
Citation: Tlatov, A.G.; Berezin, I.

Modeling the Magnetic Field of the

Inner Corona in a Radially

Expanding Solar Wind. Physics 2023,

5, 161–167. https://doi.org/

10.3390/physics5010012

Received: 29 November 2022

Revised: 6 January 2023

Accepted: 9 January 2023

Published: 29 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Communication

Modeling the Magnetic Field of the Inner Corona in a Radially
Expanding Solar Wind
Andrey G. Tlatov * and Ivan Berezin

Kislovodsk Mountain Astronomical Station of the Pulkovo Observatory, Gagarina Str. 100,
357700 Kislovodsk, Russia
* Correspondence: tlatov@mail.ru

Abstract: The magnetic field in the interplanetary medium is formed by the action of magnetic
field sources on the photosphere of the Sun and currents in the expanding atmosphere of the Sun
and the solar wind. In turn, the high-speed plasma flow changes the configuration of the magnetic
field lines. The problem of determining the parameters of the magnetic field near the Sun is thus a
three-dimensional problem of the interaction of the magnetic field and the plasma of the solar wind.
We present analytical expressions for calculating the total magnetic field vector ~B(r, θ, φ) (in spherical
coordinates) for a radially expanding solar wind flow of finite conductivity. The parameters of the
solar wind are given in the form of a dimensionless magnetic Reynolds number given as an arbitrary
function of the radius, r: Rm = rσµv = ξ(r), where σ, µ, and v denote, respectively, the conductivity,
magnetic permeability, and velocity of the solar wind. The solution for the magnetic field components
is obtained in the form of a decomposition in spherical functions and a radial part depending on the
distance from the Sun. Examples of calculations of the configuration of magnetic fields and structures
of the solar corona for the solar eclipse of 21 August 2017 are given.
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1. Introduction

The magnetic field in the solar corona and the interplanetary medium is formed by
the action of the photospheric magnetic field and electric currents in the solar wind. The
interaction of the magnetic field and plasma in the near-solar space leads to the formation
of structures in the corona, observed, for example, in white light during eclipses. In turn,
the high-speed plasma flow changes the configuration of the magnetic field lines. The
problem of determining the parameters of the magnetic field near the Sun, taking into
account the expanding solar wind, generally remains unsolved. Simplifying assumptions
are usually used to solve the problem.

In recent years, significant progress has been made in constructing realistic three-
dimensional global magneto-hydrodynamic (MHD) models [1,2]. Such models are neces-
sary for a self-consistent description of the interaction of the magnetic field with the plasma
in the solar atmosphere. These models allow comparison of the calculated coronal structure
with observations and provide simulations of solar wind parameters in the heliosphere;
see, e.g., [1,3]. On the other hand, MHD models require external boundary conditions (e.g.,
plasma densities or temperatures), and here the problem of solution ambiguity remains
relevant.

To solve the problem, simplifying assumptions are usually applied. Early calculations
of the magnetic field in the solar corona neglected the presence of a conductive medium,
reducing the problem to a search for the scalar potential near a charged sphere [4]. However,
at distances r > 1.5− 2R�, where R� is the radius of the Sun, this approximation turns out
to be poorly applicable, since it does not satisfactorily describe the topology of the magnetic
field, as well as the law of decreasing magnitude of the magnetic field with distance. In the
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potential approximation, it is proportional to 1/r3. Actually, the observed magnetic field
decreases with distance according to the law, ∼ 1/r2.13 [5].

To eliminate the disagreement, a source surface is introduced, on which the potential
turns to zero [4]. The approximation of the source surface is to simulate the effect of solar
wind outflow, which distorts the magnetic field from a non-current configuration above
approximately ∼2.5R� The application of the source surface is only a geometric approach
in a potential approximation and does not take into account the real parameter α of the
solar wind.

Another approach is the approximation, in which the magnetic field is drawn by an
expanding solar corona with infinite conductivity [6,7]. This approximation inadequately
describes the behavior of the magnetic field at small distances from the Sun and leads to
the understanding that the magnetic field in this model decreases in proportion to 1/r2.
The magnetic field lines in this approximation appear radial even in the inner corona of the
Sun. Thus, the real picture corresponds to the conditions of finite plasma conductivity or
non-potential models.

