dielectric, it is possible
to have a negative induced polarization, (χmat < 0), when exciting above the resonance
of the medium, but e2

eff < 0 makes no physical sense, because in the vacuum there is no
such resonance.

The dielectric properties of vacuum differ from those of a material medium in two es-
sential points: ln(k2)-dependence replaces the usual ω-dependence and Lorentz invariance
requires that ε0(k2)µ0(k2) = 1/c2

rel. The speed crel is an universal constant, whereas χe(k2)
and, thus, also the coupling constant, α(k2), runs. On the photon mass shell, k2 = 0, so a
free photon always sees ε0 and there is no running in this case.

Finally, we argue here that the straightforward back-of-the-envelope calculation
sketched in Section 2, is consistent with QED. Actually, the loop in Figure 2 can be thought
of as a single polarizable atom with center-of-mass momentum h̄k. If, for simplicity,
k = 0 is set, the computation of the Feynman diagram involves integrals of the form∫

d4q [q2 + mc/h̄]−2, which entails an exponential decay, exp[−(mc/h̄)|x|], in real space
(x). Therefore, the “radius” of such a virtual atom is of order λC. Alltogether, the above
suggests that virtual pairs can be modelled as oscillating dipoles with frequency mc2

rel/h̄
and volume of order λ3

C.
Indeed, at large k2 and to second order in perturbation theory, Equation (19) gives:

ε0(k2) ' ε0 −
1

12π2h̄c ∑
s

q2
s ln

(
h̄2k2

m2
sc2

rel

)
(21)

where a summation over all possible pairs is explicitly included. It is known [54] that at
high-momentum (or energy) scale, the coupling constant, α(k2), in QED becomes infinity.
In physical terms, charge screening can make the “renormalized” charge to adopt the finite
value observed in the experiment. This is often referred to as ‘triviality’ [48]. If ΛL is the
value of that momentum, at which ε0(k2) = 0 and, equivalently, at which the fine structure
constant goes to infinity, usually called the Landau pole [55], then one obtains [27]:

ε0 =
1

12π2h̄crel
∑
s

q2
s ln

(
h̄2Λ2

L
m2

sc2
rel

)
. (22)

While in Equation (21) the dominant term is the one that cannot be calculated, this
ambiguity is shifted in Equation (22) to the momentum value, at which the Landau pole is
located. This allows us to rewrite Equation (21) as

ε0(k2) ' 1
12π2h̄c ∑

s

q2
s ln

(
Λ2

L
k2

)
. (23)

Let us note that this equation is only valid for large enough k.
Equation (22) relates ε0 to ΛL. Using the experimentally determined value for ε0,

assuming the Standard Model of QCD and summing up over all elementary particles
from leptons to the W-boson with their respective charges and masses, one finds ΛLh̄/c '
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6× 1030 GeV/c2, which is much beyond the Planck mass and is probably an unrealistically
high value. Alternatively, one could assume the Minimal Super-symmetric Standard Model
(MSSM), which doubles the elementary particles and thus also the sum in Equation (22).
This brings ΛL down significantly to the value ΛLh̄/crel ' 1.6× 1015 GeV/c2, which is
close to the momentum range, where the coupling constants are supposed to become
equal. Let us note that the QED calculations referred to here are based on the one-loop
approximation (see Figure 2) and, at large momenta near the Landau pole, multiple loop
contributions will be significant. In that sense the concept of the Landau momentum (or
Landau pole) based on the one-loop approximation has limited value. Nevertheless, it well
demonstrates the concept.

If one compares the terms in the sum (22) with the ones in Equation (9), one by one,
one finds that the two equations, provided that

Vs =
h̄3

m3
s c3

rel

6π2

ln
(

h̄2Λ2
L

m2
sc2

rel

) . (24)

To fulfill Equation (24) one would have to give up the assumption that the ratio
of the Compton wavelength cubed and the volume occupied by a single virtual pair is
independent of the type of elementary particle. This may not be reasonable. However,
instead of doing the detailed evaluation of the sum in Equation (22), we can perform here
some estimations: the masses ms differ by a factor 106, but this factor is diminished by
the logarithmic function. As a result, the logarithmic term is almost constant for large
enough cutoff ΛL and, to some approximation, can be taken out of the sum. The term
ln[h̄2Λ2

L/(m2
screl2)] varies only little when assuming the Standard Model and its average is

144. If, as an approximation, all logarithmic terms in the sum are replaced by 144, then one
obtains the condition that〈

Vs

h̄3 m3
s c3

rel

〉
s

=
6π2〈

ln
(

h̄2Λ2
L

m2
sc2

rel

)〉
s

= 0.41. (25)

So, one gets the correct value by adjusting the volume per virtual pair in the model
discussed here to a reasonable value close to the Compton wavelength cubed, or by
choosing the right value for the Landau pole, ΛL.