The potential field model gives a rough approximation for large-scale solar magnetic
structures and is suitable when a small electric current is present. Later, a linear simulation
of the force-free field was developed with a constant parameter α, which is the proportion-
ality between the electric current and the magnetic field [8]. However, observations show
that α is usually inconstant for the magnetic field of the Sun [9]. A more realistic model is a
model of a force-free field with a variable parameter α. Such a nonlinear force-free field
(NLFFF) is used to calculate the three-dimensional magnetic field in the corona (see [8] and
references therein).

An alternative to global MHD modeling that requires significant computational re-
sources is the magneto-friction (MF) method [8,10,11]. In this method, instead of solving
the full MHD momentum equation, the velocity, v, is approximated by the magnetofriction
form introduced in Ref. [10]. In Ref. [12], a development of the MF model, which uses a
given solar wind profile, is proposed.

At the same time, analytical solutions for non-potential configurations of the magnetic
field in the Sun’s low corona remain relevant. One type of such solution is magneto-
hydrostatic approximations [13]. Other models consider magnetic field propagation in
a radially expanding solar wind flow of finite conductivity. In Ref. [14], solutions for
determining the magnetic field components, Br, Bθ , Bφ, in spherical coordinates (r, θ, φ),
is given for the case when the conductivity, σ, and velocity, v, both depend on the radius, r.
The solution for Br was found from the solution of a second-order differential equation by
reducing it to a first-order equation and, further, by decomposition over a large parameter
by the WKB (Wentzel–Kramers–Brillouin) approximation. The components Bθ , Bφ were
found from Br.

In this paper, we will look for solutions for the magnetic field near the Sun, taking into
account the radially expanding solar wind with finite electrical conductivity.

2. Some Explicit Solutions

This Section provides a solution for determining the total magnetic field vector, ~B, for
a radially expanding solar wind flow of finite conductivity, σ(r), homogeneous in θ, φ [15].
Bogdan and Low [13] proposed a method for representing the magnetic field for the static
radially stratified atmosphere of the Sun through the scalar functions, Ψ and Φ:

~B = Ψ
(

r,
∂Φ
∂r

)
~er +

1
r

∂Φ
∂θ

~eθ +
1

r sin θ

∂Φ
∂φ

~eφ, (1)

where~er,~eθ , and~eφ are the unit vectors.
Similar to that in Ref. [13], we assume that the current, J, is directed perpendicular

to gravity. In the case here, we consider that the quasipermanent solar wind propagates
radially: v = vr, and the current J is formed by the interaction of the radially expanding
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wind and the magnetic field. Then, from Equation (1) and the equation, ∇× B = µJ, one
gets the equation for the horizontal current:

µ~J =
1

r sin θ

∂
(

Ψ− ∂Φ
∂r

)
∂φ

~eθ −
1
r

∂
(

Ψ− ∂Φ
∂r

)
∂θ

~eφ, (2)

where µ is the magnetic permeability.
From div~B = 0, it follows:

∂(r2Ψ)

∂r
+

1
sin θ

(
∂ sin θ ∂Φ

∂θ

∂θ
+

1
sin θ

∂2Φ
∂ϕ2

)
= 0. (3)

This equation can be linearized if

Ψ
(

r,
∂Φ
∂r

)
~er = η(r)

∂Φ
∂r

~er, (4)

where η(r) is some function of r. Substituting this expression into Equation (3), one obtains:

∂(r2η ∂Φ
∂r )

∂r
+

1
sin θ

(
∂ sin θ ∂Φ

∂θ

∂θ
+

1
sin θ

∂2Φ
∂ϕ2

)
= 0. (5)

The basic solution of this equation can be represented as a decomposition:

Φ(r, θ, φ) =
∞

∑
n=0

n

∑
m=−n

AnmΦn(r)Ym
n (θ, ϕ), (6)

where Anm are constant coefficients. Φn—linearly independent solutions of the equation:

∂
(

r2η ∂Φn
∂r

)
∂r

− n(n + 1)Φn = 0, (7)

and the function Ym
n (θ, φ) is expressed in terms of the attached Legendre polynomials,

Pm
n (θ, φ):

Ym
n = (−1)m

[
(2n + 1)

4π

(n−m)!
(n + m)!

]1/2

Pm
n (cos θ) exp(imϕ). (8)

Electrical current, J, can be expressed through generalized Ohm’s law,~J = σ(~E +~v×
~B), where σ is the specific electrical conductivity. Since in the stationary case, ∇× ~E =
−∂~B/∂t = 0, we assume that the electric field ~E = 0. Then, the current J is expressed
through the speed v of the solar wind and the magnetic field:

~J = σ(~v× ~B) = vσ(Bθ~eφ − Bφ~eθ). (9)

Converting Equation (9), while taking into account Equation (1), one ontains:

~J = − σv
r sin θ ∑

n

n

∑
m

Φn
∂Ym

n
∂ϕ

~eθ +
σv
r ∑

n

n

∑
m

Φn
∂Ym

n
∂θ

~eϕ. (10)

On the other hand, from Equations (2), (4), and (6), one obtains:
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µ~J =
1
r

sin θ
∂

∂φ

(
∑
n

n

∑
m

η
dΦn

dr
Ym

n −∑
n

n

∑
m

dΦn

dr
Ym

n

)
~eθ

− 1
r

∂

∂θ

(
∑
n

n

∑
m

η
dΦn

dr
Ym

n −∑
n

n

∑
m

dΦn

dr
Ym

n

)
~eφ (11)

= ∑
n

n

∑
m

(η − 1)
r sin θ

dΦn

dr
∂Ym

n
∂φ

~eθ −∑
n

n

∑
m

(η − 1)
r

dΦn

dr
∂Ym

n
∂θ

~eφ.

Comparing Equations (10) and (11), one finds:

Jθ = − σv
r sin θ ∑

n

n

∑
m

Φn
∂Ym

n
∂φ

= ∑
n

n

∑
m

(η − 1)
rµ sin θ

Φ
′
n

∂Ym
n

∂ϕ
, (12)

Jφ =
σv
r ∑

n

n

∑
m

Φn
∂Ym

n
∂θ

= −∑
n

n

∑
m

(η − 1)
rµ

Φ
′
n

∂Ym
n

∂θ
, (13)

where the prime denotes the derivative with respect to r. Using the orthogonality of
Legendre polynomials, one obtains from the equations for currents (12), (13):

σµ vΦn = (1− η)Φ
′
n, (14)

or
η = 1− σµ vΦn/Φ

′
n. (15)

Taking into account Equation (15), the second-order differential Equation (7) is trans-
formed into a first-order equation:

d
dr

(r2ηΦ
′
n)− n(n + 1)Φn =

d
dr

(
r2ησµ vΦn

1− η

)
− n(n + 1)Φn = 0, (16)

Denoting yn = r2ησµ vΦn/(1− η), Equation (16) can be rewritten as

y′n =
(1− η)

r2ησµ vΦ
n(n + 1)yn = f (r)n(n + 1)yn, (17)

where f (r) = (1− η)/(r2ησµ v). This equation can be solved by separating variables:

dyn

yn
= f (r)n(n + 1)dr, (18)

having a general form of the solution:

ln(yn) =
∫ r

R=R0

f (r)n(n + 1)dr. (19)

From Equation (19), one obtains a general expression for Φn:

Φn = A
(1− η)

r2ησµθv
exp

(∫ r

R=R0

f (r)n(n + 1)dr
)

, (20)

where A is a constant. For a complete solution (6), Anm can be determined from the signal
on the photosphere, F(θ, φ):

Anm =
∫

F(θ, φ)Ym
n (θ, φ)dΩ, (21)

where Ω is the solid angle.
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Consider the special case when |η| � 1. Then one can neglect 1 in Equations (14) and
(15):

Φn = (1− η)Φ
′
n/(σµ v) ' −ηΦ

′
n/(σµ v), (22)

and then f (r) is independent of η:

f (r) = (1− η)/(r2ησµ v) ' −1/(r2σµ v). (23)

The dimensionless quantity, rσµv, is equal to the magnetic Reynolds number and in
the current consideration is a function of distance: Rm = rσµv = f (r). Then, at |η| � 1,
the solutions for ~B can be written in the form:

Br = ∑
n

n

∑
m

Anm

r2 exp
(∫ r

R=R0

−n(n + 1)
rRm

dr
)

Ym
n , (24)

Bθ = ∑
n

n

∑
m

−Anm

r2Rm
exp

(∫ r

R=R0

−n(n + 1)
rRm

dr
)

∂Ym
n

∂θ
, (25)

Bφ = ∑
n

n

∑
m

−Anm

r2 sin θRm
exp

(∫ r

R=R0

−n(n + 1)
rRm

dr
)

∂Ym
n

∂φ
. (26)