Let us stress that in the model here, no divergence appears, the only uncertainty is
associated with the volume occupied by each virtual pair. The position variance of the
harmonic oscillator ground state wave function gives a crude value for the volume per
pair in the right ball park, but it does not give a precise value. There is a different way
to estimate this volume in momentum space: in analogy to the derivation of Planck’s
blackbody radiation formula, one can calculate the number of modes (i. e., standing waves)
of the particle’s de Broglie wave pattern in a given larger volume, integrate over momentum
(inversely proportional to the de Broglie wavelength) and divide the larger volume by
the the number of modes obtained. This then determines the volume per mode or per
particle-antiparticle pair. However, this integral diverges and one would obtain Vs = 0.
A crude cure would be to introduce a relativistic cutoff which will also give a volume
per pair of the order of the particle Compton wavelength cubed. Staying in configuration
space as opposed to momentum space, one seems to avoid this divergence, as suggested
by Fried and Gabellini [56], who discuss the advantage of performing QED calculation in
configuration space. It remains to find if a more precise value for the volume per pair can
be derived using a configuration-space description.

The standard approach in QED is to use plane waves to describe the relative motion
of the virtual pairs. In the center of mass reference frame, if the electron has momentum
h̄k, then the positron has momentum −h̄k. However, the uncertainty principle requires
that the lifetime of the pair is quite short, so the distance travelled d is comparably small.
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The plane-wave basis seems not suited well enough in order to describe this situation:
convergence is quite poor, and the divergences arise. What would be needed is a basis
whose ground and first few excited states are of comparable size to d. The merit of the
oscillator model is to provide a suitable basis for description of the relative motion in these
short lived states.

4. Conclusions

The vacuum permittivity has so far been a purely experimental number. Here, we
have worked out a simple enough dielectric model—based just on treating the individual
particle–antiparticle pairs as three-dimensional harmonic oscillators, which approximate
small deviations from the equilibrium induced by an external electromagnetic field—to
point at the intimate relationship between the properties of the quantum vacuum and
the constants in Maxwell’s equations. From this picture, the vacuum is considered to be
understood as an effective medium.

The authors have a hope that, with all the above arguments, the conception that ε0
and µ0 are merely measurement system constants, without any physical relevance, will be
moderated in physical courses and textbooks.
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Appendix A. Vacuum Fluctuations as Harmonic Oscillators

As discussed in the main text (see Equation (5)), a charged particle-antiparticle pair
that results from a fluctuation of the Dirac field will appear in the vacuum as a transient
atom. During the time while such an atom exists, it can interact with a photon. For the
simplest case, the electron–positron vacuum fluctuation in the lowest energy level (at
−2mc2

rel) that has zero angular momentum is called parapositronium, which is a singlet
spin state. However, an atom in its ground state interacts with the electric field as if it
were a harmonic oscillator with the first two energy levels separated by twice the rest-mass
energy, 2mc2

rel, of one of the elementary particles of mass m. Here, we use the standard
wave functions of the quantized harmonic oscillator. Recall that a harmonic oscillator
of two equal moving masses m is like a harmonic oscillator with one moving particle of
reduced mass m/2.

The virtual pair interacts with an external electric field according to the Hamiltonian
Ĥint = −℘ · E. For the full description of the system, three harmonic oscillators are used,
one each for the three Cartesian coordinates. In the electric case, we assume a linearly
polarized external electric field, which induces a one-dimensional dipole. If one makes the
two-level approximation, so that only transitions between the ground (ψ0) and the first
excited (ψ1) states of the oscillator are relevant, one finds that

℘max = e〈ψ1|x̂|ψ0〉, (A1)
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Using the explicit form of these standard harmonic oscillator wave functions, one
immediately obtains the maximum possible electric dipole moment,

℘max =
eh̄√

2mcrel
. (A2)

According to the standard treatment of a two-level system in an external field [43], the
torque vector for this problem is given by Ω = (2〈ψ1|Ĥint|ψ0〉/h̄, 0, ∆ω)>, where the
subscript > denotes the transpose. The time-averaged induced dipole moment turns out
to be

℘ =
Ωx

Ωz
℘max =

2℘maxE
h̄∆ω

℘max =
e2h̄2

2m3c4
rel

E , (A3)

which is actually Equation (6).
Let us now turn to the induced magnetic dipole, with interaction Hamiltonian,

Ĥint = −m · B. The definition of the magnetic moment reads [57]: m = 1
2 er× ṙ, where the

dot denotes time derivative. If, for definiteness, the magnetic field is considered along the z
axis, then m is along the z axis with modulus m = 1

2 e(xẏ− ẋy) = 1
2 eϕ̇(x2 − y2) and ϕ the

polar angle. A magnetic dipole results from a superposition of states of the same parity.
Therefore, using now the full three-dimensional harmonic oscillator with its product wave
functions, the maximum possible magnetic dipole moment is

mmax = 1
2 eϕ̇〈ψ000|x̂2 − ŷ2| 1√

2
(ψ200 − ψ020)〉. (A4)

Using again the explicit harmonic oscillator wave functions, one obtains:

mmax = − 1
2 eϕ̇

h̄2

m2c2
rel

. (A5)

Applying again the two-level atom dynamics, but now between levels 0 and 2, yields
the induced magnetic dipole moment:

m =
Ωx

Ωz
mmax '

2mmaxB
h̄∆ω

mmax =
e2h̄2

2m3c2
rel

B , (A6)

as found in Equation (7).
Note that the harmonic oscillator approximation is valid for all physical systems in

equilibrium, as long as the departure from the equilibrium point is small enough, which
is the case here. The point that the excited state spectrum differs greatly is actually not
essential under this condition. What is important is the effective ‘spring’ constant, which is
given by the spacing between the ground and the first excited states.
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