3. Simulation of the Coronal Magnetic Field at the Time of the Solar Eclipse on
21 August 2017

Let us consider examples for calculating the configuration of the magnetic field in
the corona. To set the magnetic field, synoptic maps of the Sun’s magnetic fields are used.
The Kislovodsk Mountain Astronomical Station (KMAS) performs daily measurements
of the magnetic fields of the Sun [16,17]. For modeling, let us use synoptic maps with
a resolution of 720 × 360. For calculations, the procedure of filling the poles and polar
correction is performed. The polar correction, i.e., the conversion of the LOS (line of
sight) component into the radial Br(r = R�), is carried out by dividing by the cosine
of latitude. For calculations according to the scheme (24)–(26), it is necessary to set the
function Rm(r) = ξ(r). The calculations were carried out with the approximation of the
Rm function with the power dependence, Rm(r) = R0

mrα. When integrating, one obtains:∫ r

R=R0

1
rRm

dr = − 1
R0

mrαα
. (27)

The values of the Rm number, which has the meaning of the magnetic Reynolds
number, lie in the range from 0.1 to 10. For values of Rm > 10, the calculation gives only
direct radial rays, and for Rm < 0.5 there is a case of a potential magnetic field.

The calculation procedure consisted of several stages: (i) preparation of a synoptic
map of magnetic fields; (ii) decomposition of the magnetic field into spherical harmonics;
(iii) restoration of the magnetic field vector in the solar corona and obtaining a picture of
ray structures.

Figure 1 shows the results of modeling the shape of the corona at the time of the
solar eclipse of 21.08.2017. For comparison, calculations for potential approximation of
the potential-field source-surface model (PFSS) and non-potential approximation (NP)
using Equations (24)–(26) are also presented. For the NP the parameters of the radial
function were chosen as R0

m = 1.5, α = 2.5. Such values were chosen for the best fit of the
configuration of the field lines to the observations. It can be noted that the configurations
of the field lines are similar. The regions of closed magnetic field lines correspond to the of
helmet-shaped rays of the observed solar corona [18]. In the polar regions, one can find the
open configurations of magnetic fields, corresponding to of polar plumes. For the selected
NP parameters at low altitudes, the field lines rise to lower heights than in the potential
PFSS calculation. Despite the absence of source surface conditions, in NP calculations, the
magnetic field lines are also close to the radial direction.
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Figure 1. Configuration of magnetic field lines for 21.08.2017 for potential approximation (PFSS) and
for non-potential approximation (NP). See text for details.

4. Conclusions

Global magnetic fields can be modeled using MHD models. At the same time, the
problem of forming boundary conditions for MHD at the lower boundary remains urgent.
As a rule, the potential PFSS approximation and the Wang-Sheeley-Arge (WSA) model [19]
for calculating solar wind parameters are used for this.

The solution considered here for a non-potential case can help in solving this problem.
Setting the radial function for Rm(r) = ξ(r) gives more freedom and can take into account
the differences in the formation of the coronal magnetic field at different phases of the
activity cycle. The presented solution for the required computing resources is comparable
to calculations using PFSS methods. Just like in PFSS, spherical functions are used to
describe the magnetic field. This makes it possible to use this solution to estimate the
parameters of the solar wind in the WSA scheme.

Thus, the presented non-potential method of calculating the magnetic field can be
used to reconstruct the topology of the solar corona, used in estimating the speed of the
solar wind and used to set boundary conditions for MHD models.
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18. Mikić, Z.; Downs, C.; Linker, J.A.; Caplan, R.M.; Mackay, D.H.; Upton, L.A.; Riley, P.; Lionello, R.; Török, T.; Titov, V.S.; et al.

Predicting the corona for the 21 August 2017 total solar eclipse. Nat. Astron. 2018, 2, 913–921. [CrossRef]
19. Arge, C.N.; Pizzo, V.J. Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates.

J. Geophys. Res. Space Phys. 2000, 105, 10465–10479. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1029/SP007p0332
http://dx.doi.org/10.1086/146579
http://dx.doi.org/10.1007/BF00145940
http://dx.doi.org/10.12942/lrsp-2012-6
http://dx.doi.org/10.1007/s11207-006-0068-7
http://dx.doi.org/10.1086/164610
http://dx.doi.org/10.3847/1538-4357/ac94c7
http://dx.doi.org/10.3847/1538-4357/ac2c71
http://dx.doi.org/10.1086/164341
http://dx.doi.org/10.1134/S0016793215070257
http://solarstation.ru
http://dx.doi.org/10.1038/s41550-018-0562-5
http://dx.doi.org/10.1029/1999JA000262

	Introduction
	Some Explicit Solutions
	Simulation of the Coronal Magnetic Field at the Time of the Solar Eclipse on 21 August 2017
	Conclusions
	References

